xref: /openbmc/linux/fs/f2fs/segment.c (revision 407e7517)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35 
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 	unsigned long tmp = 0;
39 	int shift = 24, idx = 0;
40 
41 #if BITS_PER_LONG == 64
42 	shift = 56;
43 #endif
44 	while (shift >= 0) {
45 		tmp |= (unsigned long)str[idx++] << shift;
46 		shift -= BITS_PER_BYTE;
47 	}
48 	return tmp;
49 }
50 
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 	int num = 0;
58 
59 #if BITS_PER_LONG == 64
60 	if ((word & 0xffffffff00000000UL) == 0)
61 		num += 32;
62 	else
63 		word >>= 32;
64 #endif
65 	if ((word & 0xffff0000) == 0)
66 		num += 16;
67 	else
68 		word >>= 16;
69 
70 	if ((word & 0xff00) == 0)
71 		num += 8;
72 	else
73 		word >>= 8;
74 
75 	if ((word & 0xf0) == 0)
76 		num += 4;
77 	else
78 		word >>= 4;
79 
80 	if ((word & 0xc) == 0)
81 		num += 2;
82 	else
83 		word >>= 2;
84 
85 	if ((word & 0x2) == 0)
86 		num += 1;
87 	return num;
88 }
89 
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 			unsigned long size, unsigned long offset)
101 {
102 	const unsigned long *p = addr + BIT_WORD(offset);
103 	unsigned long result = size;
104 	unsigned long tmp;
105 
106 	if (offset >= size)
107 		return size;
108 
109 	size -= (offset & ~(BITS_PER_LONG - 1));
110 	offset %= BITS_PER_LONG;
111 
112 	while (1) {
113 		if (*p == 0)
114 			goto pass;
115 
116 		tmp = __reverse_ulong((unsigned char *)p);
117 
118 		tmp &= ~0UL >> offset;
119 		if (size < BITS_PER_LONG)
120 			tmp &= (~0UL << (BITS_PER_LONG - size));
121 		if (tmp)
122 			goto found;
123 pass:
124 		if (size <= BITS_PER_LONG)
125 			break;
126 		size -= BITS_PER_LONG;
127 		offset = 0;
128 		p++;
129 	}
130 	return result;
131 found:
132 	return result - size + __reverse_ffs(tmp);
133 }
134 
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	const unsigned long *p = addr + BIT_WORD(offset);
139 	unsigned long result = size;
140 	unsigned long tmp;
141 
142 	if (offset >= size)
143 		return size;
144 
145 	size -= (offset & ~(BITS_PER_LONG - 1));
146 	offset %= BITS_PER_LONG;
147 
148 	while (1) {
149 		if (*p == ~0UL)
150 			goto pass;
151 
152 		tmp = __reverse_ulong((unsigned char *)p);
153 
154 		if (offset)
155 			tmp |= ~0UL << (BITS_PER_LONG - offset);
156 		if (size < BITS_PER_LONG)
157 			tmp |= ~0UL >> size;
158 		if (tmp != ~0UL)
159 			goto found;
160 pass:
161 		if (size <= BITS_PER_LONG)
162 			break;
163 		size -= BITS_PER_LONG;
164 		offset = 0;
165 		p++;
166 	}
167 	return result;
168 found:
169 	return result - size + __reverse_ffz(tmp);
170 }
171 
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 
178 	if (test_opt(sbi, LFS))
179 		return false;
180 	if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 		return true;
182 
183 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186 
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 	struct inmem_pages *new;
192 
193 	f2fs_trace_pid(page);
194 
195 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 	SetPagePrivate(page);
197 
198 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199 
200 	/* add atomic page indices to the list */
201 	new->page = page;
202 	INIT_LIST_HEAD(&new->list);
203 
204 	/* increase reference count with clean state */
205 	mutex_lock(&fi->inmem_lock);
206 	get_page(page);
207 	list_add_tail(&new->list, &fi->inmem_pages);
208 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 	if (list_empty(&fi->inmem_ilist))
210 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 	mutex_unlock(&fi->inmem_lock);
214 
215 	trace_f2fs_register_inmem_page(page, INMEM);
216 }
217 
218 static int __revoke_inmem_pages(struct inode *inode,
219 				struct list_head *head, bool drop, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct inmem_pages *cur, *tmp;
223 	int err = 0;
224 
225 	list_for_each_entry_safe(cur, tmp, head, list) {
226 		struct page *page = cur->page;
227 
228 		if (drop)
229 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230 
231 		lock_page(page);
232 
233 		if (recover) {
234 			struct dnode_of_data dn;
235 			struct node_info ni;
236 
237 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 			set_new_dnode(&dn, inode, NULL, NULL, 0);
240 			err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 			if (err) {
242 				if (err == -ENOMEM) {
243 					congestion_wait(BLK_RW_ASYNC, HZ/50);
244 					cond_resched();
245 					goto retry;
246 				}
247 				err = -EAGAIN;
248 				goto next;
249 			}
250 			get_node_info(sbi, dn.nid, &ni);
251 			if (cur->old_addr == NEW_ADDR) {
252 				invalidate_blocks(sbi, dn.data_blkaddr);
253 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 			} else
255 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 					cur->old_addr, ni.version, true, true);
257 			f2fs_put_dnode(&dn);
258 		}
259 next:
260 		/* we don't need to invalidate this in the sccessful status */
261 		if (drop || recover)
262 			ClearPageUptodate(page);
263 		set_page_private(page, 0);
264 		ClearPagePrivate(page);
265 		f2fs_put_page(page, 1);
266 
267 		list_del(&cur->list);
268 		kmem_cache_free(inmem_entry_slab, cur);
269 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 	}
271 	return err;
272 }
273 
274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275 {
276 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 	struct inode *inode;
278 	struct f2fs_inode_info *fi;
279 next:
280 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 	if (list_empty(head)) {
282 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 		return;
284 	}
285 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 	inode = igrab(&fi->vfs_inode);
287 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288 
289 	if (inode) {
290 		drop_inmem_pages(inode);
291 		iput(inode);
292 	}
293 	congestion_wait(BLK_RW_ASYNC, HZ/50);
294 	cond_resched();
295 	goto next;
296 }
297 
298 void drop_inmem_pages(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 
303 	mutex_lock(&fi->inmem_lock);
304 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 	if (!list_empty(&fi->inmem_ilist))
307 		list_del_init(&fi->inmem_ilist);
308 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 	mutex_unlock(&fi->inmem_lock);
310 
311 	clear_inode_flag(inode, FI_ATOMIC_FILE);
312 	clear_inode_flag(inode, FI_HOT_DATA);
313 	stat_dec_atomic_write(inode);
314 }
315 
316 void drop_inmem_page(struct inode *inode, struct page *page)
317 {
318 	struct f2fs_inode_info *fi = F2FS_I(inode);
319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 	struct list_head *head = &fi->inmem_pages;
321 	struct inmem_pages *cur = NULL;
322 
323 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324 
325 	mutex_lock(&fi->inmem_lock);
326 	list_for_each_entry(cur, head, list) {
327 		if (cur->page == page)
328 			break;
329 	}
330 
331 	f2fs_bug_on(sbi, !cur || cur->page != page);
332 	list_del(&cur->list);
333 	mutex_unlock(&fi->inmem_lock);
334 
335 	dec_page_count(sbi, F2FS_INMEM_PAGES);
336 	kmem_cache_free(inmem_entry_slab, cur);
337 
338 	ClearPageUptodate(page);
339 	set_page_private(page, 0);
340 	ClearPagePrivate(page);
341 	f2fs_put_page(page, 0);
342 
343 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344 }
345 
346 static int __commit_inmem_pages(struct inode *inode,
347 					struct list_head *revoke_list)
348 {
349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct inmem_pages *cur, *tmp;
352 	struct f2fs_io_info fio = {
353 		.sbi = sbi,
354 		.ino = inode->i_ino,
355 		.type = DATA,
356 		.op = REQ_OP_WRITE,
357 		.op_flags = REQ_SYNC | REQ_PRIO,
358 		.io_type = FS_DATA_IO,
359 	};
360 	pgoff_t last_idx = ULONG_MAX;
361 	int err = 0;
362 
363 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 		struct page *page = cur->page;
365 
366 		lock_page(page);
367 		if (page->mapping == inode->i_mapping) {
368 			trace_f2fs_commit_inmem_page(page, INMEM);
369 
370 			set_page_dirty(page);
371 			f2fs_wait_on_page_writeback(page, DATA, true);
372 			if (clear_page_dirty_for_io(page)) {
373 				inode_dec_dirty_pages(inode);
374 				remove_dirty_inode(inode);
375 			}
376 retry:
377 			fio.page = page;
378 			fio.old_blkaddr = NULL_ADDR;
379 			fio.encrypted_page = NULL;
380 			fio.need_lock = LOCK_DONE;
381 			err = do_write_data_page(&fio);
382 			if (err) {
383 				if (err == -ENOMEM) {
384 					congestion_wait(BLK_RW_ASYNC, HZ/50);
385 					cond_resched();
386 					goto retry;
387 				}
388 				unlock_page(page);
389 				break;
390 			}
391 			/* record old blkaddr for revoking */
392 			cur->old_addr = fio.old_blkaddr;
393 			last_idx = page->index;
394 		}
395 		unlock_page(page);
396 		list_move_tail(&cur->list, revoke_list);
397 	}
398 
399 	if (last_idx != ULONG_MAX)
400 		f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401 
402 	if (!err)
403 		__revoke_inmem_pages(inode, revoke_list, false, false);
404 
405 	return err;
406 }
407 
408 int commit_inmem_pages(struct inode *inode)
409 {
410 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 	struct f2fs_inode_info *fi = F2FS_I(inode);
412 	struct list_head revoke_list;
413 	int err;
414 
415 	INIT_LIST_HEAD(&revoke_list);
416 	f2fs_balance_fs(sbi, true);
417 	f2fs_lock_op(sbi);
418 
419 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
420 
421 	mutex_lock(&fi->inmem_lock);
422 	err = __commit_inmem_pages(inode, &revoke_list);
423 	if (err) {
424 		int ret;
425 		/*
426 		 * try to revoke all committed pages, but still we could fail
427 		 * due to no memory or other reason, if that happened, EAGAIN
428 		 * will be returned, which means in such case, transaction is
429 		 * already not integrity, caller should use journal to do the
430 		 * recovery or rewrite & commit last transaction. For other
431 		 * error number, revoking was done by filesystem itself.
432 		 */
433 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 		if (ret)
435 			err = ret;
436 
437 		/* drop all uncommitted pages */
438 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 	}
440 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 	if (!list_empty(&fi->inmem_ilist))
442 		list_del_init(&fi->inmem_ilist);
443 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 	mutex_unlock(&fi->inmem_lock);
445 
446 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447 
448 	f2fs_unlock_op(sbi);
449 	return err;
450 }
451 
452 /*
453  * This function balances dirty node and dentry pages.
