1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/freezer.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "segment.h" 24 #include "node.h" 25 #include "gc.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define __reverse_ffz(x) __reverse_ffs(~(x)) 30 31 static struct kmem_cache *discard_entry_slab; 32 static struct kmem_cache *discard_cmd_slab; 33 static struct kmem_cache *sit_entry_set_slab; 34 static struct kmem_cache *inmem_entry_slab; 35 36 static unsigned long __reverse_ulong(unsigned char *str) 37 { 38 unsigned long tmp = 0; 39 int shift = 24, idx = 0; 40 41 #if BITS_PER_LONG == 64 42 shift = 56; 43 #endif 44 while (shift >= 0) { 45 tmp |= (unsigned long)str[idx++] << shift; 46 shift -= BITS_PER_BYTE; 47 } 48 return tmp; 49 } 50 51 /* 52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 53 * MSB and LSB are reversed in a byte by f2fs_set_bit. 54 */ 55 static inline unsigned long __reverse_ffs(unsigned long word) 56 { 57 int num = 0; 58 59 #if BITS_PER_LONG == 64 60 if ((word & 0xffffffff00000000UL) == 0) 61 num += 32; 62 else 63 word >>= 32; 64 #endif 65 if ((word & 0xffff0000) == 0) 66 num += 16; 67 else 68 word >>= 16; 69 70 if ((word & 0xff00) == 0) 71 num += 8; 72 else 73 word >>= 8; 74 75 if ((word & 0xf0) == 0) 76 num += 4; 77 else 78 word >>= 4; 79 80 if ((word & 0xc) == 0) 81 num += 2; 82 else 83 word >>= 2; 84 85 if ((word & 0x2) == 0) 86 num += 1; 87 return num; 88 } 89 90 /* 91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 92 * f2fs_set_bit makes MSB and LSB reversed in a byte. 93 * @size must be integral times of unsigned long. 94 * Example: 95 * MSB <--> LSB 96 * f2fs_set_bit(0, bitmap) => 1000 0000 97 * f2fs_set_bit(7, bitmap) => 0000 0001 98 */ 99 static unsigned long __find_rev_next_bit(const unsigned long *addr, 100 unsigned long size, unsigned long offset) 101 { 102 const unsigned long *p = addr + BIT_WORD(offset); 103 unsigned long result = size; 104 unsigned long tmp; 105 106 if (offset >= size) 107 return size; 108 109 size -= (offset & ~(BITS_PER_LONG - 1)); 110 offset %= BITS_PER_LONG; 111 112 while (1) { 113 if (*p == 0) 114 goto pass; 115 116 tmp = __reverse_ulong((unsigned char *)p); 117 118 tmp &= ~0UL >> offset; 119 if (size < BITS_PER_LONG) 120 tmp &= (~0UL << (BITS_PER_LONG - size)); 121 if (tmp) 122 goto found; 123 pass: 124 if (size <= BITS_PER_LONG) 125 break; 126 size -= BITS_PER_LONG; 127 offset = 0; 128 p++; 129 } 130 return result; 131 found: 132 return result - size + __reverse_ffs(tmp); 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 const unsigned long *p = addr + BIT_WORD(offset); 139 unsigned long result = size; 140 unsigned long tmp; 141 142 if (offset >= size) 143 return size; 144 145 size -= (offset & ~(BITS_PER_LONG - 1)); 146 offset %= BITS_PER_LONG; 147 148 while (1) { 149 if (*p == ~0UL) 150 goto pass; 151 152 tmp = __reverse_ulong((unsigned char *)p); 153 154 if (offset) 155 tmp |= ~0UL << (BITS_PER_LONG - offset); 156 if (size < BITS_PER_LONG) 157 tmp |= ~0UL >> size; 158 if (tmp != ~0UL) 159 goto found; 160 pass: 161 if (size <= BITS_PER_LONG) 162 break; 163 size -= BITS_PER_LONG; 164 offset = 0; 165 p++; 166 } 167 return result; 168 found: 169 return result - size + __reverse_ffz(tmp); 170 } 171 172 bool need_SSR(struct f2fs_sb_info *sbi) 173 { 174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 177 178 if (test_opt(sbi, LFS)) 179 return false; 180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent) 181 return true; 182 183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 185 } 186 187 void register_inmem_page(struct inode *inode, struct page *page) 188 { 189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 struct inmem_pages *new; 192 193 f2fs_trace_pid(page); 194 195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 196 SetPagePrivate(page); 197 198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 199 200 /* add atomic page indices to the list */ 201 new->page = page; 202 INIT_LIST_HEAD(&new->list); 203 204 /* increase reference count with clean state */ 205 mutex_lock(&fi->inmem_lock); 206 get_page(page); 207 list_add_tail(&new->list, &fi->inmem_pages); 208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 209 if (list_empty(&fi->inmem_ilist)) 210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 213 mutex_unlock(&fi->inmem_lock); 214 215 trace_f2fs_register_inmem_page(page, INMEM); 216 } 217 218 static int __revoke_inmem_pages(struct inode *inode, 219 struct list_head *head, bool drop, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct inmem_pages *cur, *tmp; 223 int err = 0; 224 225 list_for_each_entry_safe(cur, tmp, head, list) { 226 struct page *page = cur->page; 227 228 if (drop) 229 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 230 231 lock_page(page); 232 233 if (recover) { 234 struct dnode_of_data dn; 235 struct node_info ni; 236 237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 238 retry: 239 set_new_dnode(&dn, inode, NULL, NULL, 0); 240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 241 if (err) { 242 if (err == -ENOMEM) { 243 congestion_wait(BLK_RW_ASYNC, HZ/50); 244 cond_resched(); 245 goto retry; 246 } 247 err = -EAGAIN; 248 goto next; 249 } 250 get_node_info(sbi, dn.nid, &ni); 251 if (cur->old_addr == NEW_ADDR) { 252 invalidate_blocks(sbi, dn.data_blkaddr); 253 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 254 } else 255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 256 cur->old_addr, ni.version, true, true); 257 f2fs_put_dnode(&dn); 258 } 259 next: 260 /* we don't need to invalidate this in the sccessful status */ 261 if (drop || recover) 262 ClearPageUptodate(page); 263 set_page_private(page, 0); 264 ClearPagePrivate(page); 265 f2fs_put_page(page, 1); 266 267 list_del(&cur->list); 268 kmem_cache_free(inmem_entry_slab, cur); 269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 270 } 271 return err; 272 } 273 274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi) 275 { 276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 277 struct inode *inode; 278 struct f2fs_inode_info *fi; 279 next: 280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 281 if (list_empty(head)) { 282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 283 return; 284 } 285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 286 inode = igrab(&fi->vfs_inode); 287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 288 289 if (inode) { 290 drop_inmem_pages(inode); 291 iput(inode); 292 } 293 congestion_wait(BLK_RW_ASYNC, HZ/50); 294 cond_resched(); 295 goto next; 296 } 297 298 void drop_inmem_pages(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 303 mutex_lock(&fi->inmem_lock); 304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 306 if (!list_empty(&fi->inmem_ilist)) 307 list_del_init(&fi->inmem_ilist); 308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 309 mutex_unlock(&fi->inmem_lock); 310 311 clear_inode_flag(inode, FI_ATOMIC_FILE); 312 clear_inode_flag(inode, FI_HOT_DATA); 313 stat_dec_atomic_write(inode); 314 } 315 316 void drop_inmem_page(struct inode *inode, struct page *page) 317 { 318 struct f2fs_inode_info *fi = F2FS_I(inode); 319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 320 struct list_head *head = &fi->inmem_pages; 321 struct inmem_pages *cur = NULL; 322 323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 324 325 mutex_lock(&fi->inmem_lock); 326 list_for_each_entry(cur, head, list) { 327 if (cur->page == page) 328 break; 329 } 330 331 f2fs_bug_on(sbi, !cur || cur->page != page); 332 list_del(&cur->list); 333 mutex_unlock(&fi->inmem_lock); 334 335 dec_page_count(sbi, F2FS_INMEM_PAGES); 336 kmem_cache_free(inmem_entry_slab, cur); 337 338 ClearPageUptodate(page); 339 set_page_private(page, 0); 340 ClearPagePrivate(page); 341 f2fs_put_page(page, 0); 342 343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 344 } 345 346 static int __commit_inmem_pages(struct inode *inode, 347 struct list_head *revoke_list) 348 { 349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct inmem_pages *cur, *tmp; 352 struct f2fs_io_info fio = { 353 .sbi = sbi, 354 .ino = inode->i_ino, 355 .type = DATA, 356 .op = REQ_OP_WRITE, 357 .op_flags = REQ_SYNC | REQ_PRIO, 358 .io_type = FS_DATA_IO, 359 }; 360 pgoff_t last_idx = ULONG_MAX; 361 int err = 0; 362 363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 364 struct page *page = cur->page; 365 366 lock_page(page); 367 if (page->mapping == inode->i_mapping) { 368 trace_f2fs_commit_inmem_page(page, INMEM); 369 370 set_page_dirty(page); 371 f2fs_wait_on_page_writeback(page, DATA, true); 372 if (clear_page_dirty_for_io(page)) { 373 inode_dec_dirty_pages(inode); 374 remove_dirty_inode(inode); 375 } 376 retry: 377 fio.page = page; 378 fio.old_blkaddr = NULL_ADDR; 379 fio.encrypted_page = NULL; 380 fio.need_lock = LOCK_DONE; 381 err = do_write_data_page(&fio); 382 if (err) { 383 if (err == -ENOMEM) { 384 congestion_wait(BLK_RW_ASYNC, HZ/50); 385 cond_resched(); 386 goto retry; 387 } 388 unlock_page(page); 389 break; 390 } 391 /* record old blkaddr for revoking */ 392 cur->old_addr = fio.old_blkaddr; 393 last_idx = page->index; 394 } 395 unlock_page(page); 396 list_move_tail(&cur->list, revoke_list); 397 } 398 399 if (last_idx != ULONG_MAX) 400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); 401 402 if (!err) 403 __revoke_inmem_pages(inode, revoke_list, false, false); 404 405 return err; 406 } 407 408 int commit_inmem_pages(struct inode *inode) 409 { 410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 411 struct f2fs_inode_info *fi = F2FS_I(inode); 412 struct list_head revoke_list; 413 int err; 414 415 INIT_LIST_HEAD(&revoke_list); 416 f2fs_balance_fs(sbi, true); 417 f2fs_lock_op(sbi); 418 419 set_inode_flag(inode, FI_ATOMIC_COMMIT); 420 421 mutex_lock(&fi->inmem_lock); 422 err = __commit_inmem_pages(inode, &revoke_list); 423 if (err) { 424 int ret; 425 /* 426 * try to revoke all committed pages, but still we could fail 427 * due to no memory or other reason, if that happened, EAGAIN 428 * will be returned, which means in such case, transaction is 429 * already not integrity, caller should use journal to do the 430 * recovery or rewrite & commit last transaction. For other 431 * error number, revoking was done by filesystem itself. 432 */ 433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 434 if (ret) 435 err = ret; 436 437 /* drop all uncommitted pages */ 438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 439 } 440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 441 if (!list_empty(&fi->inmem_ilist)) 442 list_del_init(&fi->inmem_ilist); 443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 444 mutex_unlock(&fi->inmem_lock); 445 446 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 447 448 f2fs_unlock_op(sbi); 449 return err; 450 } 451 452 /* 453 * This function balances dirty node and dentry pages. 454 * In addition, it controls garbage collection. 455 */ 456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 457 { 458 #ifdef CONFIG_F2FS_FAULT_INJECTION 459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 460 f2fs_show_injection_info(FAULT_CHECKPOINT); 461 f2fs_stop_checkpoint(sbi, false); 462 } 463 #endif 464 465 /* balance_fs_bg is able to be pending */ 466 if (need && excess_cached_nats(sbi)) 467 f2fs_balance_fs_bg(sbi); 468 469 /* 470 * We should do GC or end up with checkpoint, if there are so many dirty 471 * dir/node pages without enough free segments. 472 */ 473 if (has_not_enough_free_secs(sbi, 0, 0)) { 474 mutex_lock(&sbi->gc_mutex); 475 f2fs_gc(sbi, false, false, NULL_SEGNO); 476 } 477 } 478 479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 480 { 481 /* try to shrink extent cache when there is no enough memory */ 482 if (!available_free_memory(sbi, EXTENT_CACHE)) 483 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 484 485 /* check the # of cached NAT entries */ 486 if (!available_free_memory(sbi, NAT_ENTRIES)) 487 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 488 489 if (!available_free_memory(sbi, FREE_NIDS)) 490 try_to_free_nids(sbi, MAX_FREE_NIDS); 491 else 492 build_free_nids(sbi, false, false); 493 494 if (!is_idle(sbi) && !excess_dirty_nats(sbi)) 495 return; 496 497 /* checkpoint is the only way to shrink partial cached entries */ 498 if (!available_free_memory(sbi, NAT_ENTRIES) || 499 !available_free_memory(sbi, INO_ENTRIES) || 500 excess_prefree_segs(sbi) || 501 excess_dirty_nats(sbi) || 502 f2fs_time_over(sbi, CP_TIME)) { 503 if (test_opt(sbi, DATA_FLUSH)) { 504 struct blk_plug plug; 505 506 blk_start_plug(&plug); 507 sync_dirty_inodes(sbi, FILE_INODE); 508 blk_finish_plug(&plug); 509 } 510 f2fs_sync_fs(sbi->sb, true); 511 stat_inc_bg_cp_count(sbi->stat_info); 512 } 513 } 514 515 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 516 struct block_device *bdev) 517 { 518 struct bio *bio = f2fs_bio_alloc(sbi, 0, true); 519 int ret; 520 521 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 522 bio_set_dev(bio, bdev); 523 ret = submit_bio_wait(bio); 524 bio_put(bio); 525 526 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 527 test_opt(sbi, FLUSH_MERGE), ret); 528 return ret; 529 } 530 531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 532 { 533 int ret = 0; 534 int i; 535 536 if (!sbi->s_ndevs) 537 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 538 539 for (i = 0; i < sbi->s_ndevs; i++) { 540 if (!is_dirty_device(sbi, ino, i, FLUSH_INO)) 541 continue; 542 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 543 if (ret) 544 break; 545 } 546 return ret; 547 } 548 549 static int issue_flush_thread(void *data) 550 { 551 struct f2fs_sb_info *sbi = data; 552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 553 wait_queue_head_t *q = &fcc->flush_wait_queue; 554 repeat: 555 if (kthread_should_stop()) 556 return 0; 557 558 sb_start_intwrite(sbi->sb); 559 560 if (!llist_empty(&fcc->issue_list)) { 561 struct flush_cmd *cmd, *next; 562 int ret; 563 564 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 565 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 566 567 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 568 569 ret = submit_flush_wait(sbi, cmd->ino); 570 atomic_inc(&fcc->issued_flush); 571 572 llist_for_each_entry_safe(cmd, next, 573 fcc->dispatch_list, llnode) { 574 cmd->ret = ret; 575 complete(&cmd->wait); 576 } 577 fcc->dispatch_list = NULL; 578 } 579 580 sb_end_intwrite(sbi->sb); 581 582 wait_event_interruptible(*q, 583 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 584 goto repeat; 585 } 586 587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 588 { 589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 590 struct flush_cmd cmd; 591 int ret; 592 593 if (test_opt(sbi, NOBARRIER)) 594 return 0; 595 596 if (!test_opt(sbi, FLUSH_MERGE)) { 597 ret = submit_flush_wait(sbi, ino); 598 atomic_inc(&fcc->issued_flush); 599 return ret; 600 } 601 602 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { 603 ret = submit_flush_wait(sbi, ino); 604 atomic_dec(&fcc->issing_flush); 605 606 atomic_inc(&fcc->issued_flush); 607 return ret; 608 } 609 610 cmd.ino = ino; 611 init_completion(&cmd.wait); 612 613 llist_add(&cmd.llnode, &fcc->issue_list); 614 615 /* update issue_list before we wake up issue_flush thread */ 616 smp_mb(); 617 618 if (waitqueue_active(&fcc->flush_wait_queue)) 619 wake_up(&fcc->flush_wait_queue); 620 621 if (fcc->f2fs_issue_flush) { 622 wait_for_completion(&cmd.wait); 623 atomic_dec(&fcc->issing_flush); 624 } else { 625 struct llist_node *list; 626 627 list = llist_del_all(&fcc->issue_list); 628 if (!list) { 629 wait_for_completion(&cmd.wait); 630 atomic_dec(&fcc->issing_flush); 631 } else { 632 struct flush_cmd *tmp, *next; 633 634 ret = submit_flush_wait(sbi, ino); 635 636 llist_for_each_entry_safe(tmp, next, list, llnode) { 637 if (tmp == &cmd) { 638 cmd.ret = ret; 639 atomic_dec(&fcc->issing_flush); 640 continue; 641 } 642 tmp->ret = ret; 643 complete(&tmp->wait); 644 } 645 } 646 } 647 648 return cmd.ret; 649 } 650 651 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 652 { 653 dev_t dev = sbi->sb->s_bdev->bd_dev; 654 struct flush_cmd_control *fcc; 655 int err = 0; 656 657 if (SM_I(sbi)->fcc_info) { 658 fcc = SM_I(sbi)->fcc_info; 659 if (fcc->f2fs_issue_flush) 660 return err; 661 goto init_thread; 662 } 663 664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 665 if (!fcc) 666 return -ENOMEM; 667 atomic_set(&fcc->issued_flush, 0); 668 atomic_set(&fcc->issing_flush, 0); 669 init_waitqueue_head(&fcc->flush_wait_queue); 670 init_llist_head(&fcc->issue_list); 671 SM_I(sbi)->fcc_info = fcc; 672 if (!test_opt(sbi, FLUSH_MERGE)) 673 return err; 674 675 init_thread: 676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 678 if (IS_ERR(fcc->f2fs_issue_flush)) { 679 err = PTR_ERR(fcc->f2fs_issue_flush); 680 kfree(fcc); 681 SM_I(sbi)->fcc_info = NULL; 682 return err; 683 } 684 685 return err; 686 } 687 688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 689 { 690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 691 692 if (fcc && fcc->f2fs_issue_flush) { 693 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 694 695 fcc->f2fs_issue_flush = NULL; 696 kthread_stop(flush_thread); 697 } 698 if (free) { 699 kfree(fcc); 700 SM_I(sbi)->fcc_info = NULL; 701 } 702 } 703 704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 705 { 706 int ret = 0, i; 707 708 if (!sbi->s_ndevs) 709 return 0; 710 711 for (i = 1; i < sbi->s_ndevs; i++) { 712 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 713 continue; 714 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 715 if (ret) 716 break; 717 718 spin_lock(&sbi->dev_lock); 719 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 720 spin_unlock(&sbi->dev_lock); 721 } 722 723 return ret; 724 } 725 726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 727 enum dirty_type dirty_type) 728 { 729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 730 731 /* need not be added */ 732 if (IS_CURSEG(sbi, segno)) 733 return; 734 735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 736 dirty_i->nr_dirty[dirty_type]++; 737 738 if (dirty_type == DIRTY) { 739 struct seg_entry *sentry = get_seg_entry(sbi, segno); 740 enum dirty_type t = sentry->type; 741 742 if (unlikely(t >= DIRTY)) { 743 f2fs_bug_on(sbi, 1); 744 return; 745 } 746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 747 dirty_i->nr_dirty[t]++; 748 } 749 } 750 751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 752 enum dirty_type dirty_type) 753 { 754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 755 756 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 757 dirty_i->nr_dirty[dirty_type]--; 758 759 if (dirty_type == DIRTY) { 760 struct seg_entry *sentry = get_seg_entry(sbi, segno); 761 enum dirty_type t = sentry->type; 762 763 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 764 dirty_i->nr_dirty[t]--; 765 766 if (get_valid_blocks(sbi, segno, true) == 0) 767 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 768 dirty_i->victim_secmap); 769 } 770 } 771 772 /* 773 * Should not occur error such as -ENOMEM. 774 * Adding dirty entry into seglist is not critical operation. 775 * If a given segment is one of current working segments, it won't be added. 776 */ 777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 778 { 779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 780 unsigned short valid_blocks; 781 782 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 783 return; 784 785 mutex_lock(&dirty_i->seglist_lock); 786 787 valid_blocks = get_valid_blocks(sbi, segno, false); 788 789 if (valid_blocks == 0) { 790 __locate_dirty_segment(sbi, segno, PRE); 791 __remove_dirty_segment(sbi, segno, DIRTY); 792 } else if (valid_blocks < sbi->blocks_per_seg) { 793 __locate_dirty_segment(sbi, segno, DIRTY); 794 } else { 795 /* Recovery routine with SSR needs this */ 796 __remove_dirty_segment(sbi, segno, DIRTY); 797 } 798 799 mutex_unlock(&dirty_i->seglist_lock); 800 } 801 802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 803 struct block_device *bdev, block_t lstart, 804 block_t start, block_t len) 805 { 806 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 807 struct list_head *pend_list; 808 struct discard_cmd *dc; 809 810 f2fs_bug_on(sbi, !len); 811 812 pend_list = &dcc->pend_list[plist_idx(len)]; 813 814 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 815 INIT_LIST_HEAD(&dc->list); 816 dc->bdev = bdev; 817 dc->lstart = lstart; 818 dc->start = start; 819 dc->len = len; 820 dc->ref = 0; 821 dc->state = D_PREP; 822 dc->error = 0; 823 init_completion(&dc->wait); 824 list_add_tail(&dc->list, pend_list); 825 atomic_inc(&dcc->discard_cmd_cnt); 826 dcc->undiscard_blks += len; 827 828 return dc; 829 } 830 831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 832 struct block_device *bdev, block_t lstart, 833 block_t start, block_t len, 834 struct rb_node *parent, struct rb_node **p) 835 { 836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 837 struct discard_cmd *dc; 838 839 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 840 841 rb_link_node(&dc->rb_node, parent, p); 842 rb_insert_color(&dc->rb_node, &dcc->root); 843 844 return dc; 845 } 846 847 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 848 struct discard_cmd *dc) 849 { 850 if (dc->state == D_DONE) 851 atomic_dec(&dcc->issing_discard); 852 853 list_del(&dc->list); 854 rb_erase(&dc->rb_node, &dcc->root); 855 dcc->undiscard_blks -= dc->len; 856 857 kmem_cache_free(discard_cmd_slab, dc); 858 859 atomic_dec(&dcc->discard_cmd_cnt); 860 } 861 862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 863 struct discard_cmd *dc) 864 { 865 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 866 867 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 868 869 f2fs_bug_on(sbi, dc->ref); 870 871 if (dc->error == -EOPNOTSUPP) 872 dc->error = 0; 873 874 if (dc->error) 875 f2fs_msg(sbi->sb, KERN_INFO, 876 "Issue discard(%u, %u, %u) failed, ret: %d", 877 dc->lstart, dc->start, dc->len, dc->error); 878 __detach_discard_cmd(dcc, dc); 879 } 880 881 static void f2fs_submit_discard_endio(struct bio *bio) 882 { 883 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 884 885 dc->error = blk_status_to_errno(bio->bi_status); 886 dc->state = D_DONE; 887 complete_all(&dc->wait); 888 bio_put(bio); 889 } 890 891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 892 block_t start, block_t end) 893 { 894 #ifdef CONFIG_F2FS_CHECK_FS 895 struct seg_entry *sentry; 896 unsigned int segno; 897 block_t blk = start; 898 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 899 unsigned long *map; 900 901 while (blk < end) { 902 segno = GET_SEGNO(sbi, blk); 903 sentry = get_seg_entry(sbi, segno); 904 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 905 906 if (end < START_BLOCK(sbi, segno + 1)) 907 size = GET_BLKOFF_FROM_SEG0(sbi, end); 908 else 909 size = max_blocks; 910 map = (unsigned long *)(sentry->cur_valid_map); 911 offset = __find_rev_next_bit(map, size, offset); 912 f2fs_bug_on(sbi, offset != size); 913 blk = START_BLOCK(sbi, segno + 1); 914 } 915 #endif 916 } 917 918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi, 920 struct discard_policy *dpolicy, 921 struct discard_cmd *dc) 922 { 923 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 924 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 925 &(dcc->fstrim_list) : &(dcc->wait_list); 926 struct bio *bio = NULL; 927 int flag = dpolicy->sync ? REQ_SYNC : 0; 928 929 if (dc->state != D_PREP) 930 return; 931 932 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len); 933 934 dc->error = __blkdev_issue_discard(dc->bdev, 935 SECTOR_FROM_BLOCK(dc->start), 936 SECTOR_FROM_BLOCK(dc->len), 937 GFP_NOFS, 0, &bio); 938 if (!dc->error) { 939 /* should keep before submission to avoid D_DONE right away */ 940 dc->state = D_SUBMIT; 941 atomic_inc(&dcc->issued_discard); 942 atomic_inc(&dcc->issing_discard); 943 if (bio) { 944 bio->bi_private = dc; 945 bio->bi_end_io = f2fs_submit_discard_endio; 946 bio->bi_opf |= flag; 947 submit_bio(bio); 948 list_move_tail(&dc->list, wait_list); 949 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len); 950 951 f2fs_update_iostat(sbi, FS_DISCARD, 1); 952 } 953 } else { 954 __remove_discard_cmd(sbi, dc); 955 } 956 } 957 958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 959 struct block_device *bdev, block_t lstart, 960 block_t start, block_t len, 961 struct rb_node **insert_p, 962 struct rb_node *insert_parent) 963 { 964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 965 struct rb_node **p; 966 struct rb_node *parent = NULL; 967 struct discard_cmd *dc = NULL; 968 969 if (insert_p && insert_parent) { 970 parent = insert_parent; 971 p = insert_p; 972 goto do_insert; 973 } 974 975 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); 976 do_insert: 977 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); 978 if (!dc) 979 return NULL; 980 981 return dc; 982 } 983 984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 985 struct discard_cmd *dc) 986 { 987 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 988 } 989 990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 991 struct discard_cmd *dc, block_t blkaddr) 992 { 993 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 994 struct discard_info di = dc->di; 995 bool modified = false; 996 997 if (dc->state == D_DONE || dc->len == 1) { 998 __remove_discard_cmd(sbi, dc); 999 return; 1000 } 1001 1002 dcc->undiscard_blks -= di.len; 1003 1004 if (blkaddr > di.lstart) { 1005 dc->len = blkaddr - dc->lstart; 1006 dcc->undiscard_blks += dc->len; 1007 __relocate_discard_cmd(dcc, dc); 1008 modified = true; 1009 } 1010 1011 if (blkaddr < di.lstart + di.len - 1) { 1012 if (modified) { 1013 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1014 di.start + blkaddr + 1 - di.lstart, 1015 di.lstart + di.len - 1 - blkaddr, 1016 NULL, NULL); 1017 } else { 1018 dc->lstart++; 1019 dc->len--; 1020 dc->start++; 1021 dcc->undiscard_blks += dc->len; 1022 __relocate_discard_cmd(dcc, dc); 1023 } 1024 } 1025 } 1026 1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1028 struct block_device *bdev, block_t lstart, 1029 block_t start, block_t len) 1030 { 1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1032 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1033 struct discard_cmd *dc; 1034 struct discard_info di = {0}; 1035 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1036 block_t end = lstart + len; 1037 1038 mutex_lock(&dcc->cmd_lock); 1039 1040 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, 1041 NULL, lstart, 1042 (struct rb_entry **)&prev_dc, 1043 (struct rb_entry **)&next_dc, 1044 &insert_p, &insert_parent, true); 1045 if (dc) 1046 prev_dc = dc; 1047 1048 if (!prev_dc) { 1049 di.lstart = lstart; 1050 di.len = next_dc ? next_dc->lstart - lstart : len; 1051 di.len = min(di.len, len); 1052 di.start = start; 1053 } 1054 1055 while (1) { 1056 struct rb_node *node; 1057 bool merged = false; 1058 struct discard_cmd *tdc = NULL; 1059 1060 if (prev_dc) { 1061 di.lstart = prev_dc->lstart + prev_dc->len; 1062 if (di.lstart < lstart) 1063 di.lstart = lstart; 1064 if (di.lstart >= end) 1065 break; 1066 1067 if (!next_dc || next_dc->lstart > end) 1068 