454  * In addition, it controls garbage collection.
455  */
456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457 {
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 		f2fs_show_injection_info(FAULT_CHECKPOINT);
461 		f2fs_stop_checkpoint(sbi, false);
462 	}
463 #endif
464 
465 	/* balance_fs_bg is able to be pending */
466 	if (need && excess_cached_nats(sbi))
467 		f2fs_balance_fs_bg(sbi);
468 
469 	/*
470 	 * We should do GC or end up with checkpoint, if there are so many dirty
471 	 * dir/node pages without enough free segments.
472 	 */
473 	if (has_not_enough_free_secs(sbi, 0, 0)) {
474 		mutex_lock(&sbi->gc_mutex);
475 		f2fs_gc(sbi, false, false, NULL_SEGNO);
476 	}
477 }
478 
479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480 {
481 	/* try to shrink extent cache when there is no enough memory */
482 	if (!available_free_memory(sbi, EXTENT_CACHE))
483 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
484 
485 	/* check the # of cached NAT entries */
486 	if (!available_free_memory(sbi, NAT_ENTRIES))
487 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
488 
489 	if (!available_free_memory(sbi, FREE_NIDS))
490 		try_to_free_nids(sbi, MAX_FREE_NIDS);
491 	else
492 		build_free_nids(sbi, false, false);
493 
494 	if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495 		return;
496 
497 	/* checkpoint is the only way to shrink partial cached entries */
498 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
499 			!available_free_memory(sbi, INO_ENTRIES) ||
500 			excess_prefree_segs(sbi) ||
501 			excess_dirty_nats(sbi) ||
502 			f2fs_time_over(sbi, CP_TIME)) {
503 		if (test_opt(sbi, DATA_FLUSH)) {
504 			struct blk_plug plug;
505 
506 			blk_start_plug(&plug);
507 			sync_dirty_inodes(sbi, FILE_INODE);
508 			blk_finish_plug(&plug);
509 		}
510 		f2fs_sync_fs(sbi->sb, true);
511 		stat_inc_bg_cp_count(sbi->stat_info);
512 	}
513 }
514 
515 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516 				struct block_device *bdev)
517 {
518 	struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519 	int ret;
520 
521 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522 	bio_set_dev(bio, bdev);
523 	ret = submit_bio_wait(bio);
524 	bio_put(bio);
525 
526 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527 				test_opt(sbi, FLUSH_MERGE), ret);
528 	return ret;
529 }
530 
531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 	int ret = 0;
534 	int i;
535 
536 	if (!sbi->s_ndevs)
537 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538 
539 	for (i = 0; i < sbi->s_ndevs; i++) {
540 		if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541 			continue;
542 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 		if (ret)
544 			break;
545 	}
546 	return ret;
547 }
548 
549 static int issue_flush_thread(void *data)
550 {
551 	struct f2fs_sb_info *sbi = data;
552 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 	wait_queue_head_t *q = &fcc->flush_wait_queue;
554 repeat:
555 	if (kthread_should_stop())
556 		return 0;
557 
558 	sb_start_intwrite(sbi->sb);
559 
560 	if (!llist_empty(&fcc->issue_list)) {
561 		struct flush_cmd *cmd, *next;
562 		int ret;
563 
564 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
566 
567 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
568 
569 		ret = submit_flush_wait(sbi, cmd->ino);
570 		atomic_inc(&fcc->issued_flush);
571 
572 		llist_for_each_entry_safe(cmd, next,
573 					  fcc->dispatch_list, llnode) {
574 			cmd->ret = ret;
575 			complete(&cmd->wait);
576 		}
577 		fcc->dispatch_list = NULL;
578 	}
579 
580 	sb_end_intwrite(sbi->sb);
581 
582 	wait_event_interruptible(*q,
583 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 	goto repeat;
585 }
586 
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588 {
589 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 	struct flush_cmd cmd;
591 	int ret;
592 
593 	if (test_opt(sbi, NOBARRIER))
594 		return 0;
595 
596 	if (!test_opt(sbi, FLUSH_MERGE)) {
597 		ret = submit_flush_wait(sbi, ino);
598 		atomic_inc(&fcc->issued_flush);
599 		return ret;
600 	}
601 
602 	if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603 		ret = submit_flush_wait(sbi, ino);
604 		atomic_dec(&fcc->issing_flush);
605 
606 		atomic_inc(&fcc->issued_flush);
607 		return ret;
608 	}
609 
610 	cmd.ino = ino;
611 	init_completion(&cmd.wait);
612 
613 	llist_add(&cmd.llnode, &fcc->issue_list);
614 
615 	/* update issue_list before we wake up issue_flush thread */
616 	smp_mb();
617 
618 	if (waitqueue_active(&fcc->flush_wait_queue))
619 		wake_up(&fcc->flush_wait_queue);
620 
621 	if (fcc->f2fs_issue_flush) {
622 		wait_for_completion(&cmd.wait);
623 		atomic_dec(&fcc->issing_flush);
624 	} else {
625 		struct llist_node *list;
626 
627 		list = llist_del_all(&fcc->issue_list);
628 		if (!list) {
629 			wait_for_completion(&cmd.wait);
630 			atomic_dec(&fcc->issing_flush);
631 		} else {
632 			struct flush_cmd *tmp, *next;
633 
634 			ret = submit_flush_wait(sbi, ino);
635 
636 			llist_for_each_entry_safe(tmp, next, list, llnode) {
637 				if (tmp == &cmd) {
638 					cmd.ret = ret;
639 					atomic_dec(&fcc->issing_flush);
640 					continue;
641 				}
642 				tmp->ret = ret;
643 				complete(&tmp->wait);
644 			}
645 		}
646 	}
647 
648 	return cmd.ret;
649 }
650 
651 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
652 {
653 	dev_t dev = sbi->sb->s_bdev->bd_dev;
654 	struct flush_cmd_control *fcc;
655 	int err = 0;
656 
657 	if (SM_I(sbi)->fcc_info) {
658 		fcc = SM_I(sbi)->fcc_info;
659 		if (fcc->f2fs_issue_flush)
660 			return err;
661 		goto init_thread;
662 	}
663 
664 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 	if (!fcc)
666 		return -ENOMEM;
667 	atomic_set(&fcc->issued_flush, 0);
668 	atomic_set(&fcc->issing_flush, 0);
669 	init_waitqueue_head(&fcc->flush_wait_queue);
670 	init_llist_head(&fcc->issue_list);
671 	SM_I(sbi)->fcc_info = fcc;
672 	if (!test_opt(sbi, FLUSH_MERGE))
673 		return err;
674 
675 init_thread:
676 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 	if (IS_ERR(fcc->f2fs_issue_flush)) {
679 		err = PTR_ERR(fcc->f2fs_issue_flush);
680 		kfree(fcc);
681 		SM_I(sbi)->fcc_info = NULL;
682 		return err;
683 	}
684 
685 	return err;
686 }
687 
688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689 {
690 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691 
692 	if (fcc && fcc->f2fs_issue_flush) {
693 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694 
695 		fcc->f2fs_issue_flush = NULL;
696 		kthread_stop(flush_thread);
697 	}
698 	if (free) {
699 		kfree(fcc);
700 		SM_I(sbi)->fcc_info = NULL;
701 	}
702 }
703 
704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705 {
706 	int ret = 0, i;
707 
708 	if (!sbi->s_ndevs)
709 		return 0;
710 
711 	for (i = 1; i < sbi->s_ndevs; i++) {
712 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713 			continue;
714 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 		if (ret)
716 			break;
717 
718 		spin_lock(&sbi->dev_lock);
719 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 		spin_unlock(&sbi->dev_lock);
721 	}
722 
723 	return ret;
724 }
725 
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 		enum dirty_type dirty_type)
728 {
729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730 
731 	/* need not be added */
732 	if (IS_CURSEG(sbi, segno))
733 		return;
734 
735 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 		dirty_i->nr_dirty[dirty_type]++;
737 
738 	if (dirty_type == DIRTY) {
739 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 		enum dirty_type t = sentry->type;
741 
742 		if (unlikely(t >= DIRTY)) {
743 			f2fs_bug_on(sbi, 1);
744 			return;
745 		}
746 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 			dirty_i->nr_dirty[t]++;
748 	}
749 }
750 
751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752 		enum dirty_type dirty_type)
753 {
754 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
755 
756 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757 		dirty_i->nr_dirty[dirty_type]--;
758 
759 	if (dirty_type == DIRTY) {
760 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
761 		enum dirty_type t = sentry->type;
762 
763 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764 			dirty_i->nr_dirty[t]--;
765 
766 		if (get_valid_blocks(sbi, segno, true) == 0)
767 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768 						dirty_i->victim_secmap);
769 	}
770 }
771 
772 /*
773  * Should not occur error such as -ENOMEM.
774  * Adding dirty entry into seglist is not critical operation.
775  * If a given segment is one of current working segments, it won't be added.
776  */
777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
778 {
779 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 	unsigned short valid_blocks;
781 
782 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783 		return;
784 
785 	mutex_lock(&dirty_i->seglist_lock);
786 
787 	valid_blocks = get_valid_blocks(sbi, segno, false);
788 
789 	if (valid_blocks == 0) {
790 		__locate_dirty_segment(sbi, segno, PRE);
791 		__remove_dirty_segment(sbi, segno, DIRTY);
792 	} else if (valid_blocks < sbi->blocks_per_seg) {
793 		__locate_dirty_segment(sbi, segno, DIRTY);
794 	} else {
795 		/* Recovery routine with SSR needs this */
796 		__remove_dirty_segment(sbi, segno, DIRTY);
797 	}
798 
799 	mutex_unlock(&dirty_i->seglist_lock);
800 }
801 
802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803 		struct block_device *bdev, block_t lstart,
804 		block_t start, block_t len)
805 {
806 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807 	struct list_head *pend_list;
808 	struct discard_cmd *dc;
809 
810 	f2fs_bug_on(sbi, !len);
811 
812 	pend_list = &dcc->pend_list[plist_idx(len)];
813 
814 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815 	INIT_LIST_HEAD(&dc->list);
816 	dc->bdev = bdev;
817 	dc->lstart = lstart;
818 	dc->start = start;
819 	dc->len = len;
820 	dc->ref = 0;
821 	dc->state = D_PREP;
822 	dc->error = 0;
823 	init_completion(&dc->wait);
824 	list_add_tail(&dc->list, pend_list);
825 	atomic_inc(&dcc->discard_cmd_cnt);
826 	dcc->undiscard_blks += len;
827 
828 	return dc;
829 }
830 
831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832 				struct block_device *bdev, block_t lstart,
833 				block_t start, block_t len,
834 				struct rb_node *parent, struct rb_node **p)
835 {
836 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837 	struct discard_cmd *dc;
838 
839 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
840 
841 	rb_link_node(&dc->rb_node, parent, p);
842 	rb_insert_color(&dc->rb_node, &dcc->root);
843 
844 	return dc;
845 }
846 
847 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848 							struct discard_cmd *dc)
849 {
850 	if (dc->state == D_DONE)
851 		atomic_dec(&dcc->issing_discard);
852 
853 	list_del(&dc->list);
854 	rb_erase(&dc->rb_node, &dcc->root);
855 	dcc->undiscard_blks -= dc->len;
856 
857 	kmem_cache_free(discard_cmd_slab, dc);
858 
859 	atomic_dec(&dcc->discard_cmd_cnt);
860 }
861 
862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863 							struct discard_cmd *dc)
864 {
865 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
866 
867 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
868 
869 	f2fs_bug_on(sbi, dc->ref);
870 
871 	if (dc->error == -EOPNOTSUPP)
872 		dc->error = 0;
873 
874 	if (dc->error)
875 		f2fs_msg(sbi->sb, KERN_INFO,
876 			"Issue discard(%u, %u, %u) failed, ret: %d",
877 			dc->lstart, dc->start, dc->len, dc->error);
878 	__detach_discard_cmd(dcc, dc);
879 }
880 
881 static void f2fs_submit_discard_endio(struct bio *bio)
882 {
883 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
884 
885 	dc->error = blk_status_to_errno(bio->bi_status);
886 	dc->state = D_DONE;
887 	complete_all(&dc->wait);
888 	bio_put(bio);
889 }
890 
891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892 				block_t start, block_t end)
893 {
894 #ifdef CONFIG_F2FS_CHECK_FS
895 	struct seg_entry *sentry;
896 	unsigned int segno;
897 	block_t blk = start;
898 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899 	unsigned long *map;
900 
901 	while (blk < end) {
902 		segno = GET_SEGNO(sbi, blk);
903 		sentry = get_seg_entry(sbi, segno);
904 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
905 
906 		if (end < START_BLOCK(sbi, segno + 1))
907 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
908 		else
909 			size = max_blocks;
910 		map = (unsigned long *)(sentry->cur_valid_map);
911 		offset = __find_rev_next_bit(map, size, offset);
912 		f2fs_bug_on(sbi, offset != size);
913 		blk = START_BLOCK(sbi, segno + 1);
914 	}
915 #endif
916 }
917 
918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920 						struct discard_policy *dpolicy,
921 						struct discard_cmd *dc)
922 {
923 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925 					&(dcc->fstrim_list) : &(dcc->wait_list);
926 	struct bio *bio = NULL;
927 	int flag = dpolicy->sync ? REQ_SYNC : 0;
928 
929 	if (dc->state != D_PREP)
930 		return;
931 
932 	trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
933 
934 	dc->error = __blkdev_issue_discard(dc->bdev,
935 				SECTOR_FROM_BLOCK(dc->start),
936 				SECTOR_FROM_BLOCK(dc->len),
937 				GFP_NOFS, 0, &bio);
938 	if (!dc->error) {
939 		/* should keep before submission to avoid D_DONE right away */
940 		dc->state = D_SUBMIT;
941 		atomic_inc(&dcc->issued_discard);
942 		atomic_inc(&dcc->issing_discard);
943 		if (bio) {
944 			bio->bi_private = dc;
945 			bio->bi_end_io = f2fs_submit_discard_endio;
946 			bio->bi_opf |= flag;
947 			submit_bio(bio);
948 			list_move_tail(&dc->list, wait_list);
949 			__check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
950 
951 			f2fs_update_iostat(sbi, FS_DISCARD, 1);
952 		}
953 	} else {
954 		__remove_discard_cmd(sbi, dc);
955 	}
956 }
957 
958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959 				struct block_device *bdev, block_t lstart,
960 				block_t start, block_t len,
961 				struct rb_node **insert_p,
962 				struct rb_node *insert_parent)
963 {
964 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965 	struct rb_node **p;
966 	struct rb_node *parent = NULL;
967 	struct discard_cmd *dc = NULL;
968 
969 	if (insert_p && insert_parent) {
970 		parent = insert_parent;
971 		p = insert_p;
972 		goto do_insert;
973 	}
974 
975 	p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976 do_insert:
977 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978 	if (!dc)
979 		return NULL;
980 
981 	return dc;
982 }
983 
984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985 						struct discard_cmd *dc)
986 {
987 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
988 }
989 
990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991 				struct discard_cmd *dc, block_t blkaddr)
992 {
993 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 	struct discard_info di = dc->di;
995 	bool modified = false;
996 
997 	if (dc->state == D_DONE || dc->len == 1) {
998 		__remove_discard_cmd(sbi, dc);
999 		return;
1000 	}
1001 
1002 	dcc->undiscard_blks -= di.len;
1003 
1004 	if (blkaddr > di.lstart) {
1005 		dc->len = blkaddr - dc->lstart;
1006 		dcc->undiscard_blks += dc->len;
1007 		__relocate_discard_cmd(dcc, dc);
1008 		modified = true;
1009 	}
1010 
1011 	if (blkaddr < di.lstart + di.len - 1) {
1012 		if (modified) {
1013 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014 					di.start + blkaddr + 1 - di.lstart,
1015 					di.lstart + di.len - 1 - blkaddr,
1016 					NULL, NULL);
1017 		} else {
1018 			dc->lstart++;
1019 			dc->len--;
1020 			dc->start++;
1021 			dcc->undiscard_blks += dc->len;
1022 			__relocate_discard_cmd(dcc, dc);
1023 		}
1024 	}
1025 }
1026 
1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028 				struct block_device *bdev, block_t lstart,
1029 				block_t start, block_t len)
1030 {
1031 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033 	struct discard_cmd *dc;
1034 	struct discard_info di = {0};
1035 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036 	block_t end = lstart + len;
1037 
1038 	mutex_lock(&dcc->cmd_lock);
1039 
1040 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041 					NULL, lstart,
1042 					(struct rb_entry **)&prev_dc,
1043 					(struct rb_entry **)&next_dc,
1044 					&insert_p, &insert_parent, true);
1045 	if (dc)
1046 		prev_dc = dc;
1047 
1048 	if (!prev_dc) {
1049 		di.lstart = lstart;
1050 		di.len = next_dc ? next_dc->lstart - lstart : len;
1051 		di.len = min(di.len, len);
1052 		di.start = start;
1053 	}
1054 
1055 	while (1) {
1056 		struct rb_node *node;
1057 		bool merged = false;
1058 		struct discard_cmd *tdc = NULL;
1059 
1060 		if (prev_dc) {
1061 			di.lstart = prev_dc->lstart + prev_dc->len;
1062 			if (di.lstart < lstart)
1063 				di.lstart = lstart;
1064 			if (di.lstart >= end)
1065 				break;
1066 
1067 			if (!next_dc || next_dc->lstart > end)
1068 				di.len = end - di.lstart;
1069 			else
1070 				di.len = next_dc->lstart - di.lstart;
1071 			di.start = start + di.lstart - lstart;
1072 		}
1073 
1074 		if (!di.len)
1075 			goto next;
1076 
1077 		if (prev_dc && prev_dc->state == D_PREP &&
1078 			prev_dc->bdev == bdev &&
1079 			__is_discard_back_mergeable(&di, &prev_dc->di)) {
1080 			prev_dc->di.len += di.len;
1081 			dcc->undiscard_blks += di.len;
1082 			__relocate_discard_cmd(dcc, prev_dc);
1083 			di = prev_dc->di;
1084 			tdc = prev_dc;
1085 			merged = true;
1086 		}
1087 
1088 		if (next_dc && next_dc->state == D_PREP &&
1089 			next_dc->bdev == bdev &&
1090 			__is_discard_front_mergeable(&di, &next_dc->di)) {
1091 			next_dc->di.lstart = di.lstart;
1092 			next_dc->di.len += di.len;
1093 			next_dc->di.start = di.start;
1094 			dcc->undiscard_blks += di.len;
1095 			__relocate_discard_cmd(dcc, next_dc);
1096 			if (tdc)
1097 				__remove_discard_cmd(sbi, tdc);
1098 			merged = true;
1099 		}
1100 
1101 		if (!merged) {
1102 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103 							di.len, NULL, NULL);
1104 		}
1105  next:
1106 		prev_dc = next_dc;
1107 		if (!prev_dc)
1108 			break;
1109 
1110 		node = rb_next(&prev_dc->rb_node);
1111 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1112 	}
1113 
1114 	mutex_unlock(&dcc->cmd_lock);
1115 }
1116 
1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118 		struct block_device *bdev, block_t blkstart, block_t blklen)
1119 {
1120 	block_t lblkstart = blkstart;
1121 
1122 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1123 
1124 	if (sbi->s_ndevs) {
1125 		int devi = f2fs_target_device_index(sbi, blkstart);
1126 
1127 		blkstart -= FDEV(devi).start_blk;
1128 	}
1129 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130 	return 0;
1131 }
1132 
1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134 					struct discard_policy *dpolicy,
1135 					unsigned int start, unsigned int end)
1136 {
1137 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140 	struct discard_cmd *dc;
1141 	struct blk_plug plug;
1142 	int issued;
1143 
1144 next:
1145 	issued = 0;
1146 
1147 	mutex_lock(&dcc->cmd_lock);
1148 	f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1149 
1150 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151 					NULL, start,
1152 					(struct rb_entry **)&prev_dc,
1153 					(struct rb_entry **)&next_dc,
1154 					&insert_p, &insert_parent, true);
1155 	if (!dc)
1156 		dc = next_dc;
1157 
1158 	blk_start_plug(&plug);
1159 
1160 	while (dc && dc->lstart <= end) {
1161 		struct rb_node *node;
1162 
1163 		if (dc->len < dpolicy->granularity)
1164 			goto skip;
1165 
1166 		if (dc->state != D_PREP) {
1167 			list_move_tail(&dc->list, &dcc->fstrim_list);
1168 			goto skip;
1169 		}
1170 
1171 		__submit_discard_cmd(sbi, dpolicy, dc);
1172 
1173 		if (++issued >= dpolicy->max_requests) {
1174 			start = dc->lstart + dc->len;
1175 
1176 			blk_finish_plug(&plug);
1177 			mutex_unlock(&dcc->cmd_lock);
1178 
1179 			schedule();
1180 
1181 			goto next;
1182 		}
1183 skip:
1184 		node = rb_next(&dc->rb_node);
1185 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1186 
1187 		if (fatal_signal_pending(current))
1188 			break;
1189 	}
1190 
1191 	blk_finish_plug(&plug);
1192 	mutex_unlock(&dcc->cmd_lock);
1193 }
1194 
1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196 					struct discard_policy *dpolicy)
1197 {
1198 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199 	struct list_head *pend_list;
1200 	struct discard_cmd *dc, *tmp;
1201 	struct blk_plug plug;