di.len = end - di.lstart; 1069 else 1070 di.len = next_dc->lstart - di.lstart; 1071 di.start = start + di.lstart - lstart; 1072 } 1073 1074 if (!di.len) 1075 goto next; 1076 1077 if (prev_dc && prev_dc->state == D_PREP && 1078 prev_dc->bdev == bdev && 1079 __is_discard_back_mergeable(&di, &prev_dc->di)) { 1080 prev_dc->di.len += di.len; 1081 dcc->undiscard_blks += di.len; 1082 __relocate_discard_cmd(dcc, prev_dc); 1083 di = prev_dc->di; 1084 tdc = prev_dc; 1085 merged = true; 1086 } 1087 1088 if (next_dc && next_dc->state == D_PREP && 1089 next_dc->bdev == bdev && 1090 __is_discard_front_mergeable(&di, &next_dc->di)) { 1091 next_dc->di.lstart = di.lstart; 1092 next_dc->di.len += di.len; 1093 next_dc->di.start = di.start; 1094 dcc->undiscard_blks += di.len; 1095 __relocate_discard_cmd(dcc, next_dc); 1096 if (tdc) 1097 __remove_discard_cmd(sbi, tdc); 1098 merged = true; 1099 } 1100 1101 if (!merged) { 1102 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1103 di.len, NULL, NULL); 1104 } 1105 next: 1106 prev_dc = next_dc; 1107 if (!prev_dc) 1108 break; 1109 1110 node = rb_next(&prev_dc->rb_node); 1111 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1112 } 1113 1114 mutex_unlock(&dcc->cmd_lock); 1115 } 1116 1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1118 struct block_device *bdev, block_t blkstart, block_t blklen) 1119 { 1120 block_t lblkstart = blkstart; 1121 1122 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1123 1124 if (sbi->s_ndevs) { 1125 int devi = f2fs_target_device_index(sbi, blkstart); 1126 1127 blkstart -= FDEV(devi).start_blk; 1128 } 1129 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1130 return 0; 1131 } 1132 1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 1134 struct discard_policy *dpolicy, 1135 unsigned int start, unsigned int end) 1136 { 1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1138 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1139 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1140 struct discard_cmd *dc; 1141 struct blk_plug plug; 1142 int issued; 1143 1144 next: 1145 issued = 0; 1146 1147 mutex_lock(&dcc->cmd_lock); 1148 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); 1149 1150 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, 1151 NULL, start, 1152 (struct rb_entry **)&prev_dc, 1153 (struct rb_entry **)&next_dc, 1154 &insert_p, &insert_parent, true); 1155 if (!dc) 1156 dc = next_dc; 1157 1158 blk_start_plug(&plug); 1159 1160 while (dc && dc->lstart <= end) { 1161 struct rb_node *node; 1162 1163 if (dc->len < dpolicy->granularity) 1164 goto skip; 1165 1166 if (dc->state != D_PREP) { 1167 list_move_tail(&dc->list, &dcc->fstrim_list); 1168 goto skip; 1169 } 1170 1171 __submit_discard_cmd(sbi, dpolicy, dc); 1172 1173 if (++issued >= dpolicy->max_requests) { 1174 start = dc->lstart + dc->len; 1175 1176 blk_finish_plug(&plug); 1177 mutex_unlock(&dcc->cmd_lock); 1178 1179 schedule(); 1180 1181 goto next; 1182 } 1183 skip: 1184 node = rb_next(&dc->rb_node); 1185 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1186 1187 if (fatal_signal_pending(current)) 1188 break; 1189 } 1190 1191 blk_finish_plug(&plug); 1192 mutex_unlock(&dcc->cmd_lock); 1193 } 1194 1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1196 struct discard_policy *dpolicy) 1197 { 1198 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1199 struct list_head *pend_list; 1200 struct discard_cmd *dc, *tmp; 1201 struct blk_plug plug; 1202 int i, iter = 0, issued = 0; 1203 bool io_interrupted = false; 1204 1205 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1206 if (i + 1 < dpolicy->granularity) 1207 break; 1208 pend_list = &dcc->pend_list[i]; 1209 1210 mutex_lock(&dcc->cmd_lock); 1211 if (list_empty(pend_list)) 1212 goto next; 1213 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); 1214 blk_start_plug(&plug); 1215 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1216 f2fs_bug_on(sbi, dc->state != D_PREP); 1217 1218 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1219 !is_idle(sbi)) { 1220 io_interrupted = true; 1221 goto skip; 1222 } 1223 1224 __submit_discard_cmd(sbi, dpolicy, dc); 1225 issued++; 1226 skip: 1227 if (++iter >= dpolicy->max_requests) 1228 break; 1229 } 1230 blk_finish_plug(&plug); 1231 next: 1232 mutex_unlock(&dcc->cmd_lock); 1233 1234 if (iter >= dpolicy->max_requests) 1235 break; 1236 } 1237 1238 if (!issued && io_interrupted) 1239 issued = -1; 1240 1241 return issued; 1242 } 1243 1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1245 { 1246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1247 struct list_head *pend_list; 1248 struct discard_cmd *dc, *tmp; 1249 int i; 1250 bool dropped = false; 1251 1252 mutex_lock(&dcc->cmd_lock); 1253 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1254 pend_list = &dcc->pend_list[i]; 1255 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1256 f2fs_bug_on(sbi, dc->state != D_PREP); 1257 __remove_discard_cmd(sbi, dc); 1258 dropped = true; 1259 } 1260 } 1261 mutex_unlock(&dcc->cmd_lock); 1262 1263 return dropped; 1264 } 1265 1266 void drop_discard_cmd(struct f2fs_sb_info *sbi) 1267 { 1268 __drop_discard_cmd(sbi); 1269 } 1270 1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1272 struct discard_cmd *dc) 1273 { 1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1275 unsigned int len = 0; 1276 1277 wait_for_completion_io(&dc->wait); 1278 mutex_lock(&dcc->cmd_lock); 1279 f2fs_bug_on(sbi, dc->state != D_DONE); 1280 dc->ref--; 1281 if (!dc->ref) { 1282 if (!dc->error) 1283 len = dc->len; 1284 __remove_discard_cmd(sbi, dc); 1285 } 1286 mutex_unlock(&dcc->cmd_lock); 1287 1288 return len; 1289 } 1290 1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1292 struct discard_policy *dpolicy, 1293 block_t start, block_t end) 1294 { 1295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1296 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1297 &(dcc->fstrim_list) : &(dcc->wait_list); 1298 struct discard_cmd *dc, *tmp; 1299 bool need_wait; 1300 unsigned int trimmed = 0; 1301 1302 next: 1303 need_wait = false; 1304 1305 mutex_lock(&dcc->cmd_lock); 1306 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1307 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1308 continue; 1309 if (dc->len < dpolicy->granularity) 1310 continue; 1311 if (dc->state == D_DONE && !dc->ref) { 1312 wait_for_completion_io(&dc->wait); 1313 if (!dc->error) 1314 trimmed += dc->len; 1315 __remove_discard_cmd(sbi, dc); 1316 } else { 1317 dc->ref++; 1318 need_wait = true; 1319 break; 1320 } 1321 } 1322 mutex_unlock(&dcc->cmd_lock); 1323 1324 if (need_wait) { 1325 trimmed += __wait_one_discard_bio(sbi, dc); 1326 goto next; 1327 } 1328 1329 return trimmed; 1330 } 1331 1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1333 struct discard_policy *dpolicy) 1334 { 1335 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1336 } 1337 1338 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1340 { 1341 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1342 struct discard_cmd *dc; 1343 bool need_wait = false; 1344 1345 mutex_lock(&dcc->cmd_lock); 1346 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr); 1347 if (dc) { 1348 if (dc->state == D_PREP) { 1349 __punch_discard_cmd(sbi, dc, blkaddr); 1350 } else { 1351 dc->ref++; 1352 need_wait = true; 1353 } 1354 } 1355 mutex_unlock(&dcc->cmd_lock); 1356 1357 if (need_wait) 1358 __wait_one_discard_bio(sbi, dc); 1359 } 1360 1361 void stop_discard_thread(struct f2fs_sb_info *sbi) 1362 { 1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1364 1365 if (dcc && dcc->f2fs_issue_discard) { 1366 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1367 1368 dcc->f2fs_issue_discard = NULL; 1369 kthread_stop(discard_thread); 1370 } 1371 } 1372 1373 /* This comes from f2fs_put_super */ 1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1375 { 1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1377 struct discard_policy dpolicy; 1378 bool dropped; 1379 1380 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity); 1381 __issue_discard_cmd(sbi, &dpolicy); 1382 dropped = __drop_discard_cmd(sbi); 1383 __wait_all_discard_cmd(sbi, &dpolicy); 1384 1385 return dropped; 1386 } 1387 1388 static int issue_discard_thread(void *data) 1389 { 1390 struct f2fs_sb_info *sbi = data; 1391 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1392 wait_queue_head_t *q = &dcc->discard_wait_queue; 1393 struct discard_policy dpolicy; 1394 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1395 int issued; 1396 1397 set_freezable(); 1398 1399 do { 1400 init_discard_policy(&dpolicy, DPOLICY_BG, 1401 dcc->discard_granularity); 1402 1403 wait_event_interruptible_timeout(*q, 1404 kthread_should_stop() || freezing(current) || 1405 dcc->discard_wake, 1406 msecs_to_jiffies(wait_ms)); 1407 if (try_to_freeze()) 1408 continue; 1409 if (f2fs_readonly(sbi->sb)) 1410 continue; 1411 if (kthread_should_stop()) 1412 return 0; 1413 1414 if (dcc->discard_wake) { 1415 dcc->discard_wake = 0; 1416 if (sbi->gc_thread && sbi->gc_thread->gc_urgent) 1417 init_discard_policy(&dpolicy, 1418 DPOLICY_FORCE, 1); 1419 } 1420 1421 sb_start_intwrite(sbi->sb); 1422 1423 issued = __issue_discard_cmd(sbi, &dpolicy); 1424 if (issued) { 1425 __wait_all_discard_cmd(sbi, &dpolicy); 1426 wait_ms = dpolicy.min_interval; 1427 } else { 1428 wait_ms = dpolicy.max_interval; 1429 } 1430 1431 sb_end_intwrite(sbi->sb); 1432 1433 } while (!kthread_should_stop()); 1434 return 0; 1435 } 1436 1437 #ifdef CONFIG_BLK_DEV_ZONED 1438 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1439 struct block_device *bdev, block_t blkstart, block_t blklen) 1440 { 1441 sector_t sector, nr_sects; 1442 block_t lblkstart = blkstart; 1443 int devi = 0; 1444 1445 if (sbi->s_ndevs) { 1446 devi = f2fs_target_device_index(sbi, blkstart); 1447 blkstart -= FDEV(devi).start_blk; 1448 } 1449 1450 /* 1451 * We need to know the type of the zone: for conventional zones, 1452 * use regular discard if the drive supports it. For sequential 1453 * zones, reset the zone write pointer. 1454 */ 1455 switch (get_blkz_type(sbi, bdev, blkstart)) { 1456 1457 case BLK_ZONE_TYPE_CONVENTIONAL: 1458 if (!blk_queue_discard(bdev_get_queue(bdev))) 1459 return 0; 1460 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1461 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1462 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1463 sector = SECTOR_FROM_BLOCK(blkstart); 1464 nr_sects = SECTOR_FROM_BLOCK(blklen); 1465 1466 if (sector & (bdev_zone_sectors(bdev) - 1) || 1467 nr_sects != bdev_zone_sectors(bdev)) { 1468 f2fs_msg(sbi->sb, KERN_INFO, 1469 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1470 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1471 blkstart, blklen); 1472 return -EIO; 1473 } 1474 trace_f2fs_issue_reset_zone(bdev, blkstart); 1475 return blkdev_reset_zones(bdev, sector, 1476 nr_sects, GFP_NOFS); 1477 default: 1478 /* Unknown zone type: broken device ? */ 1479 return -EIO; 1480 } 1481 } 1482 #endif 1483 1484 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1485 struct block_device *bdev, block_t blkstart, block_t blklen) 1486 { 1487 #ifdef CONFIG_BLK_DEV_ZONED 1488 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 1489 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1490 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1491 #endif 1492 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1493 } 1494 1495 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1496 block_t blkstart, block_t blklen) 1497 { 1498 sector_t start = blkstart, len = 0; 1499 struct block_device *bdev; 1500 struct seg_entry *se; 1501 unsigned int offset; 1502 block_t i; 1503 int err = 0; 1504 1505 bdev = f2fs_target_device(sbi, blkstart, NULL); 1506 1507 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1508 if (i != start) { 1509 struct block_device *bdev2 = 1510 f2fs_target_device(sbi, i, NULL); 1511 1512 if (bdev2 != bdev) { 1513 err = __issue_discard_async(sbi, bdev, 1514 start, len); 1515 if (err) 1516 return err; 1517 bdev = bdev2; 1518 start = i; 1519 len = 0; 1520 } 1521 } 1522 1523 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1524 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1525 1526 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1527 sbi->discard_blks--; 1528 } 1529 1530 if (len) 1531 err = __issue_discard_async(sbi, bdev, start, len); 1532 return err; 1533 } 1534 1535 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1536 bool check_only) 1537 { 1538 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1539 int max_blocks = sbi->blocks_per_seg; 1540 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1541 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1542 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1543 unsigned long *discard_map = (unsigned long *)se->discard_map; 1544 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1545 unsigned int start = 0, end = -1; 1546 bool force = (cpc->reason & CP_DISCARD); 1547 struct discard_entry *de = NULL; 1548 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1549 int i; 1550 1551 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 1552 return false; 1553 1554 if (!force) { 1555 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 1556 SM_I(sbi)->dcc_info->nr_discards >= 1557 SM_I(sbi)->dcc_info->max_discards) 1558 return false; 1559 } 1560 1561 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1562 for (i = 0; i < entries; i++) 1563 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1564 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1565 1566 