1202 	int i, iter = 0, issued = 0;
1203 	bool io_interrupted = false;
1204 
1205 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206 		if (i + 1 < dpolicy->granularity)
1207 			break;
1208 		pend_list = &dcc->pend_list[i];
1209 
1210 		mutex_lock(&dcc->cmd_lock);
1211 		if (list_empty(pend_list))
1212 			goto next;
1213 		f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214 		blk_start_plug(&plug);
1215 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216 			f2fs_bug_on(sbi, dc->state != D_PREP);
1217 
1218 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219 								!is_idle(sbi)) {
1220 				io_interrupted = true;
1221 				goto skip;
1222 			}
1223 
1224 			__submit_discard_cmd(sbi, dpolicy, dc);
1225 			issued++;
1226 skip:
1227 			if (++iter >= dpolicy->max_requests)
1228 				break;
1229 		}
1230 		blk_finish_plug(&plug);
1231 next:
1232 		mutex_unlock(&dcc->cmd_lock);
1233 
1234 		if (iter >= dpolicy->max_requests)
1235 			break;
1236 	}
1237 
1238 	if (!issued && io_interrupted)
1239 		issued = -1;
1240 
1241 	return issued;
1242 }
1243 
1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1245 {
1246 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 	struct list_head *pend_list;
1248 	struct discard_cmd *dc, *tmp;
1249 	int i;
1250 	bool dropped = false;
1251 
1252 	mutex_lock(&dcc->cmd_lock);
1253 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254 		pend_list = &dcc->pend_list[i];
1255 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256 			f2fs_bug_on(sbi, dc->state != D_PREP);
1257 			__remove_discard_cmd(sbi, dc);
1258 			dropped = true;
1259 		}
1260 	}
1261 	mutex_unlock(&dcc->cmd_lock);
1262 
1263 	return dropped;
1264 }
1265 
1266 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1267 {
1268 	__drop_discard_cmd(sbi);
1269 }
1270 
1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272 							struct discard_cmd *dc)
1273 {
1274 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 	unsigned int len = 0;
1276 
1277 	wait_for_completion_io(&dc->wait);
1278 	mutex_lock(&dcc->cmd_lock);
1279 	f2fs_bug_on(sbi, dc->state != D_DONE);
1280 	dc->ref--;
1281 	if (!dc->ref) {
1282 		if (!dc->error)
1283 			len = dc->len;
1284 		__remove_discard_cmd(sbi, dc);
1285 	}
1286 	mutex_unlock(&dcc->cmd_lock);
1287 
1288 	return len;
1289 }
1290 
1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292 						struct discard_policy *dpolicy,
1293 						block_t start, block_t end)
1294 {
1295 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297 					&(dcc->fstrim_list) : &(dcc->wait_list);
1298 	struct discard_cmd *dc, *tmp;
1299 	bool need_wait;
1300 	unsigned int trimmed = 0;
1301 
1302 next:
1303 	need_wait = false;
1304 
1305 	mutex_lock(&dcc->cmd_lock);
1306 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308 			continue;
1309 		if (dc->len < dpolicy->granularity)
1310 			continue;
1311 		if (dc->state == D_DONE && !dc->ref) {
1312 			wait_for_completion_io(&dc->wait);
1313 			if (!dc->error)
1314 				trimmed += dc->len;
1315 			__remove_discard_cmd(sbi, dc);
1316 		} else {
1317 			dc->ref++;
1318 			need_wait = true;
1319 			break;
1320 		}
1321 	}
1322 	mutex_unlock(&dcc->cmd_lock);
1323 
1324 	if (need_wait) {
1325 		trimmed += __wait_one_discard_bio(sbi, dc);
1326 		goto next;
1327 	}
1328 
1329 	return trimmed;
1330 }
1331 
1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333 						struct discard_policy *dpolicy)
1334 {
1335 	__wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1336 }
1337 
1338 /* This should be covered by global mutex, &sit_i->sentry_lock */
1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1340 {
1341 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342 	struct discard_cmd *dc;
1343 	bool need_wait = false;
1344 
1345 	mutex_lock(&dcc->cmd_lock);
1346 	dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347 	if (dc) {
1348 		if (dc->state == D_PREP) {
1349 			__punch_discard_cmd(sbi, dc, blkaddr);
1350 		} else {
1351 			dc->ref++;
1352 			need_wait = true;
1353 		}
1354 	}
1355 	mutex_unlock(&dcc->cmd_lock);
1356 
1357 	if (need_wait)
1358 		__wait_one_discard_bio(sbi, dc);
1359 }
1360 
1361 void stop_discard_thread(struct f2fs_sb_info *sbi)
1362 {
1363 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364 
1365 	if (dcc && dcc->f2fs_issue_discard) {
1366 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1367 
1368 		dcc->f2fs_issue_discard = NULL;
1369 		kthread_stop(discard_thread);
1370 	}
1371 }
1372 
1373 /* This comes from f2fs_put_super */
1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1375 {
1376 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 	struct discard_policy dpolicy;
1378 	bool dropped;
1379 
1380 	init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381 	__issue_discard_cmd(sbi, &dpolicy);
1382 	dropped = __drop_discard_cmd(sbi);
1383 	__wait_all_discard_cmd(sbi, &dpolicy);
1384 
1385 	return dropped;
1386 }
1387 
1388 static int issue_discard_thread(void *data)
1389 {
1390 	struct f2fs_sb_info *sbi = data;
1391 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1393 	struct discard_policy dpolicy;
1394 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395 	int issued;
1396 
1397 	set_freezable();
1398 
1399 	do {
1400 		init_discard_policy(&dpolicy, DPOLICY_BG,
1401 					dcc->discard_granularity);
1402 
1403 		wait_event_interruptible_timeout(*q,
1404 				kthread_should_stop() || freezing(current) ||
1405 				dcc->discard_wake,
1406 				msecs_to_jiffies(wait_ms));
1407 		if (try_to_freeze())
1408 			continue;
1409 		if (f2fs_readonly(sbi->sb))
1410 			continue;
1411 		if (kthread_should_stop())
1412 			return 0;
1413 
1414 		if (dcc->discard_wake) {
1415 			dcc->discard_wake = 0;
1416 			if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1417 				init_discard_policy(&dpolicy,
1418 							DPOLICY_FORCE, 1);
1419 		}
1420 
1421 		sb_start_intwrite(sbi->sb);
1422 
1423 		issued = __issue_discard_cmd(sbi, &dpolicy);
1424 		if (issued) {
1425 			__wait_all_discard_cmd(sbi, &dpolicy);
1426 			wait_ms = dpolicy.min_interval;
1427 		} else {
1428 			wait_ms = dpolicy.max_interval;
1429 		}
1430 
1431 		sb_end_intwrite(sbi->sb);
1432 
1433 	} while (!kthread_should_stop());
1434 	return 0;
1435 }
1436 
1437 #ifdef CONFIG_BLK_DEV_ZONED
1438 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1439 		struct block_device *bdev, block_t blkstart, block_t blklen)
1440 {
1441 	sector_t sector, nr_sects;
1442 	block_t lblkstart = blkstart;
1443 	int devi = 0;
1444 
1445 	if (sbi->s_ndevs) {
1446 		devi = f2fs_target_device_index(sbi, blkstart);
1447 		blkstart -= FDEV(devi).start_blk;
1448 	}
1449 
1450 	/*
1451 	 * We need to know the type of the zone: for conventional zones,
1452 	 * use regular discard if the drive supports it. For sequential
1453 	 * zones, reset the zone write pointer.
1454 	 */
1455 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1456 
1457 	case BLK_ZONE_TYPE_CONVENTIONAL:
1458 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1459 			return 0;
1460 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1461 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1462 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1463 		sector = SECTOR_FROM_BLOCK(blkstart);
1464 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1465 
1466 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1467 				nr_sects != bdev_zone_sectors(bdev)) {
1468 			f2fs_msg(sbi->sb, KERN_INFO,
1469 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1470 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1471 				blkstart, blklen);
1472 			return -EIO;
1473 		}
1474 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1475 		return blkdev_reset_zones(bdev, sector,
1476 					  nr_sects, GFP_NOFS);
1477 	default:
1478 		/* Unknown zone type: broken device ? */
1479 		return -EIO;
1480 	}
1481 }
1482 #endif
1483 
1484 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1485 		struct block_device *bdev, block_t blkstart, block_t blklen)
1486 {
1487 #ifdef CONFIG_BLK_DEV_ZONED
1488 	if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1489 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1490 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1491 #endif
1492 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1493 }
1494 
1495 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1496 				block_t blkstart, block_t blklen)
1497 {
1498 	sector_t start = blkstart, len = 0;
1499 	struct block_device *bdev;
1500 	struct seg_entry *se;
1501 	unsigned int offset;
1502 	block_t i;
1503 	int err = 0;
1504 
1505 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1506 
1507 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1508 		if (i != start) {
1509 			struct block_device *bdev2 =
1510 				f2fs_target_device(sbi, i, NULL);
1511 
1512 			if (bdev2 != bdev) {
1513 				err = __issue_discard_async(sbi, bdev,
1514 						start, len);
1515 				if (err)
1516 					return err;
1517 				bdev = bdev2;
1518 				start = i;
1519 				len = 0;
1520 			}
1521 		}
1522 
1523 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1524 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1525 
1526 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1527 			sbi->discard_blks--;
1528 	}
1529 
1530 	if (len)
1531 		err = __issue_discard_async(sbi, bdev, start, len);
1532 	return err;
1533 }
1534 
1535 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1536 							bool check_only)
1537 {
1538 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1539 	int max_blocks = sbi->blocks_per_seg;
1540 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1541 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1542 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1543 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1544 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1545 	unsigned int start = 0, end = -1;
1546 	bool force = (cpc->reason & CP_DISCARD);
1547 	struct discard_entry *de = NULL;
1548 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1549 	int i;
1550 
1551 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1552 		return false;
1553 
1554 	if (!force) {
1555 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1556 			SM_I(sbi)->dcc_info->nr_discards >=
1557 				SM_I(sbi)->dcc_info->max_discards)
1558 			return false;
1559 	}
1560 
1561 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1562 	for (i = 0; i < entries; i++)
1563 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1564 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1565 
1566 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1567 				SM_I(sbi)->dcc_info->max_discards) {
1568 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1569 		if (start >= max_blocks)
1570 			break;
1571 
1572 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1573 		if (force && start && end != max_blocks
1574 					&& (end - start) < cpc->trim_minlen)
1575 			continue;
1576 
1577 		if (check_only)
1578 			return true;
1579 
1580 		if (!de) {
1581 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1582 								GFP_F2FS_ZERO);
1583 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1584 			list_add_tail(&de->list, head);
1585 		}
1586 
1587 		for (i = start; i < end; i++)
1588 			__set_bit_le(i, (void *)de->discard_map);
1589 
1590 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1591 	}
1592 	return false;
1593 }
1594 
1595 void release_discard_addrs(struct f2fs_sb_info *sbi)
1596 {
1597 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1598 	struct discard_entry *entry, *this;
1599 
1600 	/* drop caches */
1601 	list_for_each_entry_safe(entry, this, head, list) {
1602 		list_del(&entry->list);
1603 		kmem_cache_free(discard_entry_slab, entry);
1604 	}
1605 }
1606 
1607 /*
1608  * Should call clear_prefree_segments after checkpoint is done.
1609  */
1610 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1611 {
1612 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613 	unsigned int segno;
1614 
1615 	mutex_lock(&dirty_i->seglist_lock);
1616 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1617 		__set_test_and_free(sbi, segno);
1618 	mutex_unlock(&dirty_i->seglist_lock);
1619 }
1620 
1621 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1622 {
1623 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624 	struct list_head *head = &dcc->entry_list;
1625 	struct discard_entry *entry, *this;
1626 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1627 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1628 	unsigned int start = 0, end = -1;
1629 	unsigned int secno, start_segno;
1630 	bool force = (cpc->reason & CP_DISCARD);
1631 
1632 	mutex_lock(&dirty_i->seglist_lock);
1633 
1634 	while (1) {
1635 		int i;
1636 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1637 		if (start >= MAIN_SEGS(sbi))
1638 			break;
1639 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1640 								start + 1);
1641 
1642 		for (i = start; i < end; i++)
1643 			clear_bit(i, prefree_map);
1644 
1645 		dirty_i->nr_dirty[PRE] -= end - start;
1646 
1647 		if (!test_opt(sbi, DISCARD))
1648 			continue;
1649 
1650 		if (force && start >= cpc->trim_start &&
1651 					(end - 1) <= cpc->trim_end)
1652 				continue;
1653 
1654 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1655 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1656 				(end - start) << sbi->log_blocks_per_seg);
1657 			continue;
1658 		}
1659 next:
1660 		secno = GET_SEC_FROM_SEG(sbi, start);
1661 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1662 		if (!IS_CURSEC(sbi, secno) &&
1663 			!get_valid_blocks(sbi, start, true))
1664 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1665 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1666 
1667 		start = start_segno + sbi->segs_per_sec;
1668 		if (start < end)
1669 			goto next;
1670 		else
1671 			end = start - 1;
1672 	}
1673 	mutex_unlock(&dirty_i->seglist_lock);
1674 
1675 	/* send small discards */
1676 	list_for_each_entry_safe(entry, this, head, list) {
1677 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1678 		bool is_valid = test_bit_le(0, entry->discard_map);
1679 
1680 find_next:
1681 		if (is_valid) {
1682 			next_pos = find_next_zero_bit_le(entry->discard_map,
1683 					sbi->blocks_per_seg, cur_pos);
1684 			len = next_pos - cur_pos;
1685 
1686 			if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1687 			    (force && len < cpc->trim_minlen))
1688 				goto skip;
1689 
1690 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1691 									len);
1692 			total_len += len;
1693 		} else {
1694 			next_pos = find_next_bit_le(entry->discard_map,
1695 					sbi->blocks_per_seg, cur_pos);
1696 		}
1697 skip:
1698 		cur_pos = next_pos;
1699 		is_valid = !is_valid;
1700 
1701 		if (cur_pos < sbi->blocks_per_seg)
1702 			goto find_next;
1703 
1704 		list_del(&entry->list);
1705 		dcc->nr_discards -= total_len;
1706 		kmem_cache_free(discard_entry_slab, entry);
1707 	}
1708 
1709 	wake_up_discard_thread(sbi, false);
1710 }
1711 
1712 void init_discard_policy(struct discard_policy *dpolicy,
1713 				int discard_type, unsigned int granularity)
1714 {
1715 	/* common policy */
1716 	dpolicy->type = discard_type;
1717 	dpolicy->sync = true;
1718 	dpolicy->granularity = granularity;
1719 
1720 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1721 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1722 
1723 	if (discard_type == DPOLICY_BG) {
1724 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1725 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1726 		dpolicy->io_aware = true;
1727 	} else if (discard_type == DPOLICY_FORCE) {
1728 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1729 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1730 		dpolicy->io_aware = true;
1731 	} else if (discard_type == DPOLICY_FSTRIM) {
1732 		dpolicy->io_aware = false;
1733 	} else if (discard_type == DPOLICY_UMOUNT) {
1734 		dpolicy->io_aware = false;
1735 	}
1736 }
1737 
1738 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1739 {
1740 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1741 	struct discard_cmd_control *dcc;
1742 	int err = 0, i;
1743 
1744 	if (SM_I(sbi)->dcc_info) {
1745 		dcc = SM_I(sbi)->dcc_info;
1746 		goto init_thread;
1747 	}
1748 
1749 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1750 	if (!dcc)
1751 		return -ENOMEM;
1752 
1753 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1754 	INIT_LIST_HEAD(&dcc->entry_list);
1755 	for (i = 0; i < MAX_PLIST_NUM; i++)
1756 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1757 	INIT_LIST_HEAD(&dcc->wait_list);
1758 	INIT_LIST_HEAD(&dcc->fstrim_list);
1759 	mutex_init(&dcc->cmd_lock);
1760 	atomic_set(&dcc->issued_discard, 0);
1761 	atomic_set(&dcc->issing_discard, 0);
1762 	atomic_set(&dcc->discard_cmd_cnt, 0);
1763 	dcc->nr_discards = 0;
1764 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1765 	dcc->undiscard_blks = 0;
1766 	dcc->root = RB_ROOT;
1767 
1768 	init_waitqueue_head(&dcc->discard_wait_queue);
1769 	SM_I(sbi)->dcc_info = dcc;
1770 init_thread:
1771 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1772 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1773 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1774 		err = PTR_ERR(dcc->f2fs_issue_discard);
1775 		kfree(dcc);
1776 		SM_I(sbi)->dcc_info = NULL;
1777 		return err;
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1784 {
1785 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1786 
1787 	if (!dcc)
1788 		return;
1789 
1790 	stop_discard_thread(sbi);
1791 
1792 	kfree(dcc);
1793 	SM_I(sbi)->dcc_info = NULL;
1794 }
1795 
1796 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1797 {
1798 	struct sit_info *sit_i = SIT_I(sbi);
1799 
1800 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1801 		sit_i->dirty_sentries++;
1802 		return false;
1803 	}
1804 
1805 	return true;
1806 }
1807 
1808 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1809 					unsigned int segno, int modified)
1810 {
1811 	struct seg_entry *se = get_seg_entry(sbi, segno);
1812 	se->type = type;
1813 	if (modified)
1814 		__mark_sit_entry_dirty(sbi, segno);
1815 }
1816 
1817 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1818 {
1819 	struct seg_entry *se;
1820 	unsigned int segno, offset;
1821 	long int new_vblocks;
1822 	bool exist;
1823 #ifdef CONFIG_F2FS_CHECK_FS
1824 	bool mir_exist;
1825 #endif
1826 
1827 	segno = GET_SEGNO(sbi, blkaddr);
1828 
1829 	se = get_seg_entry(sbi, segno);
1830 	new_vblocks = se->valid_blocks + del;
1831 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1832 
1833 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1834 				(new_vblocks > sbi->blocks_per_seg)));
1835 
1836 	se->valid_blocks = new_vblocks;
1837 	se->mtime = get_mtime(sbi);
1838 	SIT_I(sbi)->max_mtime = se->mtime;
1839 
1840 	/* Update valid block bitmap */
1841 	if (del > 0) {
1842 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1843 #ifdef CONFIG_F2FS_CHECK_FS
1844 		mir_exist = f2fs_test_and_set_bit(offset,
1845 						se->cur_valid_map_mir);
1846 		if (unlikely(exist != mir_exist)) {
1847 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1848 				"when setting bitmap, blk:%u, old bit:%d",
1849 				blkaddr, exist);
1850 			f2fs_bug_on(sbi, 1);
1851 		}
1852 #endif
1853 		if (unlikely(exist)) {
1854 			f2fs_msg(sbi->sb, KERN_ERR,
1855 				"Bitmap was wrongly set, blk:%u", blkaddr);
1856 			f2fs_bug_on(sbi, 1);
1857 			se->valid_blocks--;
1858 			del = 0;
1859 		}
1860 
1861 		if (f2fs_discard_en(sbi) &&
1862 			!f2fs_test_and_set_bit(offset, se->discard_map))
1863 			sbi->discard_blks--;
1864 
1865 		/* don't overwrite by SSR to keep node chain */
1866 		if (se->type == CURSEG_WARM_NODE) {
1867 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1868 				se->ckpt_valid_blocks++;
1869 		}
1870 	} else {
1871 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1872 #ifdef CONFIG_F2FS_CHECK_FS
1873 		mir_exist = f2fs_test_and_clear_bit(offset,
1874 						se->cur_valid_map_mir);
1875 		if (unlikely(exist != mir_exist)) {
1876 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1877 				"when clearing bitmap, blk:%u, old bit:%d",
1878 				blkaddr, exist);
1879 			f2fs_bug_on(sbi, 1);
1880 		}
1881 #endif
1882 		if (unlikely(!exist)) {
1883 			f2fs_msg(sbi->sb, KERN_ERR,
1884 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
1885 			f2fs_bug_on(sbi, 1);
1886 			se->valid_blocks++;
1887 			del = 0;
1888 		}
1889 
1890 		if (f2fs_discard_en(sbi) &&
1891 			f2fs_test_and_clear_bit(offset, se->discard_map))
1892 			sbi->discard_blks++;
1893 	}
1894 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1895 		se->ckpt_valid_blocks += del;
1896 
1897 	__mark_sit_entry_dirty(sbi, segno);
1898 
1899 	/* update total number of valid blocks to be written in ckpt area */
1900 	SIT_I(sbi)->written_valid_blocks += del;
1901 
1902 	if (sbi->segs_per_sec > 1)
1903 		get_sec_entry(sbi, segno)->valid_blocks += del;
1904 }
1905 
1906 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1907 {
1908 	unsigned int segno = GET_SEGNO(sbi, addr);
1909 	struct sit_info *sit_i = SIT_I(sbi);
1910 
1911 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1912 	if (addr == NEW_ADDR)
1913 		return;
1914 
1915 	/* add it into sit main buffer */
1916 	down_write(&sit_i->sentry_lock);
1917 
1918 	update_sit_entry(sbi, addr, -1);
1919 
1920 	/* add it into dirty seglist */
1921 	locate_dirty_segment(sbi, segno);
1922 
1923 	up_write(&sit_i->sentry_lock);
1924 }
1925 
1926 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1927 {
1928 	struct sit_info *sit_i = SIT_I(sbi);
1929 	unsigned int segno, offset;
1930 	struct seg_entry *se;