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1567 SM_I(sbi)->dcc_info->max_discards) { 1568 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1569 if (start >= max_blocks) 1570 break; 1571 1572 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1573 if (force && start && end != max_blocks 1574 && (end - start) < cpc->trim_minlen) 1575 continue; 1576 1577 if (check_only) 1578 return true; 1579 1580 if (!de) { 1581 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1582 GFP_F2FS_ZERO); 1583 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1584 list_add_tail(&de->list, head); 1585 } 1586 1587 for (i = start; i < end; i++) 1588 __set_bit_le(i, (void *)de->discard_map); 1589 1590 SM_I(sbi)->dcc_info->nr_discards += end - start; 1591 } 1592 return false; 1593 } 1594 1595 void release_discard_addrs(struct f2fs_sb_info *sbi) 1596 { 1597 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1598 struct discard_entry *entry, *this; 1599 1600 /* drop caches */ 1601 list_for_each_entry_safe(entry, this, head, list) { 1602 list_del(&entry->list); 1603 kmem_cache_free(discard_entry_slab, entry); 1604 } 1605 } 1606 1607 /* 1608 * Should call clear_prefree_segments after checkpoint is done. 1609 */ 1610 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1611 { 1612 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1613 unsigned int segno; 1614 1615 mutex_lock(&dirty_i->seglist_lock); 1616 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1617 __set_test_and_free(sbi, segno); 1618 mutex_unlock(&dirty_i->seglist_lock); 1619 } 1620 1621 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1622 { 1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1624 struct list_head *head = &dcc->entry_list; 1625 struct discard_entry *entry, *this; 1626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1627 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1628 unsigned int start = 0, end = -1; 1629 unsigned int secno, start_segno; 1630 bool force = (cpc->reason & CP_DISCARD); 1631 1632 mutex_lock(&dirty_i->seglist_lock); 1633 1634 while (1) { 1635 int i; 1636 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1637 if (start >= MAIN_SEGS(sbi)) 1638 break; 1639 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1640 start + 1); 1641 1642 for (i = start; i < end; i++) 1643 clear_bit(i, prefree_map); 1644 1645 dirty_i->nr_dirty[PRE] -= end - start; 1646 1647 if (!test_opt(sbi, DISCARD)) 1648 continue; 1649 1650 if (force && start >= cpc->trim_start && 1651 (end - 1) <= cpc->trim_end) 1652 continue; 1653 1654 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1655 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1656 (end - start) << sbi->log_blocks_per_seg); 1657 continue; 1658 } 1659 next: 1660 secno = GET_SEC_FROM_SEG(sbi, start); 1661 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1662 if (!IS_CURSEC(sbi, secno) && 1663 !get_valid_blocks(sbi, start, true)) 1664 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1665 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1666 1667 start = start_segno + sbi->segs_per_sec; 1668 if (start < end) 1669 goto next; 1670 else 1671 end = start - 1; 1672 } 1673 mutex_unlock(&dirty_i->seglist_lock); 1674 1675 /* send small discards */ 1676 list_for_each_entry_safe(entry, this, head, list) { 1677 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1678 bool is_valid = test_bit_le(0, entry->discard_map); 1679 1680 find_next: 1681 if (is_valid) { 1682 next_pos = find_next_zero_bit_le(entry->discard_map, 1683 sbi->blocks_per_seg, cur_pos); 1684 len = next_pos - cur_pos; 1685 1686 if (f2fs_sb_mounted_blkzoned(sbi->sb) || 1687 (force && len < cpc->trim_minlen)) 1688 goto skip; 1689 1690 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1691 len); 1692 total_len += len; 1693 } else { 1694 next_pos = find_next_bit_le(entry->discard_map, 1695 sbi->blocks_per_seg, cur_pos); 1696 } 1697 skip: 1698 cur_pos = next_pos; 1699 is_valid = !is_valid; 1700 1701 if (cur_pos < sbi->blocks_per_seg) 1702 goto find_next; 1703 1704 list_del(&entry->list); 1705 dcc->nr_discards -= total_len; 1706 kmem_cache_free(discard_entry_slab, entry); 1707 } 1708 1709 wake_up_discard_thread(sbi, false); 1710 } 1711 1712 void init_discard_policy(struct discard_policy *dpolicy, 1713 int discard_type, unsigned int granularity) 1714 { 1715 /* common policy */ 1716 dpolicy->type = discard_type; 1717 dpolicy->sync = true; 1718 dpolicy->granularity = granularity; 1719 1720 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1721 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1722 1723 if (discard_type == DPOLICY_BG) { 1724 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1725 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1726 dpolicy->io_aware = true; 1727 } else if (discard_type == DPOLICY_FORCE) { 1728 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1729 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1730 dpolicy->io_aware = true; 1731 } else if (discard_type == DPOLICY_FSTRIM) { 1732 dpolicy->io_aware = false; 1733 } else if (discard_type == DPOLICY_UMOUNT) { 1734 dpolicy->io_aware = false; 1735 } 1736 } 1737 1738 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1739 { 1740 dev_t dev = sbi->sb->s_bdev->bd_dev; 1741 struct discard_cmd_control *dcc; 1742 int err = 0, i; 1743 1744 if (SM_I(sbi)->dcc_info) { 1745 dcc = SM_I(sbi)->dcc_info; 1746 goto init_thread; 1747 } 1748 1749 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 1750 if (!dcc) 1751 return -ENOMEM; 1752 1753 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 1754 INIT_LIST_HEAD(&dcc->entry_list); 1755 for (i = 0; i < MAX_PLIST_NUM; i++) 1756 INIT_LIST_HEAD(&dcc->pend_list[i]); 1757 INIT_LIST_HEAD(&dcc->wait_list); 1758 INIT_LIST_HEAD(&dcc->fstrim_list); 1759 mutex_init(&dcc->cmd_lock); 1760 atomic_set(&dcc->issued_discard, 0); 1761 atomic_set(&dcc->issing_discard, 0); 1762 atomic_set(&dcc->discard_cmd_cnt, 0); 1763 dcc->nr_discards = 0; 1764 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 1765 dcc->undiscard_blks = 0; 1766 dcc->root = RB_ROOT; 1767 1768 init_waitqueue_head(&dcc->discard_wait_queue); 1769 SM_I(sbi)->dcc_info = dcc; 1770 init_thread: 1771 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1772 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1773 if (IS_ERR(dcc->f2fs_issue_discard)) { 1774 err = PTR_ERR(dcc->f2fs_issue_discard); 1775 kfree(dcc); 1776 SM_I(sbi)->dcc_info = NULL; 1777 return err; 1778 } 1779 1780 return err; 1781 } 1782 1783 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 1784 { 1785 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1786 1787 if (!dcc) 1788 return; 1789 1790 stop_discard_thread(sbi); 1791 1792 kfree(dcc); 1793 SM_I(sbi)->dcc_info = NULL; 1794 } 1795 1796 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1797 { 1798 struct sit_info *sit_i = SIT_I(sbi); 1799 1800 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1801 sit_i->dirty_sentries++; 1802 return false; 1803 } 1804 1805 return true; 1806 } 1807 1808 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1809 unsigned int segno, int modified) 1810 { 1811 struct seg_entry *se = get_seg_entry(sbi, segno); 1812 se->type = type; 1813 if (modified) 1814 __mark_sit_entry_dirty(sbi, segno); 1815 } 1816 1817 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1818 { 1819 struct seg_entry *se; 1820 unsigned int segno, offset; 1821 long int new_vblocks; 1822 bool exist; 1823 #ifdef CONFIG_F2FS_CHECK_FS 1824 bool mir_exist; 1825 #endif 1826 1827 segno = GET_SEGNO(sbi, blkaddr); 1828 1829 se = get_seg_entry(sbi, segno); 1830 new_vblocks = se->valid_blocks + del; 1831 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1832 1833 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1834 (new_vblocks > sbi->blocks_per_seg))); 1835 1836 se->valid_blocks = new_vblocks; 1837 se->mtime = get_mtime(sbi); 1838 SIT_I(sbi)->max_mtime = se->mtime; 1839 1840 /* Update valid block bitmap */ 1841 if (del > 0) { 1842 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 1843 #ifdef CONFIG_F2FS_CHECK_FS 1844 mir_exist = f2fs_test_and_set_bit(offset, 1845 se->cur_valid_map_mir); 1846 if (unlikely(exist != mir_exist)) { 1847 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1848 "when setting bitmap, blk:%u, old bit:%d", 1849 blkaddr, exist); 1850 f2fs_bug_on(sbi, 1); 1851 } 1852 #endif 1853 if (unlikely(exist)) { 1854 f2fs_msg(sbi->sb, KERN_ERR, 1855 "Bitmap was wrongly set, blk:%u", blkaddr); 1856 f2fs_bug_on(sbi, 1); 1857 se->valid_blocks--; 1858 del = 0; 1859 } 1860 1861 if (f2fs_discard_en(sbi) && 1862 !f2fs_test_and_set_bit(offset, se->discard_map)) 1863 sbi->discard_blks--; 1864 1865 /* don't overwrite by SSR to keep node chain */ 1866 if (se->type == CURSEG_WARM_NODE) { 1867 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 1868 se->ckpt_valid_blocks++; 1869 } 1870 } else { 1871 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 1872 #ifdef CONFIG_F2FS_CHECK_FS 1873 mir_exist = f2fs_test_and_clear_bit(offset, 1874 se->cur_valid_map_mir); 1875 if (unlikely(exist != mir_exist)) { 1876 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1877 "when clearing bitmap, blk:%u, old bit:%d", 1878 blkaddr, exist); 1879 f2fs_bug_on(sbi, 1); 1880 } 1881 #endif 1882 if (unlikely(!exist)) { 1883 f2fs_msg(sbi->sb, KERN_ERR, 1884 "Bitmap was wrongly cleared, blk:%u", blkaddr); 1885 f2fs_bug_on(sbi, 1); 1886 se->valid_blocks++; 1887 del = 0; 1888 } 1889 1890 if (f2fs_discard_en(sbi) && 1891 f2fs_test_and_clear_bit(offset, se->discard_map)) 1892 sbi->discard_blks++; 1893 } 1894 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1895 se->ckpt_valid_blocks += del; 1896 1897 __mark_sit_entry_dirty(sbi, segno); 1898 1899 /* update total number of valid blocks to be written in ckpt area */ 1900 SIT_I(sbi)->written_valid_blocks += del; 1901 1902 if (sbi->segs_per_sec > 1) 1903 get_sec_entry(sbi, segno)->valid_blocks += del; 1904 } 1905 1906 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1907 { 1908 unsigned int segno = GET_SEGNO(sbi, addr); 1909 struct sit_info *sit_i = SIT_I(sbi); 1910 1911 f2fs_bug_on(sbi, addr == NULL_ADDR); 1912 if (addr == NEW_ADDR) 1913 return; 1914 1915 /* add it into sit main buffer */ 1916 down_write(&sit_i->sentry_lock); 1917 1918 update_sit_entry(sbi, addr, -1); 1919 1920 /* add it into dirty seglist */ 1921 locate_dirty_segment(sbi, segno); 1922 1923 up_write(&sit_i->sentry_lock); 1924 } 1925 1926 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1927 { 1928 struct sit_info *sit_i = SIT_I(sbi); 1929 unsigned int segno, offset; 1930 struct seg_entry *se; 1931 bool is_cp = false; 1932 1933 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1934 return true; 1935 1936 down_read(&sit_i->sentry_lock); 1937 1938 segno = GET_SEGNO(sbi, blkaddr); 1939 se = get_seg_entry(sbi, segno); 1940 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1941 1942 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1943 is_cp = true; 1944 1945 up_read(&sit_i->sentry_lock); 1946 1947 return is_cp; 1948 } 1949 1950 /* 1951 * This function should be resided under the curseg_mutex lock 1952 */ 1953 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1954 struct f2fs_summary *sum) 1955 { 1956 struct curseg_info *curseg = CURSEG_I(sbi, type); 1957 void *addr = curseg->sum_blk; 1958 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1959 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1960 } 1961 1962 /* 1963 * Calculate the number of current summary pages for writing 1964 */ 1965 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1966 { 1967 int valid_sum_count = 0; 1968 int i, sum_in_page; 1969 1970 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1971 if (sbi->ckpt->alloc_type[i] == SSR) 1972 valid_sum_count += sbi->blocks_per_seg; 1973 else { 1974 if (for_ra) 1975 valid_sum_count += le16_to_cpu( 1976 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1977 else 1978 valid_sum_count += curseg_blkoff(sbi, i); 1979 } 1980 } 1981 1982 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1983 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1984 if (valid_sum_count <= sum_in_page) 1985 return 1; 1986 else if ((valid_sum_count - sum_in_page) <= 1987 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1988 return 2; 1989 return 3; 1990 } 1991 1992 /* 1993 * Caller should put this summary page 1994 */ 1995 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1996 { 1997 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1998 } 1999 2000 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 2001 { 2002 struct page *page = grab_meta_page(sbi, blk_addr); 2003 2004 memcpy(page_address(page), src, PAGE_SIZE); 2005 set_page_dirty(page); 2006 f2fs_put_page(page, 1); 2007 } 2008 2009 static void write_sum_page(struct f2fs_sb_info *sbi, 2010 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2011 { 2012 update_meta_page(sbi, (void *)sum_blk, blk_addr); 2013 } 2014 2015 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2016 int type, block_t blk_addr) 2017 { 2018 struct curseg_info *curseg = CURSEG_I(sbi, type); 2019 struct page *page = grab_meta_page(sbi, blk_addr); 2020 struct f2fs_summary_block *src = curseg->sum_blk; 2021 struct f2fs_summary_block *dst; 2022 2023 dst = (struct f2fs_summary_block *)page_address(page); 2024 2025 mutex_lock(&curseg->curseg_mutex); 2026 2027 down_read(&curseg->journal_rwsem); 2028 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2029 up_read(&curseg->journal_rwsem); 2030 2031 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2032 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2033 