1931 	bool is_cp = false;
1932 
1933 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1934 		return true;
1935 
1936 	down_read(&sit_i->sentry_lock);
1937 
1938 	segno = GET_SEGNO(sbi, blkaddr);
1939 	se = get_seg_entry(sbi, segno);
1940 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1941 
1942 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1943 		is_cp = true;
1944 
1945 	up_read(&sit_i->sentry_lock);
1946 
1947 	return is_cp;
1948 }
1949 
1950 /*
1951  * This function should be resided under the curseg_mutex lock
1952  */
1953 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1954 					struct f2fs_summary *sum)
1955 {
1956 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1957 	void *addr = curseg->sum_blk;
1958 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1959 	memcpy(addr, sum, sizeof(struct f2fs_summary));
1960 }
1961 
1962 /*
1963  * Calculate the number of current summary pages for writing
1964  */
1965 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1966 {
1967 	int valid_sum_count = 0;
1968 	int i, sum_in_page;
1969 
1970 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1971 		if (sbi->ckpt->alloc_type[i] == SSR)
1972 			valid_sum_count += sbi->blocks_per_seg;
1973 		else {
1974 			if (for_ra)
1975 				valid_sum_count += le16_to_cpu(
1976 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1977 			else
1978 				valid_sum_count += curseg_blkoff(sbi, i);
1979 		}
1980 	}
1981 
1982 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1983 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1984 	if (valid_sum_count <= sum_in_page)
1985 		return 1;
1986 	else if ((valid_sum_count - sum_in_page) <=
1987 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1988 		return 2;
1989 	return 3;
1990 }
1991 
1992 /*
1993  * Caller should put this summary page
1994  */
1995 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1996 {
1997 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1998 }
1999 
2000 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2001 {
2002 	struct page *page = grab_meta_page(sbi, blk_addr);
2003 
2004 	memcpy(page_address(page), src, PAGE_SIZE);
2005 	set_page_dirty(page);
2006 	f2fs_put_page(page, 1);
2007 }
2008 
2009 static void write_sum_page(struct f2fs_sb_info *sbi,
2010 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2011 {
2012 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
2013 }
2014 
2015 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2016 						int type, block_t blk_addr)
2017 {
2018 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2019 	struct page *page = grab_meta_page(sbi, blk_addr);
2020 	struct f2fs_summary_block *src = curseg->sum_blk;
2021 	struct f2fs_summary_block *dst;
2022 
2023 	dst = (struct f2fs_summary_block *)page_address(page);
2024 
2025 	mutex_lock(&curseg->curseg_mutex);
2026 
2027 	down_read(&curseg->journal_rwsem);
2028 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2029 	up_read(&curseg->journal_rwsem);
2030 
2031 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2032 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2033 
2034 	mutex_unlock(&curseg->curseg_mutex);
2035 
2036 	set_page_dirty(page);
2037 	f2fs_put_page(page, 1);
2038 }
2039 
2040 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2041 {
2042 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2043 	unsigned int segno = curseg->segno + 1;
2044 	struct free_segmap_info *free_i = FREE_I(sbi);
2045 
2046 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2047 		return !test_bit(segno, free_i->free_segmap);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Find a new segment from the free segments bitmap to right order
2053  * This function should be returned with success, otherwise BUG
2054  */
2055 static void get_new_segment(struct f2fs_sb_info *sbi,
2056 			unsigned int *newseg, bool new_sec, int dir)
2057 {
2058 	struct free_segmap_info *free_i = FREE_I(sbi);
2059 	unsigned int segno, secno, zoneno;
2060 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2061 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2062 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2063 	unsigned int left_start = hint;
2064 	bool init = true;
2065 	int go_left = 0;
2066 	int i;
2067 
2068 	spin_lock(&free_i->segmap_lock);
2069 
2070 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2071 		segno = find_next_zero_bit(free_i->free_segmap,
2072 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2073 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2074 			goto got_it;
2075 	}
2076 find_other_zone:
2077 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2078 	if (secno >= MAIN_SECS(sbi)) {
2079 		if (dir == ALLOC_RIGHT) {
2080 			secno = find_next_zero_bit(free_i->free_secmap,
2081 							MAIN_SECS(sbi), 0);
2082 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2083 		} else {
2084 			go_left = 1;
2085 			left_start = hint - 1;
2086 		}
2087 	}
2088 	if (go_left == 0)
2089 		goto skip_left;
2090 
2091 	while (test_bit(left_start, free_i->free_secmap)) {
2092 		if (left_start > 0) {
2093 			left_start--;
2094 			continue;
2095 		}
2096 		left_start = find_next_zero_bit(free_i->free_secmap,
2097 							MAIN_SECS(sbi), 0);
2098 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2099 		break;
2100 	}
2101 	secno = left_start;
2102 skip_left:
2103 	segno = GET_SEG_FROM_SEC(sbi, secno);
2104 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2105 
2106 	/* give up on finding another zone */
2107 	if (!init)
2108 		goto got_it;
2109 	if (sbi->secs_per_zone == 1)
2110 		goto got_it;
2111 	if (zoneno == old_zoneno)
2112 		goto got_it;
2113 	if (dir == ALLOC_LEFT) {
2114 		if (!go_left && zoneno + 1 >= total_zones)
2115 			goto got_it;
2116 		if (go_left && zoneno == 0)
2117 			goto got_it;
2118 	}
2119 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2120 		if (CURSEG_I(sbi, i)->zone == zoneno)
2121 			break;
2122 
2123 	if (i < NR_CURSEG_TYPE) {
2124 		/* zone is in user, try another */
2125 		if (go_left)
2126 			hint = zoneno * sbi->secs_per_zone - 1;
2127 		else if (zoneno + 1 >= total_zones)
2128 			hint = 0;
2129 		else
2130 			hint = (zoneno + 1) * sbi->secs_per_zone;
2131 		init = false;
2132 		goto find_other_zone;
2133 	}
2134 got_it:
2135 	/* set it as dirty segment in free segmap */
2136 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2137 	__set_inuse(sbi, segno);
2138 	*newseg = segno;
2139 	spin_unlock(&free_i->segmap_lock);
2140 }
2141 
2142 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2143 {
2144 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2145 	struct summary_footer *sum_footer;
2146 
2147 	curseg->segno = curseg->next_segno;
2148 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2149 	curseg->next_blkoff = 0;
2150 	curseg->next_segno = NULL_SEGNO;
2151 
2152 	sum_footer = &(curseg->sum_blk->footer);
2153 	memset(sum_footer, 0, sizeof(struct summary_footer));
2154 	if (IS_DATASEG(type))
2155 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2156 	if (IS_NODESEG(type))
2157 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2158 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2159 }
2160 
2161 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2162 {
2163 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2164 	if (sbi->segs_per_sec != 1)
2165 		return CURSEG_I(sbi, type)->segno;
2166 
2167 	if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2168 		return 0;
2169 
2170 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2171 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2172 	return CURSEG_I(sbi, type)->segno;
2173 }
2174 
2175 /*
2176  * Allocate a current working segment.
2177  * This function always allocates a free segment in LFS manner.
2178  */
2179 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2180 {
2181 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2182 	unsigned int segno = curseg->segno;
2183 	int dir = ALLOC_LEFT;
2184 
2185 	write_sum_page(sbi, curseg->sum_blk,
2186 				GET_SUM_BLOCK(sbi, segno));
2187 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2188 		dir = ALLOC_RIGHT;
2189 
2190 	if (test_opt(sbi, NOHEAP))
2191 		dir = ALLOC_RIGHT;
2192 
2193 	segno = __get_next_segno(sbi, type);
2194 	get_new_segment(sbi, &segno, new_sec, dir);
2195 	curseg->next_segno = segno;
2196 	reset_curseg(sbi, type, 1);
2197 	curseg->alloc_type = LFS;
2198 }
2199 
2200 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2201 			struct curseg_info *seg, block_t start)
2202 {
2203 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2204 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2205 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2206 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2207 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2208 	int i, pos;
2209 
2210 	for (i = 0; i < entries; i++)
2211 		target_map[i] = ckpt_map[i] | cur_map[i];
2212 
2213 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2214 
2215 	seg->next_blkoff = pos;
2216 }
2217 
2218 /*
2219  * If a segment is written by LFS manner, next block offset is just obtained
2220  * by increasing the current block offset. However, if a segment is written by
2221  * SSR manner, next block offset obtained by calling __next_free_blkoff
2222  */
2223 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2224 				struct curseg_info *seg)
2225 {
2226 	if (seg->alloc_type == SSR)
2227 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2228 	else
2229 		seg->next_blkoff++;
2230 }
2231 
2232 /*
2233  * This function always allocates a used segment(from dirty seglist) by SSR
2234  * manner, so it should recover the existing segment information of valid blocks
2235  */
2236 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2237 {