2034 mutex_unlock(&curseg->curseg_mutex); 2035 2036 set_page_dirty(page); 2037 f2fs_put_page(page, 1); 2038 } 2039 2040 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2041 { 2042 struct curseg_info *curseg = CURSEG_I(sbi, type); 2043 unsigned int segno = curseg->segno + 1; 2044 struct free_segmap_info *free_i = FREE_I(sbi); 2045 2046 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2047 return !test_bit(segno, free_i->free_segmap); 2048 return 0; 2049 } 2050 2051 /* 2052 * Find a new segment from the free segments bitmap to right order 2053 * This function should be returned with success, otherwise BUG 2054 */ 2055 static void get_new_segment(struct f2fs_sb_info *sbi, 2056 unsigned int *newseg, bool new_sec, int dir) 2057 { 2058 struct free_segmap_info *free_i = FREE_I(sbi); 2059 unsigned int segno, secno, zoneno; 2060 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2061 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2062 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2063 unsigned int left_start = hint; 2064 bool init = true; 2065 int go_left = 0; 2066 int i; 2067 2068 spin_lock(&free_i->segmap_lock); 2069 2070 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2071 segno = find_next_zero_bit(free_i->free_segmap, 2072 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2073 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2074 goto got_it; 2075 } 2076 find_other_zone: 2077 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2078 if (secno >= MAIN_SECS(sbi)) { 2079 if (dir == ALLOC_RIGHT) { 2080 secno = find_next_zero_bit(free_i->free_secmap, 2081 MAIN_SECS(sbi), 0); 2082 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2083 } else { 2084 go_left = 1; 2085 left_start = hint - 1; 2086 } 2087 } 2088 if (go_left == 0) 2089 goto skip_left; 2090 2091 while (test_bit(left_start, free_i->free_secmap)) { 2092 if (left_start > 0) { 2093 left_start--; 2094 continue; 2095 } 2096 left_start = find_next_zero_bit(free_i->free_secmap, 2097 MAIN_SECS(sbi), 0); 2098 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2099 break; 2100 } 2101 secno = left_start; 2102 skip_left: 2103 segno = GET_SEG_FROM_SEC(sbi, secno); 2104 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2105 2106 /* give up on finding another zone */ 2107 if (!init) 2108 goto got_it; 2109 if (sbi->secs_per_zone == 1) 2110 goto got_it; 2111 if (zoneno == old_zoneno) 2112 goto got_it; 2113 if (dir == ALLOC_LEFT) { 2114 if (!go_left && zoneno + 1 >= total_zones) 2115 goto got_it; 2116 if (go_left && zoneno == 0) 2117 goto got_it; 2118 } 2119 for (i = 0; i < NR_CURSEG_TYPE; i++) 2120 if (CURSEG_I(sbi, i)->zone == zoneno) 2121 break; 2122 2123 if (i < NR_CURSEG_TYPE) { 2124 /* zone is in user, try another */ 2125 if (go_left) 2126 hint = zoneno * sbi->secs_per_zone - 1; 2127 else if (zoneno + 1 >= total_zones) 2128 hint = 0; 2129 else 2130 hint = (zoneno + 1) * sbi->secs_per_zone; 2131 init = false; 2132 goto find_other_zone; 2133 } 2134 got_it: 2135 /* set it as dirty segment in free segmap */ 2136 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2137 __set_inuse(sbi, segno); 2138 *newseg = segno; 2139 spin_unlock(&free_i->segmap_lock); 2140 } 2141 2142 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2143 { 2144 struct curseg_info *curseg = CURSEG_I(sbi, type); 2145 struct summary_footer *sum_footer; 2146 2147 curseg->segno = curseg->next_segno; 2148 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2149 curseg->next_blkoff = 0; 2150 curseg->next_segno = NULL_SEGNO; 2151 2152 sum_footer = &(curseg->sum_blk->footer); 2153 memset(sum_footer, 0, sizeof(struct summary_footer)); 2154 if (IS_DATASEG(type)) 2155 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2156 if (IS_NODESEG(type)) 2157 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2158 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2159 } 2160 2161 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2162 { 2163 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2164 if (sbi->segs_per_sec != 1) 2165 return CURSEG_I(sbi, type)->segno; 2166 2167 if (type == CURSEG_HOT_DATA || IS_NODESEG(type)) 2168 return 0; 2169 2170 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2171 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2172 return CURSEG_I(sbi, type)->segno; 2173 } 2174 2175 /* 2176 * Allocate a current working segment. 2177 * This function always allocates a free segment in LFS manner. 2178 */ 2179 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2180 { 2181 struct curseg_info *curseg = CURSEG_I(sbi, type); 2182 unsigned int segno = curseg->segno; 2183 int dir = ALLOC_LEFT; 2184 2185 write_sum_page(sbi, curseg->sum_blk, 2186 GET_SUM_BLOCK(sbi, segno)); 2187 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2188 dir = ALLOC_RIGHT; 2189 2190 if (test_opt(sbi, NOHEAP)) 2191 dir = ALLOC_RIGHT; 2192 2193 segno = __get_next_segno(sbi, type); 2194 get_new_segment(sbi, &segno, new_sec, dir); 2195 curseg->next_segno = segno; 2196 reset_curseg(sbi, type, 1); 2197 curseg->alloc_type = LFS; 2198 } 2199 2200 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2201 struct curseg_info *seg, block_t start) 2202 { 2203 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2204 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2205 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2206 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2207 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2208 int i, pos; 2209 2210 for (i = 0; i < entries; i++) 2211 target_map[i] = ckpt_map[i] | cur_map[i]; 2212 2213 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2214 2215 seg->next_blkoff = pos; 2216 } 2217 2218 /* 2219 * If a segment is written by LFS manner, next block offset is just obtained 2220 * by increasing the current block offset. However, if a segment is written by 2221 * SSR manner, next block offset obtained by calling __next_free_blkoff 2222 */ 2223 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2224 struct curseg_info *seg) 2225 { 2226 if (seg->alloc_type == SSR) 2227 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2228 else 2229 seg->next_blkoff++; 2230 } 2231 2232 /* 2233 * This function always allocates a used segment(from dirty seglist) by SSR 2234 * manner, so it should recover the existing segment information of valid blocks 2235 */ 2236 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2237 { 2238 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2239 struct curseg_info *curseg = CURSEG_I(sbi, type); 2240 unsigned int new_segno = curseg->next_segno; 2241 struct f2fs_summary_block *sum_node; 2242 struct page *sum_page; 2243 2244 write_sum_page(sbi, curseg->sum_blk, 2245 GET_SUM_BLOCK(sbi, curseg->segno)); 2246 __set_test_and_inuse(sbi, new_segno); 2247 2248 mutex_lock(&dirty_i->seglist_lock); 2249 __remove_dirty_segment(sbi, new_segno, PRE); 2250 __remove_dirty_segment(sbi, new_segno, DIRTY); 2251 mutex_unlock(&dirty_i->seglist_lock); 2252 2253 reset_curseg(sbi, type, 1); 2254 curseg->alloc_type = SSR; 2255 __next_free_blkoff(sbi, curseg, 0); 2256 2257 sum_page = get_sum_page(sbi, new_segno); 2258 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2259 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2260 f2fs_put_page(sum_page, 1); 2261 } 2262 2263 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2264 { 2265 struct curseg_info *curseg = CURSEG_I(sbi, type); 2266 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2267 unsigned segno = NULL_SEGNO; 2268 int i, cnt; 2269 bool reversed = false; 2270 2271 /* need_SSR() already forces to do this */ 2272 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2273 curseg->next_segno = segno; 2274 return 1; 2275 } 2276 2277 /* For node segments, let's do SSR more intensively */ 2278 if (IS_NODESEG(type)) { 2279 if (type >= CURSEG_WARM_NODE) { 2280 reversed = true; 2281 i = CURSEG_COLD_NODE; 2282 } else { 2283 i = CURSEG_HOT_NODE; 2284 } 2285 cnt = NR_CURSEG_NODE_TYPE; 2286 } else { 2287 if (type >= CURSEG_WARM_DATA) { 2288 reversed = true; 2289 i = CURSEG_COLD_DATA; 2290 } else { 2291 i = CURSEG_HOT_DATA; 2292 } 2293 cnt = NR_CURSEG_DATA_TYPE; 2294 } 2295 2296 for (; cnt-- > 0; reversed ? i-- : i++) { 2297 if (i == type) 2298 continue; 2299 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2300 curseg->next_segno = segno; 2301 return 1; 2302 } 2303 } 2304 return 0; 2305 } 2306 2307 /* 2308 * flush out current segment and replace it with new segment 2309 * This function should be returned with success, otherwise BUG 2310 */ 2311 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2312 int type, bool force) 2313 { 2314 struct curseg_info *curseg = CURSEG_I(sbi, type); 2315 2316 if (force) 2317 new_curseg(sbi, type, true); 2318 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2319 type == CURSEG_WARM_NODE) 2320 new_curseg(sbi, type, false); 2321 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 2322 new_curseg(sbi, type, false); 2323 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 2324 change_curseg(sbi, type); 2325 else 2326 new_curseg(sbi, type, false); 2327 2328 stat_inc_seg_type(sbi, curseg); 2329 } 2330 2331 void allocate_new_segments(struct f2fs_sb_info *sbi) 2332 { 2333 struct curseg_info *curseg; 2334 unsigned int old_segno; 2335 int i; 2336 2337 down_write(&SIT_I(sbi)->sentry_lock); 2338 2339 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2340 curseg = CURSEG_I(sbi, i); 2341 old_segno = curseg->segno; 2342 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2343 locate_dirty_segment(sbi, old_segno); 2344 } 2345 2346 up_write(&SIT_I(sbi)->sentry_lock); 2347 } 2348 2349 static const struct segment_allocation default_salloc_ops = { 2350 .allocate_segment = allocate_segment_by_default, 2351 }; 2352 2353 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2354 { 2355 __u64 trim_start = cpc->trim_start; 2356 bool has_candidate = false; 2357 2358 down_write(&SIT_I(sbi)->sentry_lock); 2359 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2360 if (add_discard_addrs(sbi, cpc, true)) { 2361 has_candidate = true; 2362 break; 2363 } 2364 } 2365 up_write(&SIT_I(sbi)->sentry_lock); 2366 2367 cpc->trim_start = trim_start; 2368 return has_candidate; 2369 } 2370 2371 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2372 { 2373 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2374 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2375 unsigned int start_segno, end_segno, cur_segno; 2376 block_t start_block, end_block; 2377 struct cp_control cpc; 2378 struct discard_policy dpolicy; 2379 unsigned long long trimmed = 0; 2380 int err = 0; 2381 2382 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2383 return -EINVAL; 2384 2385 if (end <= MAIN_BLKADDR(sbi)) 2386 goto out; 2387 2388 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2389 f2fs_msg(sbi->sb, KERN_WARNING, 2390 "Found FS corruption, run fsck to fix."); 2391 goto out; 2392 } 2393 2394 /* start/end segment number in main_area */ 2395 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2396 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2397 GET_SEGNO(sbi, end); 2398 2399 cpc.reason = CP_DISCARD; 2400 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2401 2402 /* do checkpoint to issue discard commands safely */ 2403 for (cur_segno = start_segno; cur_segno <= end_segno; 2404 cur_segno = cpc.trim_end + 1) { 2405 cpc.trim_start = cur_segno; 2406 2407 if (sbi->discard_blks == 0) 2408 break; 2409 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 2410 cpc.trim_end = end_segno; 2411 else 2412 cpc.trim_end = min_t(unsigned int, 2413 rounddown(cur_segno + 2414 BATCHED_TRIM_SEGMENTS(sbi), 2415 sbi->segs_per_sec) - 1, end_segno); 2416 2417 mutex_lock(&sbi->gc_mutex); 2418 err = write_checkpoint(sbi, &cpc); 2419 mutex_unlock(&sbi->gc_mutex); 2420 if (err) 2421 break; 2422 2423 schedule(); 2424 } 2425 2426 start_block = START_BLOCK(sbi, start_segno); 2427 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1); 2428 2429 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2430 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); 2431 trimmed = __wait_discard_cmd_range(sbi, &dpolicy, 2432 start_block, end_block); 2433 out: 2434 range->len = F2FS_BLK_TO_BYTES(trimmed); 2435 return err; 2436 } 2437 2438 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2439 { 2440 struct curseg_info *curseg = CURSEG_I(sbi, type); 2441 if (curseg->next_blkoff < sbi->blocks_per_seg) 2442 return true; 2443 return false; 2444 } 2445 2446 int rw_hint_to_seg_type(enum rw_hint hint) 2447 { 2448 switch (hint) { 2449 case WRITE_LIFE_SHORT: 2450 return CURSEG_HOT_DATA; 2451 case WRITE_LIFE_EXTREME: 2452 return CURSEG_COLD_DATA; 2453 default: 2454 return CURSEG_WARM_DATA; 2455 } 2456 } 2457 2458 static int __get_segment_type_2(struct f2fs_io_info *fio) 2459 { 2460 if (fio->type == DATA) 2461 return CURSEG_HOT_DATA; 2462 else 2463 return CURSEG_HOT_NODE; 2464 } 2465 2466 static int __get_segment_type_4(struct f2fs_io_info *fio) 2467 { 2468 if (fio->type == DATA) { 2469 struct inode *inode = fio->page->mapping->host; 2470 2471 if (S_ISDIR(inode->i_mode)) 2472 return CURSEG_HOT_DATA; 2473 else 2474 return CURSEG_COLD_DATA; 2475 } else { 2476 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2477 return CURSEG_WARM_NODE; 2478 else 2479 return CURSEG_COLD_NODE; 2480 } 2481 } 2482 2483 static int __get_segment_type_6(struct f2fs_io_info *fio) 2484 { 2485 if (fio->type == DATA) { 2486 struct inode *inode = fio->page->mapping->host; 2487 2488 if (is_cold_data(fio->page) || file_is_cold(inode)) 2489 return CURSEG_COLD_DATA; 2490 if (is_inode_flag_set(inode, FI_HOT_DATA)) 2491 return CURSEG_HOT_DATA; 2492 return rw_hint_to_seg_type(inode->i_write_hint); 2493 } else { 2494 if (IS_DNODE(fio->page)) 2495 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2496 CURSEG_HOT_NODE; 2497 return CURSEG_COLD_NODE; 2498 } 2499 } 2500 2501 static int __get_segment_type(struct f2fs_io_info *fio) 2502 { 2503 int type = 0; 2504 2505 switch (fio->sbi->active_logs) { 2506 case 2: 2507 type = __get_segment_type_2(fio); 2508 break; 2509 case 4: 2510 type = __get_segment_type_4(fio); 2511 break; 2512 case 6: 2513 type = __get_segment_type_6(fio); 2514 break; 2515 default: 2516 f2fs_bug_on(fio->sbi, true); 2517 } 2518 2519 if (IS_HOT(type)) 2520 fio->temp = HOT; 2521 else if (IS_WARM(type)) 2522 fio->temp = WARM; 2523 else 2524 fio->temp = COLD; 2525 return type; 2526 } 2527 2528 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2529 block_t old_blkaddr, block_t *new_blkaddr, 2530 struct f2fs_summary *sum, int type, 2531 struct f2fs_io_info *fio, bool add_list) 2532 { 2533 struct sit_info *sit_i = SIT_I(sbi); 2534 struct curseg_info *curseg = CURSEG_I(sbi, type); 2535 2536 down_read(&SM_I(sbi)->curseg_lock); 2537 2538 mutex_lock(&curseg->curseg_mutex); 2539 down_write(&sit_i->sentry_lock); 2540 2541 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2542 2543 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2544 2545 /* 2546 * __add_sum_entry should be resided under the curseg_mutex 2547 * because, this function updates a summary entry in the 2548 * current summary block. 2549 */ 2550 __add_sum_entry(sbi, type, sum); 2551 2552 __refresh_next_blkoff(sbi, curseg); 2553 2554 stat_inc_block_count(sbi, curseg); 2555 2556 /* 2557 * SIT information should be updated before segment allocation, 2558 * since SSR needs latest valid block information. 2559 */ 2560 update_sit_entry(sbi, *new_blkaddr, 1); 2561 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2562 update_sit_entry(sbi, old_blkaddr, -1); 2563 2564 if (!__has_curseg_space(sbi, type)) 2565 sit_i->s_ops->allocate_segment(sbi, type, false); 2566 2567 /* 2568 * segment dirty status should be updated after segment allocation, 2569 * so we just need to update status only one time after previous 2570 * segment being closed. 2571 */ 2572 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2573 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 2574 2575 up_write(&sit_i->sentry_lock); 2576 2577 if (page && IS_NODESEG(type)) { 2578 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 2579 2580 f2fs_inode_chksum_set(sbi, page); 2581 } 2582 2583 if (add_list) { 2584 struct f2fs_bio_info *io; 2585 2586 INIT_LIST_HEAD(&fio->list); 2587 fio->in_list = true; 2588 io = sbi->write_io[fio->type] + fio->temp; 2589 spin_lock(&io->io_lock); 2590 list_add_tail(&fio->list, &io->io_list); 2591 spin_unlock(&io->io_lock); 2592 } 2593 2594 mutex_unlock(&curseg->curseg_mutex); 2595 2596 up_read(&SM_I(sbi)->curseg_lock); 2597 } 2598 2599 static void update_device_state(struct f2fs_io_info *fio) 2600 { 2601 struct f2fs_sb_info *sbi = fio->sbi; 2602 unsigned int devidx; 2603 2604 if (!sbi->s_ndevs) 2605 return; 2606 2607 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 2608 2609 /* update device state for fsync */ 2610 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 2611 2612 /* update device state for checkpoint */ 2613 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 2614 spin_lock(&sbi->dev_lock); 2615 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 2616 spin_unlock(&sbi->dev_lock); 2617 } 2618 } 2619 2620 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 2621 { 2622 int type = __get_segment_type(fio); 2623 int err; 2624 2625 reallocate: 2626 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 2627 &fio->new_blkaddr, sum, type, fio, true); 2628 2629 /* writeout dirty page into bdev */ 2630 err = f2fs_submit_page_write(fio); 2631 if (err == -EAGAIN) { 2632 fio->old_blkaddr = fio->new_blkaddr; 2633 goto reallocate; 2634 } else if (!err) { 2635 update_device_state(fio); 2636 } 2637 } 2638 2639 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2640 enum iostat_type io_type) 2641 { 2642 struct f2fs_io_info fio = { 2643 .sbi = sbi, 2644 .type = META, 2645 .op = REQ_OP_WRITE, 2646 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 2647 .old_blkaddr = page->index, 2648 .new_blkaddr = page->index, 2649 .page = page, 2650 .encrypted_page = NULL, 2651 .in_list = false, 2652 }; 2653 2654 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 2655 fio.op_flags &= ~REQ_META; 2656 2657 set_page_writeback(page); 2658 f2fs_submit_page_write(&fio); 2659 2660 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 2661 } 2662 2663 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 2664 { 2665 struct f2fs_summary sum; 2666 2667 set_summary(&sum, nid, 0, 0); 2668 do_write_page(&sum, fio); 2669 2670 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2671 } 2672 2673 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 2674 { 2675 struct f2fs_sb_info *sbi = fio->sbi; 2676 struct f2fs_summary sum; 2677 struct node_info ni; 2678 2679 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 2680 get_node_info(sbi, dn->nid, &ni); 2681 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 2682 do_write_page(&sum, fio); 2683 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 2684 2685 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 2686 } 2687 2688 int rewrite_data_page(struct f2fs_io_info *fio) 2689 { 2690 int err; 2691 2692 fio->new_blkaddr = fio->old_blkaddr; 2693 stat_inc_inplace_blocks(fio->sbi); 2694 2695 err = f2fs_submit_page_bio(fio); 2696 if (!err) 2697 update_device_state(fio); 2698 2699 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2700 2701 return err; 2702 } 2703 2704 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 2705 unsigned int segno) 2706 { 2707 int i; 2708 2709 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 2710 if (CURSEG_I(sbi, i)->segno == segno) 2711 break; 2712 } 2713 return i; 2714 } 2715 2716 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2717 block_t old_blkaddr, block_t new_blkaddr, 2718 bool recover_curseg, bool recover_newaddr) 2719 { 2720 struct sit_info *sit_i = SIT_I(sbi); 2721 struct curseg_info *curseg; 2722 unsigned int segno, old_cursegno; 2723 struct seg_entry *se; 2724 int type; 2725 unsigned short old_blkoff; 2726 2727 segno = GET_SEGNO(sbi, new_blkaddr); 2728 se = get_seg_entry(sbi, segno); 2729 type = se->type; 2730 2731 down_write(&SM_I(sbi)->curseg_lock); 2732 2733 if (!recover_curseg) { 2734 /* for recovery flow */ 2735 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 2736 if (old_blkaddr == NULL_ADDR) 2737 type = CURSEG_COLD_DATA; 2738 else 2739 type = CURSEG_WARM_DATA; 2740 } 2741 } else { 2742 if (IS_CURSEG(sbi, segno)) { 2743 /* se->type is volatile as SSR allocation */ 2744 type = __f2fs_get_curseg(sbi, segno); 2745 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 2746 } else { 2747 type = CURSEG_WARM_DATA; 2748 } 2749 } 2750 2751 f2fs_bug_on(sbi, !IS_DATASEG(type)); 2752 curseg = CURSEG_I(sbi, type); 2753 2754 mutex_lock(&curseg->curseg_mutex); 2755 down_write(&sit_i->sentry_lock); 2756 2757 old_cursegno = curseg->segno; 2758 old_blkoff = curseg->next_blkoff; 2759 2760 /* change the current segment */ 2761 if (segno != curseg->segno) { 2762 curseg->next_segno = segno; 2763 change_curseg(sbi, type); 2764 } 2765 2766 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 2767 __add_sum_entry(sbi, type, sum); 2768 2769 if (!recover_curseg || recover_newaddr) 2770 update_sit_entry(sbi, new_blkaddr, 1); 2771 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2772 update_sit_entry(sbi, old_blkaddr, -1); 2773 2774 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2775 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 2776 2777 locate_dirty_segment(sbi, old_cursegno); 2778 2779 if (recover_curseg) { 2780 if (old_cursegno != curseg->segno) { 2781 curseg->next_segno = old_cursegno; 2782 change_curseg(sbi, type); 2783 } 2784 curseg->next_blkoff = old_blkoff; 2785 } 2786 2787 up_write(&sit_i->sentry_lock); 2788 mutex_unlock(&curseg->curseg_mutex); 2789 up_write(&SM_I(sbi)->curseg_lock); 2790 } 2791 2792 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2793 block_t old_addr, block_t new_addr, 2794 unsigned char version, bool recover_curseg, 2795 bool recover_newaddr) 2796 { 2797 struct f2fs_summary sum; 2798 2799 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 2800 2801 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 2802 recover_curseg, recover_newaddr); 2803 2804 f2fs_update_data_blkaddr(dn, new_addr); 2805 } 2806 2807 void f2fs_wait_on_page_writeback(struct page *page, 2808 enum page_type type, bool ordered) 2809 { 2810 if (PageWriteback(page)) { 2811 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 2812 2813 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 2814 0, page->index, type); 2815 if (ordered) 2816 wait_on_page_writeback(page); 2817 else 2818 wait_for_stable_page(page); 2819 } 2820 } 2821 2822 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) 2823 { 2824 struct page *cpage; 2825 2826 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2827 return; 2828 2829 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 2830 if (cpage) { 2831 f2fs_wait_on_page_writeback(cpage, DATA, true); 2832 f2fs_put_page(cpage, 1); 2833 } 2834 } 2835 2836 static void read_compacted_summaries(struct f2fs_sb_info *sbi) 2837 { 2838 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2839 struct curseg_info *seg_i; 2840 unsigned char *kaddr; 2841 struct page *page; 2842 block_t start; 2843 int i, j, offset; 2844 2845 start = start_sum_block(sbi); 2846 2847 page = get_meta_page(sbi, start++); 2848 kaddr = (unsigned char *)page_address(page); 2849 2850 /* Step 1: restore nat cache */ 2851 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2852 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 2853 2854 /* Step 2: restore sit cache */ 2855 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2856 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 2857 offset = 2 * SUM_JOURNAL_SIZE; 2858 2859 /* Step 3: restore summary entries */ 2860 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2861 unsigned short blk_off; 2862 unsigned int segno; 2863 2864 seg_i = CURSEG_I(sbi, i); 2865 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2866 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2867 seg_i->next_segno = segno; 2868 reset_curseg(sbi, i, 0); 2869 seg_i->alloc_type = ckpt->alloc_type[i]; 2870 seg_i->next_blkoff = blk_off; 2871 2872 if (seg_i->alloc_type == SSR) 2873 blk_off = sbi->blocks_per_seg; 2874 2875 for (j = 0; j < blk_off; j++) { 2876 struct f2fs_summary *s; 2877 s = (struct f2fs_summary *)(kaddr + offset); 2878 seg_i->sum_blk->entries[j] = *s; 2879 offset += SUMMARY_SIZE; 2880 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2881 SUM_FOOTER_SIZE) 2882 continue; 2883 2884 f2fs_put_page(page, 1); 2885 page = NULL; 2886 2887 page = get_meta_page(sbi, start++); 2888 kaddr = (unsigned char *)page_address(page); 2889 offset = 0; 2890 } 2891 } 2892 f2fs_put_page(page, 1); 2893 } 2894 2895 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2896 { 2897 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2898 struct f2fs_summary_block *sum; 2899 struct curseg_info *curseg; 2900 struct page *new; 2901 unsigned short blk_off; 2902 unsigned int segno = 0; 2903 block_t blk_addr = 0; 2904 2905 /* get segment number and block addr */ 2906 if (IS_DATASEG(type)) { 2907 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2908 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2909 CURSEG_HOT_DATA]); 2910 if (__exist_node_summaries(sbi)) 2911 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2912 else 2913 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2914 } else { 2915 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2916 CURSEG_HOT_NODE]); 2917 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2918 CURSEG_HOT_NODE]); 2919 if (__exist_node_summaries(sbi)) 2920 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2921 type - CURSEG_HOT_NODE); 2922 else 2923 blk_addr = GET_SUM_BLOCK(sbi, segno); 2924 } 2925 2926 new = get_meta_page(sbi, blk_addr); 2927 sum = (struct f2fs_summary_block *)page_address(new); 2928 2929 if (IS_NODESEG(type)) { 2930 if (__exist_node_summaries(sbi)) { 2931 struct f2fs_summary *ns = &sum->entries[0]; 2932 int i; 2933 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2934 ns->version = 0; 2935 ns->ofs_in_node = 0; 2936 } 2937 } else { 2938 restore_node_summary(sbi, segno, sum); 2939 } 2940 } 2941 2942 /* set uncompleted segment to curseg */ 2943 curseg = CURSEG_I(sbi, type); 2944 mutex_lock(&curseg->curseg_mutex); 2945 2946 /* update journal info */ 2947 down_write(&curseg->journal_rwsem); 2948 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2949 up_write(&curseg->journal_rwsem); 2950 2951 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2952 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2953 curseg->next_segno = segno; 2954 reset_curseg(sbi, type, 0); 2955 curseg->alloc_type = ckpt->alloc_type[type]; 2956 curseg->next_blkoff = blk_off; 2957 mutex_unlock(&curseg->curseg_mutex); 2958 f2fs_put_page(new, 1); 2959 return 0; 2960 } 2961 2962 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2963 { 2964 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 2965 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 2966 int type = CURSEG_HOT_DATA; 2967 