2238 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2239 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2240 	unsigned int new_segno = curseg->next_segno;
2241 	struct f2fs_summary_block *sum_node;
2242 	struct page *sum_page;
2243 
2244 	write_sum_page(sbi, curseg->sum_blk,
2245 				GET_SUM_BLOCK(sbi, curseg->segno));
2246 	__set_test_and_inuse(sbi, new_segno);
2247 
2248 	mutex_lock(&dirty_i->seglist_lock);
2249 	__remove_dirty_segment(sbi, new_segno, PRE);
2250 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2251 	mutex_unlock(&dirty_i->seglist_lock);
2252 
2253 	reset_curseg(sbi, type, 1);
2254 	curseg->alloc_type = SSR;
2255 	__next_free_blkoff(sbi, curseg, 0);
2256 
2257 	sum_page = get_sum_page(sbi, new_segno);
2258 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2259 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2260 	f2fs_put_page(sum_page, 1);
2261 }
2262 
2263 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2264 {
2265 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2266 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2267 	unsigned segno = NULL_SEGNO;
2268 	int i, cnt;
2269 	bool reversed = false;
2270 
2271 	/* need_SSR() already forces to do this */
2272 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2273 		curseg->next_segno = segno;
2274 		return 1;
2275 	}
2276 
2277 	/* For node segments, let's do SSR more intensively */
2278 	if (IS_NODESEG(type)) {
2279 		if (type >= CURSEG_WARM_NODE) {
2280 			reversed = true;
2281 			i = CURSEG_COLD_NODE;
2282 		} else {
2283 			i = CURSEG_HOT_NODE;
2284 		}
2285 		cnt = NR_CURSEG_NODE_TYPE;
2286 	} else {
2287 		if (type >= CURSEG_WARM_DATA) {
2288 			reversed = true;
2289 			i = CURSEG_COLD_DATA;
2290 		} else {
2291 			i = CURSEG_HOT_DATA;
2292 		}
2293 		cnt = NR_CURSEG_DATA_TYPE;
2294 	}
2295 
2296 	for (; cnt-- > 0; reversed ? i-- : i++) {
2297 		if (i == type)
2298 			continue;
2299 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2300 			curseg->next_segno = segno;
2301 			return 1;
2302 		}
2303 	}
2304 	return 0;
2305 }
2306 
2307 /*
2308  * flush out current segment and replace it with new segment
2309  * This function should be returned with success, otherwise BUG
2310  */
2311 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2312 						int type, bool force)
2313 {
2314 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2315 
2316 	if (force)
2317 		new_curseg(sbi, type, true);
2318 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2319 					type == CURSEG_WARM_NODE)
2320 		new_curseg(sbi, type, false);
2321 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2322 		new_curseg(sbi, type, false);
2323 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2324 		change_curseg(sbi, type);
2325 	else
2326 		new_curseg(sbi, type, false);
2327 
2328 	stat_inc_seg_type(sbi, curseg);
2329 }
2330 
2331 void allocate_new_segments(struct f2fs_sb_info *sbi)
2332 {
2333 	struct curseg_info *curseg;
2334 	unsigned int old_segno;
2335 	int i;
2336 
2337 	down_write(&SIT_I(sbi)->sentry_lock);
2338 
2339 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2340 		curseg = CURSEG_I(sbi, i);
2341 		old_segno = curseg->segno;
2342 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2343 		locate_dirty_segment(sbi, old_segno);
2344 	}
2345 
2346 	up_write(&SIT_I(sbi)->sentry_lock);
2347 }
2348 
2349 static const struct segment_allocation default_salloc_ops = {
2350 	.allocate_segment = allocate_segment_by_default,
2351 };
2352 
2353 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2354 {
2355 	__u64 trim_start = cpc->trim_start;
2356 	bool has_candidate = false;
2357 
2358 	down_write(&SIT_I(sbi)->sentry_lock);
2359 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2360 		if (add_discard_addrs(sbi, cpc, true)) {
2361 			has_candidate = true;
2362 			break;
2363 		}
2364 	}
2365 	up_write(&SIT_I(sbi)->sentry_lock);
2366 
2367 	cpc->trim_start = trim_start;
2368 	return has_candidate;
2369 }
2370 
2371 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2372 {
2373 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2374 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2375 	unsigned int start_segno, end_segno, cur_segno;
2376 	block_t start_block, end_block;
2377 	struct cp_control cpc;
2378 	struct discard_policy dpolicy;
2379 	unsigned long long trimmed = 0;
2380 	int err = 0;
2381 
2382 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2383 		return -EINVAL;
2384 
2385 	if (end <= MAIN_BLKADDR(sbi))
2386 		goto out;
2387 
2388 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2389 		f2fs_msg(sbi->sb, KERN_WARNING,
2390 			"Found FS corruption, run fsck to fix.");
2391 		goto out;
2392 	}
2393 
2394 	/* start/end segment number in main_area */
2395 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2396 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2397 						GET_SEGNO(sbi, end);
2398 
2399 	cpc.reason = CP_DISCARD;
2400 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2401 
2402 	/* do checkpoint to issue discard commands safely */
2403 	for (cur_segno = start_segno; cur_segno <= end_segno;
2404 					cur_segno = cpc.trim_end + 1) {
2405 		cpc.trim_start = cur_segno;
2406 
2407 		if (sbi->discard_blks == 0)
2408 			break;
2409 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2410 			cpc.trim_end = end_segno;
2411 		else
2412 			cpc.trim_end = min_t(unsigned int,
2413 				rounddown(cur_segno +
2414 				BATCHED_TRIM_SEGMENTS(sbi),
2415 				sbi->segs_per_sec) - 1, end_segno);
2416 
2417 		mutex_lock(&sbi->gc_mutex);
2418 		err = write_checkpoint(sbi, &cpc);
2419 		mutex_unlock(&sbi->gc_mutex);
2420 		if (err)
2421 			break;
2422 
2423 		schedule();
2424 	}
2425 
2426 	start_block = START_BLOCK(sbi, start_segno);
2427 	end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2428 
2429 	init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2430 	__issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2431 	trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2432 					start_block, end_block);
2433 out:
2434 	range->len = F2FS_BLK_TO_BYTES(trimmed);
2435 	return err;
2436 }
2437 
2438 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2439 {
2440 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2441 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2442 		return true;
2443 	return false;
2444 }
2445 
2446 int rw_hint_to_seg_type(enum rw_hint hint)
2447 {
2448 	switch (hint) {
2449 	case WRITE_LIFE_SHORT:
2450 		return CURSEG_HOT_DATA;
2451 	case WRITE_LIFE_EXTREME:
2452 		return CURSEG_COLD_DATA;
2453 	default:
2454 		return CURSEG_WARM_DATA;
2455 	}
2456 }
2457 
2458 static int __get_segment_type_2(struct f2fs_io_info *fio)
2459 {
2460 	if (fio->type == DATA)
2461 		return CURSEG_HOT_DATA;
2462 	else
2463 		return CURSEG_HOT_NODE;
2464 }
2465 
2466 static int __get_segment_type_4(struct f2fs_io_info *fio)
2467 {
2468 	if (fio->type == DATA) {
2469 		struct inode *inode = fio->page->mapping->host;
2470 
2471 		if (S_ISDIR(inode->i_mode))
2472 			return CURSEG_HOT_DATA;
2473 		else
2474 			return CURSEG_COLD_DATA;
2475 	} else {
2476 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2477 			return CURSEG_WARM_NODE;
2478 		else
2479 			return CURSEG_COLD_NODE;
2480 	}
2481 }
2482 
2483 static int __get_segment_type_6(struct f2fs_io_info *fio)
2484 {
2485 	if (fio->type == DATA) {
2486 		struct inode *inode = fio->page->mapping->host;
2487 
2488 		if (is_cold_data(fio->page) || file_is_cold(inode))
2489 			return CURSEG_COLD_DATA;
2490 		if (is_inode_flag_set(inode, FI_HOT_DATA))
2491 			return CURSEG_HOT_DATA;
2492 		return rw_hint_to_seg_type(inode->i_write_hint);
2493 	} else {
2494 		if (IS_DNODE(fio->page))
2495 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2496 						CURSEG_HOT_NODE;
2497 		return CURSEG_COLD_NODE;
2498 	}
2499 }
2500 
2501 static int __get_segment_type(struct f2fs_io_info *fio)
2502 {
2503 	int type = 0;
2504 
2505 	switch (fio->sbi->active_logs) {
2506 	case 2:
2507 		type = __get_segment_type_2(fio);
2508 		break;
2509 	case 4:
2510 		type = __get_segment_type_4(fio);
2511 		break;
2512 	case 6:
2513 		type = __get_segment_type_6(fio);
2514 		break;
2515 	default:
2516 		f2fs_bug_on(fio->sbi, true);
2517 	}
2518 
2519 	if (IS_HOT(type))
2520 		fio->temp = HOT;
2521 	else if (IS_WARM(type))
2522 		fio->temp = WARM;
2523 	else
2524 		fio->temp = COLD;
2525 	return type;
2526 }
2527 
2528 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2529 		block_t old_blkaddr, block_t *new_blkaddr,
2530 		struct f2fs_summary *sum, int type,
2531 		struct f2fs_io_info *fio, bool add_list)
2532 {
2533 	struct sit_info *sit_i = SIT_I(sbi);
2534 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2535 
2536 	down_read(&SM_I(sbi)->curseg_lock);
2537 
2538 	mutex_lock(&curseg->curseg_mutex);
2539 	down_write(&sit_i->sentry_lock);
2540 
2541 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2542 
2543 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2544 
2545 	/*
2546 	 * __add_sum_entry should be resided under the curseg_mutex
2547 	 * because, this function updates a summary entry in the
2548 	 * current summary block.
2549 	 */
2550 	__add_sum_entry(sbi, type, sum);
2551 
2552 	__refresh_next_blkoff(sbi, curseg);
2553 
2554 	stat_inc_block_count(sbi, curseg);
2555 
2556 	/*
2557 	 * SIT information should be updated before segment allocation,
2558 	 * since SSR needs latest valid block information.
2559 	 */
2560 	update_sit_entry(sbi, *new_blkaddr, 1);
2561 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2562 		update_sit_entry(sbi, old_blkaddr, -1);
2563 
2564 	if (!__has_curseg_space(sbi, type))
2565 		sit_i->s_ops->allocate_segment(sbi, type, false);
2566 
2567 	/*
2568 	 * segment dirty status should be updated after segment allocation,
2569 	 * so we just need to update status only one time after previous
2570 	 * segment being closed.