int err; 2968 2969 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2970 int npages = npages_for_summary_flush(sbi, true); 2971 2972 if (npages >= 2) 2973 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2974 META_CP, true); 2975 2976 /* restore for compacted data summary */ 2977 read_compacted_summaries(sbi); 2978 type = CURSEG_HOT_NODE; 2979 } 2980 2981 if (__exist_node_summaries(sbi)) 2982 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2983 NR_CURSEG_TYPE - type, META_CP, true); 2984 2985 for (; type <= CURSEG_COLD_NODE; type++) { 2986 err = read_normal_summaries(sbi, type); 2987 if (err) 2988 return err; 2989 } 2990 2991 /* sanity check for summary blocks */ 2992 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 2993 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 2994 return -EINVAL; 2995 2996 return 0; 2997 } 2998 2999 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3000 { 3001 struct page *page; 3002 unsigned char *kaddr; 3003 struct f2fs_summary *summary; 3004 struct curseg_info *seg_i; 3005 int written_size = 0; 3006 int i, j; 3007 3008 page = grab_meta_page(sbi, blkaddr++); 3009 kaddr = (unsigned char *)page_address(page); 3010 3011 /* Step 1: write nat cache */ 3012 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3013 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3014 written_size += SUM_JOURNAL_SIZE; 3015 3016 /* Step 2: write sit cache */ 3017 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3018 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3019 written_size += SUM_JOURNAL_SIZE; 3020 3021 /* Step 3: write summary entries */ 3022 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3023 unsigned short blkoff; 3024 seg_i = CURSEG_I(sbi, i); 3025 if (sbi->ckpt->alloc_type[i] == SSR) 3026 blkoff = sbi->blocks_per_seg; 3027 else 3028 blkoff = curseg_blkoff(sbi, i); 3029 3030 for (j = 0; j < blkoff; j++) { 3031 if (!page) { 3032 page = grab_meta_page(sbi, blkaddr++); 3033 kaddr = (unsigned char *)page_address(page); 3034 written_size = 0; 3035 } 3036 summary = (struct f2fs_summary *)(kaddr + written_size); 3037 *summary = seg_i->sum_blk->entries[j]; 3038 written_size += SUMMARY_SIZE; 3039 3040 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3041 SUM_FOOTER_SIZE) 3042 continue; 3043 3044 set_page_dirty(page); 3045 f2fs_put_page(page, 1); 3046 page = NULL; 3047 } 3048 } 3049 if (page) { 3050 set_page_dirty(page); 3051 f2fs_put_page(page, 1); 3052 } 3053 } 3054 3055 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3056 block_t blkaddr, int type) 3057 { 3058 int i, end; 3059 if (IS_DATASEG(type)) 3060 end = type + NR_CURSEG_DATA_TYPE; 3061 else 3062 end = type + NR_CURSEG_NODE_TYPE; 3063 3064 for (i = type; i < end; i++) 3065 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3066 } 3067 3068 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3069 { 3070 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3071 write_compacted_summaries(sbi, start_blk); 3072 else 3073 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3074 } 3075 3076 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3077 { 3078 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3079 } 3080 3081 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3082 unsigned int val, int alloc) 3083 { 3084 int i; 3085 3086 if (type == NAT_JOURNAL) { 3087 for (i = 0; i < nats_in_cursum(journal); i++) { 3088 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3089 return i; 3090 } 3091 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3092 return update_nats_in_cursum(journal, 1); 3093 } else if (type == SIT_JOURNAL) { 3094 for (i = 0; i < sits_in_cursum(journal); i++) 3095 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3096 return i; 3097 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3098 return update_sits_in_cursum(journal, 1); 3099 } 3100 return -1; 3101 } 3102 3103 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3104 unsigned int segno) 3105 { 3106 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 3107 } 3108 3109 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3110 unsigned int start) 3111 { 3112 struct sit_info *sit_i = SIT_I(sbi); 3113 struct page *page; 3114 pgoff_t src_off, dst_off; 3115 3116 src_off = current_sit_addr(sbi, start); 3117 dst_off = next_sit_addr(sbi, src_off); 3118 3119 page = grab_meta_page(sbi, dst_off); 3120 seg_info_to_sit_page(sbi, page, start); 3121 3122 set_page_dirty(page); 3123 set_to_next_sit(sit_i, start); 3124 3125 return page; 3126 } 3127 3128 static struct sit_entry_set *grab_sit_entry_set(void) 3129 { 3130 struct sit_entry_set *ses = 3131 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3132 3133 ses->entry_cnt = 0; 3134 INIT_LIST_HEAD(&ses->set_list); 3135 return ses; 3136 } 3137 3138 static void release_sit_entry_set(struct sit_entry_set *ses) 3139 { 3140 list_del(&ses->set_list); 3141 kmem_cache_free(sit_entry_set_slab, ses); 3142 } 3143 3144 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3145 struct list_head *head) 3146 { 3147 struct sit_entry_set *next = ses; 3148 3149 if (list_is_last(&ses->set_list, head)) 3150 return; 3151 3152 list_for_each_entry_continue(next, head, set_list) 3153 if (ses->entry_cnt <= next->entry_cnt) 3154 break; 3155 3156 list_move_tail(&ses->set_list, &next->set_list); 3157 } 3158 3159 static void add_sit_entry(unsigned int segno, struct list_head *head) 3160 { 3161 struct sit_entry_set *ses; 3162 unsigned int start_segno = START_SEGNO(segno); 3163 3164 list_for_each_entry(ses, head, set_list) { 3165 if (ses->start_segno == start_segno) { 3166 ses->entry_cnt++; 3167 adjust_sit_entry_set(ses, head); 3168 return; 3169 } 3170 } 3171 3172 ses = grab_sit_entry_set(); 3173 3174 ses->start_segno = start_segno; 3175 ses->entry_cnt++; 3176 list_add(&ses->set_list, head); 3177 } 3178 3179 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3180 { 3181 struct f2fs_sm_info *sm_info = SM_I(sbi); 3182 struct list_head *set_list = &sm_info->sit_entry_set; 3183 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3184 unsigned int segno; 3185 3186 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3187 add_sit_entry(segno, set_list); 3188 } 3189 3190 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3191 { 3192 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3193 struct f2fs_journal *journal = curseg->journal; 3194 int i; 3195 3196 down_write(&curseg->journal_rwsem); 3197 for (i = 0; i < sits_in_cursum(journal); i++) { 3198 unsigned int segno; 3199 bool dirtied; 3200 3201 segno = le32_to_cpu(segno_in_journal(journal, i)); 3202 dirtied = __mark_sit_entry_dirty(sbi, segno); 3203 3204 if (!dirtied) 3205 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3206 } 3207 update_sits_in_cursum(journal, -i); 3208 up_write(&curseg->journal_rwsem); 3209 } 3210 3211 /* 3212 * CP calls this function, which flushes SIT entries including sit_journal, 3213 * and moves prefree segs to free segs. 3214 */ 3215 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3216 { 3217 struct sit_info *sit_i = SIT_I(sbi); 3218 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3219 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3220 struct f2fs_journal *journal = curseg->journal; 3221 struct sit_entry_set *ses, *tmp; 3222 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3223 bool to_journal = true; 3224 struct seg_entry *se; 3225 3226 down_write(&sit_i->sentry_lock); 3227 3228 if (!sit_i->dirty_sentries) 3229 goto out; 3230 3231 /* 3232 * add and account sit entries of dirty bitmap in sit entry 3233 * set temporarily 3234 */ 3235 add_sits_in_set(sbi); 3236 3237 /* 3238 * if there are no enough space in journal to store dirty sit 3239 * entries, remove all entries from journal and add and account 3240 * them in sit entry set. 3241 */ 3242 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3243 remove_sits_in_journal(sbi); 3244 3245 /* 3246 * there are two steps to flush sit entries: 3247 * #1, flush sit entries to journal in current cold data summary block. 3248 * #2, flush sit entries to sit page. 3249 */ 3250 list_for_each_entry_safe(ses, tmp, head, set_list) { 3251 struct page *page = NULL; 3252 struct f2fs_sit_block *raw_sit = NULL; 3253 unsigned int start_segno = ses->start_segno; 3254 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3255 (unsigned long)MAIN_SEGS(sbi)); 3256 unsigned int segno = start_segno; 3257 3258 if (to_journal && 3259 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3260 to_journal = false; 3261 3262 if (to_journal) { 3263 down_write(&curseg->journal_rwsem); 3264 } else { 3265 page = get_next_sit_page(sbi, start_segno); 3266 raw_sit = page_address(page); 3267 } 3268 3269 /* flush dirty sit entries in region of current sit set */ 3270 for_each_set_bit_from(segno, bitmap, end) { 3271 int offset, sit_offset; 3272 3273 se = get_seg_entry(sbi, segno); 3274 3275 /* add discard candidates */ 3276 if (!(cpc->reason & CP_DISCARD)) { 3277 cpc->trim_start = segno; 3278 add_discard_addrs(sbi, cpc, false); 3279 } 3280 3281 if (to_journal) { 3282 offset = lookup_journal_in_cursum(journal, 3283 SIT_JOURNAL, segno, 1); 3284 f2fs_bug_on(sbi, offset < 0); 3285 segno_in_journal(journal, offset) = 3286 cpu_to_le32(segno); 3287 seg_info_to_raw_sit(se, 3288 &sit_in_journal(journal, offset)); 3289 } else { 3290 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3291 seg_info_to_raw_sit(se, 3292 &raw_sit->entries[sit_offset]); 3293 } 3294 3295 __clear_bit(segno, bitmap); 3296 sit_i->dirty_sentries--; 3297 ses->entry_cnt--; 3298 } 3299 3300 if (to_journal) 3301 up_write(&curseg->journal_rwsem); 3302 else 3303 f2fs_put_page(page, 1); 3304 3305 f2fs_bug_on(sbi, ses->entry_cnt); 3306 release_sit_entry_set(ses); 3307 } 3308 3309 f2fs_bug_on(sbi, !list_empty(head)); 3310 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3311 out: 3312 if (cpc->reason & CP_DISCARD) { 3313 __u64 trim_start = cpc->trim_start; 3314 3315 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3316 add_discard_addrs(sbi, cpc, false); 3317 3318 cpc->trim_start = trim_start; 3319 } 3320 up_write(&sit_i->sentry_lock); 3321 3322 set_prefree_as_free_segments(sbi); 3323 } 3324 3325 static int build_sit_info(struct f2fs_sb_info *sbi) 3326 { 3327 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3328 struct sit_info *sit_i; 3329 unsigned int sit_segs, start; 3330 char *src_bitmap; 3331 unsigned int bitmap_size; 3332 3333 /* allocate memory for SIT information */ 3334 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3335 if (!sit_i) 3336 return -ENOMEM; 3337 3338 SM_I(sbi)->sit_info = sit_i; 3339 3340 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) * 3341 sizeof(struct seg_entry), GFP_KERNEL); 3342 if (!sit_i->sentries) 3343 return -ENOMEM; 3344 3345 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3346 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3347 GFP_KERNEL); 3348 if (!sit_i->dirty_sentries_bitmap) 3349 return -ENOMEM; 3350 3351 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3352 sit_i->sentries[start].cur_valid_map 3353 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3354 sit_i->sentries[start].ckpt_valid_map 3355 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3356 if (!sit_i->sentries[start].cur_valid_map || 3357 !sit_i->sentries[start].ckpt_valid_map) 3358 return -ENOMEM; 3359 3360 #ifdef CONFIG_F2FS_CHECK_FS 3361 sit_i->sentries[start].cur_valid_map_mir 3362 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3363 if (!sit_i->sentries[start].cur_valid_map_mir) 3364 return -ENOMEM; 3365 #endif 3366 3367 if (f2fs_discard_en(sbi)) { 3368 sit_i->sentries[start].discard_map 3369 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3370 GFP_KERNEL); 3371 if (!sit_i->sentries[start].discard_map) 3372 return -ENOMEM; 3373 } 3374 } 3375 3376 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3377 if (!sit_i->tmp_map) 3378 return -ENOMEM; 3379 3380 if (sbi->segs_per_sec > 1) { 3381 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) * 3382 sizeof(struct sec_entry), GFP_KERNEL); 3383 if (!sit_i->sec_entries) 3384 return -ENOMEM; 3385 } 3386 3387 /* get information related with SIT */ 3388 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3389 3390 /* setup SIT bitmap from ckeckpoint pack */ 3391 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3392 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3393 3394 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3395 if (!sit_i->sit_bitmap) 3396 return -ENOMEM; 3397 3398 #ifdef CONFIG_F2FS_CHECK_FS 3399 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3400 if (!sit_i->sit_bitmap_mir) 3401 return -ENOMEM; 3402 #endif 3403 3404 /* init SIT information */ 3405 sit_i->s_ops = &default_salloc_ops; 3406 3407 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3408 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3409 sit_i->written_valid_blocks = 0; 3410 sit_i->bitmap_size = bitmap_size; 3411 sit_i->dirty_sentries = 0; 3412 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3413 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3414 sit_i->mounted_time = ktime_get_real_seconds(); 3415 init_rwsem(&sit_i->sentry_lock); 3416 return 0; 3417 } 3418 3419 static int build_free_segmap(struct f2fs_sb_info *sbi) 3420 { 3421 struct free_segmap_info *free_i; 3422 unsigned int bitmap_size, sec_bitmap_size; 3423 3424 /* allocate memory for free segmap information */ 3425 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3426 if (!free_i) 3427 return -ENOMEM; 3428 3429 SM_I(sbi)->free_info = free_i; 3430 3431 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3432 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3433 if (!free_i->free_segmap) 3434 return -ENOMEM; 3435 3436 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3437 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3438 if (!free_i->free_secmap) 3439 return -ENOMEM; 3440 3441 /* set all segments as dirty temporarily */ 3442 memset(free_i->free_segmap, 0xff, bitmap_size); 3443 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3444 3445 /* init free segmap information */ 3446 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3447 free_i->free_segments = 0; 3448 free_i->free_sections = 0; 3449 spin_lock_init(&free_i->segmap_lock); 3450 return 0; 3451 } 3452 3453 static int build_curseg(struct f2fs_sb_info *sbi) 3454 { 3455 struct curseg_info *array; 3456 int i; 3457 3458 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); 3459 if (!array) 3460 return -ENOMEM; 3461 3462 SM_I(sbi)->curseg_array = array; 3463 3464 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3465 mutex_init(&array[i].curseg_mutex); 3466 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 3467 if (!array[i].sum_blk) 3468 return -ENOMEM; 3469 init_rwsem(&array[i].journal_rwsem); 3470 array[i].journal = f2fs_kzalloc(sbi, 3471 sizeof(struct f2fs_journal), GFP_KERNEL); 3472 if (!array[i].journal) 3473 return -ENOMEM; 3474 array[i].segno = NULL_SEGNO; 3475 array[i].next_blkoff = 0; 3476 } 3477 return restore_curseg_summaries(sbi); 3478 } 3479 3480 static int build_sit_entries(struct f2fs_sb_info *sbi) 3481 { 3482 struct sit_info *sit_i = SIT_I(sbi); 3483 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3484 struct f2fs_journal *journal = curseg->journal; 3485 struct seg_entry *se; 3486 struct f2fs_sit_entry sit; 3487 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3488 unsigned int i, start, end; 3489 unsigned int readed, start_blk = 0; 3490 int err = 0; 3491 3492 do { 3493 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 3494 META_SIT, true); 3495 3496 start = start_blk * sit_i->sents_per_block; 3497 end = (start_blk + readed) * sit_i->sents_per_block; 3498 3499 for (; start < end && start < MAIN_SEGS(sbi); start++) { 3500 struct f2fs_sit_block *sit_blk; 3501 struct page *page; 3502 3503 se = &sit_i->sentries[start]; 3504 page = get_current_sit_page(sbi, start); 3505 sit_blk = (struct f2fs_sit_block *)page_address(page); 3506 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 3507 f2fs_put_page(page, 1); 3508 3509 err = check_block_count(sbi, start, &sit); 3510 if (err) 3511 return err; 3512 seg_info_from_raw_sit(se, &sit); 3513 3514 /* build discard map only one time */ 3515 if (f2fs_discard_en(sbi)) { 3516 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3517 memset(se->discard_map, 0xff, 3518 SIT_VBLOCK_MAP_SIZE); 3519 } else { 3520 memcpy(se->discard_map, 3521 se->cur_valid_map, 3522 SIT_VBLOCK_MAP_SIZE); 3523 sbi->discard_blks += 3524 sbi->blocks_per_seg - 3525 se->valid_blocks; 3526 } 3527 } 3528 3529 if (sbi->segs_per_sec > 1) 3530 get_sec_entry(sbi, start)->valid_blocks += 3531 se->valid_blocks; 3532 } 3533 start_blk += readed; 3534 } while (start_blk < sit_blk_cnt); 3535 3536 down_read(&curseg->journal_rwsem); 3537 for (i = 0; i < sits_in_cursum(journal); i++) { 3538 unsigned int old_valid_blocks; 3539 3540 start = le32_to_cpu(segno_in_journal(journal, i)); 3541 se = &sit_i->sentries[start]; 3542 sit = sit_in_journal(journal, i); 3543 3544 old_valid_blocks = se->valid_blocks; 3545 3546 err = check_block_count(sbi, start, &sit); 3547 if (err) 3548 break; 3549 seg_info_from_raw_sit(se, &sit); 3550 3551 if (f2fs_discard_en(sbi)) { 3552 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3553 memset(se->discard_map, 0xff, 3554 SIT_VBLOCK_MAP_SIZE); 3555 } else { 3556 memcpy(se->discard_map, se->cur_valid_map, 3557 SIT_VBLOCK_MAP_SIZE); 3558 sbi->discard_blks += old_valid_blocks - 3559 se->valid_blocks; 3560 } 3561 } 3562 3563 if (sbi->segs_per_sec > 1) 3564 get_sec_entry(sbi, start)->valid_blocks += 3565 se->valid_blocks - old_valid_blocks; 3566 } 3567 up_read(&curseg->journal_rwsem); 3568 return err; 3569 } 3570 3571 static void init_free_segmap(struct f2fs_sb_info *sbi) 3572 { 3573 unsigned int start; 3574 int type; 3575 3576 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3577 struct seg_entry *sentry = get_seg_entry(sbi, start); 3578 if (!sentry->valid_blocks) 3579 __set_free(sbi, start); 3580 else 3581 SIT_I(sbi)->written_valid_blocks += 3582 sentry->valid_blocks; 3583 } 3584 3585 /* set use the current segments */ 3586 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 3587 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 3588 __set_test_and_inuse(sbi, curseg_t->segno); 3589 } 3590 } 3591 3592 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 3593 { 3594 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3595 struct free_segmap_info *free_i = FREE_I(sbi); 3596 unsigned int segno = 0, offset = 0; 3597 unsigned short valid_blocks; 3598 3599 while (1) { 3600 /* find dirty segment based on free segmap */ 3601 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 3602 if (segno >= MAIN_SEGS(sbi)) 3603 break; 3604 offset = segno + 1; 3605 valid_blocks = get_valid_blocks(sbi, segno, false); 3606 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 3607 continue; 3608 if (valid_blocks > sbi->blocks_per_seg) { 3609 f2fs_bug_on(sbi, 1); 3610 continue; 3611 } 3612 mutex_lock(&dirty_i->seglist_lock); 3613 __locate_dirty_segment(sbi, segno, DIRTY); 3614 mutex_unlock(&dirty_i->seglist_lock); 3615 } 3616 } 3617 3618 static int init_victim_secmap(struct f2fs_sb_info *sbi) 3619 { 3620 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3621 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3622 3623 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 3624 if (!dirty_i->victim_secmap) 3625 return -ENOMEM; 3626 return 0; 3627 } 3628 3629 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 3630 { 3631 struct dirty_seglist_info *dirty_i; 3632 unsigned int bitmap_size, i; 3633 3634 /* allocate memory for dirty segments list information */ 3635 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 3636 GFP_KERNEL); 3637 if (!dirty_i) 3638 return -ENOMEM; 3639 3640 SM_I(sbi)->dirty_info = dirty_i; 3641 mutex_init(&dirty_i->seglist_lock); 3642 3643 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3644 3645 for (i = 0; i < NR_DIRTY_TYPE; i++) { 3646 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 3647 GFP_KERNEL); 3648 if (!dirty_i->dirty_segmap[i]) 3649 return -ENOMEM; 3650 } 3651 3652 init_dirty_segmap(sbi); 3653 return init_victim_secmap(sbi); 3654 } 3655 3656 /* 3657 * Update min, max modified time for cost-benefit GC algorithm 3658 */ 3659 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 3660 { 3661 struct sit_info *sit_i = SIT_I(sbi); 3662 unsigned int segno; 3663 3664 down_write(&sit_i->sentry_lock); 3665 3666 sit_i->min_mtime = LLONG_MAX; 3667 3668 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 3669 unsigned int i; 3670 unsigned long long mtime = 0; 3671 3672 for (i = 0; i < sbi->segs_per_sec; i++) 3673 mtime += get_seg_entry(sbi, segno + i)->mtime; 3674 3675 mtime = div_u64(mtime, sbi->segs_per_sec); 3676 3677 if (sit_i->min_mtime > mtime) 3678 sit_i->min_mtime = mtime; 3679 } 3680 sit_i->max_mtime = get_mtime(sbi); 3681 up_write(&sit_i->sentry_lock); 3682 } 3683 3684 int build_segment_manager(struct f2fs_sb_info *sbi) 3685 { 3686 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3687 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3688 struct f2fs_sm_info *sm_info; 3689 int err; 3690 3691 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 3692 if (!sm_info) 3693 return -ENOMEM; 3694 3695 /* init sm info */ 3696 sbi->sm_info = sm_info; 3697 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3698 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3699 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 3700 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3701 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3702 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 3703 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3704 sm_info->rec_prefree_segments = sm_info->main_segments * 3705 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 3706 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 3707 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 3708 3709 if (!test_opt(sbi, LFS)) 3710 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 3711 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 3712 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 3713 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 3714 sm_info->min_ssr_sections = reserved_sections(sbi); 3715 3716 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 3717 3718 INIT_LIST_HEAD(&sm_info->sit_entry_set); 3719 3720 init_rwsem(&sm_info->curseg_lock); 3721 3722 if (!f2fs_readonly(sbi->sb)) { 3723 err = create_flush_cmd_control(sbi); 3724 if (err) 3725 return err; 3726 } 3727 3728 err = create_discard_cmd_control(sbi); 3729 if (err) 3730 return err; 3731 3732 err = build_sit_info(sbi); 3733 if (err) 3734 return err; 3735 err = build_free_segmap(sbi); 3736 if (err) 3737 return err; 3738 err = build_curseg(sbi); 3739 if (err) 3740 return err; 3741 3742 /* reinit free segmap based on SIT */ 3743 err = build_sit_entries(sbi); 3744 if (err) 3745 return err; 3746 3747 init_free_segmap(sbi); 3748 err = build_dirty_segmap(sbi); 3749 if (err) 3750 return err; 3751 3752 init_min_max_mtime(sbi); 3753 return 0; 3754 } 3755 3756 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 3757 enum dirty_type dirty_type) 3758 { 3759 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3760 3761 mutex_lock(&dirty_i->seglist_lock); 3762 kvfree(dirty_i->dirty_segmap[dirty_type]); 3763 dirty_i->nr_dirty[dirty_type] = 0; 3764 mutex_unlock(&dirty_i->seglist_lock); 3765 } 3766 3767 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 3768 { 3769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3770 kvfree(dirty_i->victim_secmap); 3771 } 3772 3773 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 3774 { 3775 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3776 int i; 3777 3778 if (!dirty_i) 3779 return; 3780 3781 /* discard pre-free/dirty segments list */ 3782 for (i = 0; i < NR_DIRTY_TYPE; i++) 3783 discard_dirty_segmap(sbi, i); 3784 3785 destroy_victim_secmap(sbi); 3786 SM_I(sbi)->dirty_info = NULL; 3787 kfree(dirty_i); 3788 } 3789 3790 static void destroy_curseg(struct f2fs_sb_info *sbi) 3791 { 3792 struct curseg_info *array = SM_I(sbi)->curseg_array; 3793 int i; 3794 3795 if (!array) 3796 return; 3797 SM_I(sbi)->curseg_array = NULL; 3798 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3799 kfree(array[i].sum_blk); 3800 kfree(array[i].journal); 3801 } 3802 kfree(array); 3803 } 3804 3805 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 3806 { 3807 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 3808 if (!free_i) 3809 return; 3810 SM_I(sbi)->free_info = NULL; 3811 kvfree(free_i->free_segmap); 3812 kvfree(free_i->free_secmap); 3813 kfree(free_i); 3814 } 3815 3816 static void destroy_sit_info(struct f2fs_sb_info *sbi) 3817 { 3818 struct sit_info *sit_i = SIT_I(sbi); 3819 unsigned int start; 3820 3821 if (!sit_i) 3822 return; 3823 3824 if (sit_i->sentries) { 3825 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3826 kfree(sit_i->sentries[start].cur_valid_map); 3827 #ifdef CONFIG_F2FS_CHECK_FS 3828 kfree(sit_i->sentries[start].cur_valid_map_mir); 3829 #endif 3830 kfree(sit_i->sentries[start].ckpt_valid_map); 3831 kfree(sit_i->sentries[start].discard_map); 3832 } 3833 } 3834 kfree(sit_i->tmp_map); 3835 3836 kvfree(sit_i->sentries); 3837 kvfree(sit_i->sec_entries); 3838 kvfree(sit_i->dirty_sentries_bitmap); 3839 3840 SM_I(sbi)->sit_info = NULL; 3841 kfree(sit_i->sit_bitmap); 3842 #ifdef CONFIG_F2FS_CHECK_FS 3843 kfree(sit_i->sit_bitmap_mir); 3844 #endif 3845 kfree(sit_i); 3846 } 3847 3848 void destroy_segment_manager(struct f2fs_sb_info *sbi) 3849 { 3850 struct f2fs_sm_info *sm_info = SM_I(sbi); 3851 3852 if (!sm_info) 3853 return; 3854 destroy_flush_cmd_control(sbi, true); 3855 destroy_discard_cmd_control(sbi); 3856 destroy_dirty_segmap(sbi); 3857 destroy_curseg(sbi); 3858 destroy_free_segmap(sbi); 3859 destroy_sit_info(sbi); 3860 sbi->sm_info = NULL; 3861 kfree(sm_info); 3862 } 3863 3864 int __init create_segment_manager_caches(void) 3865 { 3866 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 3867 sizeof(struct discard_entry)); 3868 if (!discard_entry_slab) 3869 goto fail; 3870 3871 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 3872 sizeof(struct discard_cmd)); 3873 if (!discard_cmd_slab) 3874 goto destroy_discard_entry; 3875 3876 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 3877 sizeof(struct sit_entry_set)); 3878 if (!sit_entry_set_slab) 3879 goto destroy_discard_cmd; 3880 3881 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 3882 sizeof(struct inmem_pages)); 3883 if (!inmem_entry_slab) 3884 goto destroy_sit_entry_set; 3885 return 0; 3886 3887 destroy_sit_entry_set: 3888 kmem_cache_destroy(sit_entry_set_slab); 3889 destroy_discard_cmd: 3890 kmem_cache_destroy(discard_cmd_slab); 3891 destroy_discard_entry: 3892 kmem_cache_destroy(discard_entry_slab); 3893 fail: 3894 return -ENOMEM; 3895 } 3896 3897 void destroy_segment_manager_caches(void) 3898 { 3899 kmem_cache_destroy(sit_entry_set_slab); 3900 kmem_cache_destroy(discard_cmd_slab); 3901 kmem_cache_destroy(discard_entry_slab); 3902 kmem_cache_destroy(inmem_entry_slab); 3903 } 3904