2571 	 */
2572 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2573 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2574 
2575 	up_write(&sit_i->sentry_lock);
2576 
2577 	if (page && IS_NODESEG(type)) {
2578 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2579 
2580 		f2fs_inode_chksum_set(sbi, page);
2581 	}
2582 
2583 	if (add_list) {
2584 		struct f2fs_bio_info *io;
2585 
2586 		INIT_LIST_HEAD(&fio->list);
2587 		fio->in_list = true;
2588 		io = sbi->write_io[fio->type] + fio->temp;
2589 		spin_lock(&io->io_lock);
2590 		list_add_tail(&fio->list, &io->io_list);
2591 		spin_unlock(&io->io_lock);
2592 	}
2593 
2594 	mutex_unlock(&curseg->curseg_mutex);
2595 
2596 	up_read(&SM_I(sbi)->curseg_lock);
2597 }
2598 
2599 static void update_device_state(struct f2fs_io_info *fio)
2600 {
2601 	struct f2fs_sb_info *sbi = fio->sbi;
2602 	unsigned int devidx;
2603 
2604 	if (!sbi->s_ndevs)
2605 		return;
2606 
2607 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2608 
2609 	/* update device state for fsync */
2610 	set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2611 
2612 	/* update device state for checkpoint */
2613 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2614 		spin_lock(&sbi->dev_lock);
2615 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2616 		spin_unlock(&sbi->dev_lock);
2617 	}
2618 }
2619 
2620 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2621 {
2622 	int type = __get_segment_type(fio);
2623 	int err;
2624 
2625 reallocate:
2626 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2627 			&fio->new_blkaddr, sum, type, fio, true);
2628 
2629 	/* writeout dirty page into bdev */
2630 	err = f2fs_submit_page_write(fio);
2631 	if (err == -EAGAIN) {
2632 		fio->old_blkaddr = fio->new_blkaddr;
2633 		goto reallocate;
2634 	} else if (!err) {
2635 		update_device_state(fio);
2636 	}
2637 }
2638 
2639 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2640 					enum iostat_type io_type)
2641 {
2642 	struct f2fs_io_info fio = {
2643 		.sbi = sbi,
2644 		.type = META,
2645 		.op = REQ_OP_WRITE,
2646 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2647 		.old_blkaddr = page->index,
2648 		.new_blkaddr = page->index,
2649 		.page = page,
2650 		.encrypted_page = NULL,
2651 		.in_list = false,
2652 	};
2653 
2654 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2655 		fio.op_flags &= ~REQ_META;
2656 
2657 	set_page_writeback(page);
2658 	f2fs_submit_page_write(&fio);
2659 
2660 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2661 }
2662 
2663 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2664 {
2665 	struct f2fs_summary sum;
2666 
2667 	set_summary(&sum, nid, 0, 0);
2668 	do_write_page(&sum, fio);
2669 
2670 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2671 }
2672 
2673 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2674 {
2675 	struct f2fs_sb_info *sbi = fio->sbi;
2676 	struct f2fs_summary sum;
2677 	struct node_info ni;
2678 
2679 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2680 	get_node_info(sbi, dn->nid, &ni);
2681 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2682 	do_write_page(&sum, fio);
2683 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2684 
2685 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2686 }
2687 
2688 int rewrite_data_page(struct f2fs_io_info *fio)
2689 {
2690 	int err;
2691 
2692 	fio->new_blkaddr = fio->old_blkaddr;
2693 	stat_inc_inplace_blocks(fio->sbi);
2694 
2695 	err = f2fs_submit_page_bio(fio);
2696 	if (!err)
2697 		update_device_state(fio);
2698 
2699 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2700 
2701 	return err;
2702 }
2703 
2704 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2705 						unsigned int segno)
2706 {
2707 	int i;
2708 
2709 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2710 		if (CURSEG_I(sbi, i)->segno == segno)
2711 			break;
2712 	}
2713 	return i;
2714 }
2715 
2716 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2717 				block_t old_blkaddr, block_t new_blkaddr,
2718 				bool recover_curseg, bool recover_newaddr)
2719 {
2720 	struct sit_info *sit_i = SIT_I(sbi);
2721 	struct curseg_info *curseg;
2722 	unsigned int segno, old_cursegno;
2723 	struct seg_entry *se;
2724 	int type;
2725 	unsigned short old_blkoff;
2726 
2727 	segno = GET_SEGNO(sbi, new_blkaddr);
2728 	se = get_seg_entry(sbi, segno);
2729 	type = se->type;
2730 
2731 	down_write(&SM_I(sbi)->curseg_lock);
2732 
2733 	if (!recover_curseg) {
2734 		/* for recovery flow */
2735 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2736 			if (old_blkaddr == NULL_ADDR)
2737 				type = CURSEG_COLD_DATA;
2738 			else
2739 				type = CURSEG_WARM_DATA;
2740 		}
2741 	} else {
2742 		if (IS_CURSEG(sbi, segno)) {
2743 			/* se->type is volatile as SSR allocation */
2744 			type = __f2fs_get_curseg(sbi, segno);
2745 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2746 		} else {
2747 			type = CURSEG_WARM_DATA;
2748 		}
2749 	}
2750 
2751 	f2fs_bug_on(sbi, !IS_DATASEG(type));
2752 	curseg = CURSEG_I(sbi, type);
2753 
2754 	mutex_lock(&curseg->curseg_mutex);
2755 	down_write(&sit_i->sentry_lock);
2756 
2757 	old_cursegno = curseg->segno;
2758 	old_blkoff = curseg->next_blkoff;
2759 
2760 	/* change the current segment */
2761 	if (segno != curseg->segno) {
2762 		curseg->next_segno = segno;
2763 		change_curseg(sbi, type);
2764 	}
2765 
2766 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2767 	__add_sum_entry(sbi, type, sum);
2768 
2769 	if (!recover_curseg || recover_newaddr)
2770 		update_sit_entry(sbi, new_blkaddr, 1);
2771 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2772 		update_sit_entry(sbi, old_blkaddr, -1);
2773 
2774 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2775 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2776 
2777 	locate_dirty_segment(sbi, old_cursegno);
2778 
2779 	if (recover_curseg) {
2780 		if (old_cursegno != curseg->segno) {
2781 			curseg->next_segno = old_cursegno;
2782 			change_curseg(sbi, type);
2783 		}
2784 		curseg->next_blkoff = old_blkoff;
2785 	}
2786 
2787 	up_write(&sit_i->sentry_lock);
2788 	mutex_unlock(&curseg->curseg_mutex);
2789 	up_write(&SM_I(sbi)->curseg_lock);
2790 }
2791 
2792 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2793 				block_t old_addr, block_t new_addr,
2794 				unsigned char version, bool recover_curseg,
2795 				bool recover_newaddr)
2796 {
2797 	struct f2fs_summary sum;
2798 
2799 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2800 
2801 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2802 					recover_curseg, recover_newaddr);
2803 
2804 	f2fs_update_data_blkaddr(dn, new_addr);
2805 }
2806 
2807 void f2fs_wait_on_page_writeback(struct page *page,
2808 				enum page_type type, bool ordered)
2809 {
2810 	if (PageWriteback(page)) {
2811 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2812 
2813 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2814 						0, page->index, type);
2815 		if (ordered)
2816 			wait_on_page_writeback(page);
2817 		else
2818 			wait_for_stable_page(page);
2819 	}
2820 }
2821 
2822 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2823 {
2824 	struct page *cpage;
2825 
2826 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2827 		return;
2828 
2829 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2830 	if (cpage) {
2831 		f2fs_wait_on_page_writeback(cpage, DATA, true);
2832 		f2fs_put_page(cpage, 1);
2833 	}
2834 }
2835 
2836 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2837 {
2838 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2839 	struct curseg_info *seg_i;
2840 	unsigned char *kaddr;
2841 	struct page *page;
2842 	block_t start;
2843 	int i, j, offset;
2844 
2845 	start = start_sum_block(sbi);
2846 
2847 	page = get_meta_page(sbi, start++);
2848 	kaddr = (unsigned char *)page_address(page);
2849 
2850 	/* Step 1: restore nat cache */
2851 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2852 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2853 
2854 	/* Step 2: restore sit cache */
2855 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2856 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2857 	offset = 2 * SUM_JOURNAL_SIZE;
2858 
2859 	/* Step 3: restore summary entries */
2860 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2861 		unsigned short blk_off;
2862 		unsigned int segno;
2863 
2864 		seg_i = CURSEG_I(sbi, i);
2865 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2866 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2867 		seg_i->next_segno = segno;
2868 		reset_curseg(sbi, i, 0);
2869 		seg_i->alloc_type = ckpt->alloc_type[i];
2870 		seg_i->next_blkoff = blk_off;
2871 
2872 		if (seg_i->alloc_type == SSR)
2873 			blk_off = sbi->blocks_per_seg;
2874 
2875 		for (j = 0; j < blk_off; j++) {
2876 			struct f2fs_summary *s;
2877 			s = (struct f2fs_summary *)(kaddr + offset);
2878 			seg_i->sum_blk->entries[j] = *s;
2879 			offset += SUMMARY_SIZE;
2880 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2881 						SUM_FOOTER_SIZE)
2882 				continue;
2883 
2884 			f2fs_put_page(page, 1);
2885 			page = NULL;
2886 
2887 			page = get_meta_page(sbi, start++);
2888 			kaddr = (unsigned char *)page_address(page);
2889 			offset = 0;
2890 		}
2891 	}
2892 	f2fs_put_page(page, 1);
2893 }
2894 
2895 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2896 {
2897 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2898 	struct f2fs_summary_block *sum;
2899 	struct curseg_info *curseg;
2900 	struct page *new;
2901 	unsigned short blk_off;
2902 	unsigned int segno = 0;
2903 	block_t blk_addr = 0;
2904 
2905 	/* get segment number and block addr */
2906 	if (IS_DATASEG(type)) {
2907 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2908 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2909 							CURSEG_HOT_DATA]);
2910 		if (__exist_node_summaries(sbi))
2911 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2912 		else
2913 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2914 	} else {
2915 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
2916 							CURSEG_HOT_NODE]);
2917 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2918 							CURSEG_HOT_NODE]);
2919 		if (__exist_node_summaries(sbi))
2920 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2921 							type - CURSEG_HOT_NODE);
2922 		else
2923 			blk_addr = GET_SUM_BLOCK(sbi, segno);
2924 	}
2925 
2926 	new = get_meta_page(sbi, blk_addr);
2927 	sum = (struct f2fs_summary_block *)page_address(new);
2928 
2929 	if (IS_NODESEG(type)) {
2930 		if (__exist_node_summaries(sbi)) {
2931 			struct f2fs_summary *ns = &sum->entries[0];
2932 			int i;
2933 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2934 				ns->version = 0;
2935 				ns->ofs_in_node = 0;
2936 			}
2937 		} else {
2938 			restore_node_summary(sbi, segno, sum);
2939 		}
2940 	}
2941 
2942 	/* set uncompleted segment to curseg */
2943 	curseg = CURSEG_I(sbi, type);
2944 	mutex_lock(&curseg->curseg_mutex);
2945 
2946 	/* update journal info */
2947 	down_write(&curseg->journal_rwsem);
2948 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2949 	up_write(&curseg->journal_rwsem);
2950 
2951 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2952 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2953 	curseg->next_segno = segno;
2954 	reset_curseg(sbi, type, 0);
2955 	curseg->alloc_type = ckpt->alloc_type[type];
2956 	curseg->next_blkoff = blk_off;
2957 	mutex_unlock(&curseg->curseg_mutex);
2958 	f2fs_put_page(new, 1);
2959 	return 0;
2960 }
2961 
2962 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2963 {
2964 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2965 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2966 	int type = CURSEG_HOT_DATA;
2967 	int err;
2968 
2969 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2970 		int npages = npages_for_summary_flush(sbi, true);
2971 
2972 		if (npages >= 2)
2973 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
2974 							META_CP, true);
2975 
2976 		/* restore for compacted data summary */
2977 		read_compacted_summaries(sbi);
2978 		type = CURSEG_HOT_NODE;
2979 	}
2980 
2981 	if (__exist_node_summaries(sbi))
2982 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2983 					NR_CURSEG_TYPE - type, META_CP, true);
2984 
2985 	for (; type <= CURSEG_COLD_NODE; type++) {
2986 		err = read_normal_summaries(sbi, type);
2987 		if (err)
2988 			return err;
2989 	}
2990 
2991 	/* sanity check for summary blocks */
2992 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2993 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2994 		return -EINVAL;
2995 
2996 	return 0;
2997 }
2998 
2999 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3000 {
3001 	struct page *page;
3002 	unsigned char *kaddr;
3003 	struct f2fs_summary *summary;
3004 	struct curseg_info *seg_i;
3005 	int written_size = 0;
3006 	int i, j;
3007 
3008 	page = grab_meta_page(sbi, blkaddr++);
3009 	kaddr = (unsigned char *)page_address(page);
3010 
3011 	/* Step 1: write nat cache */
3012 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3013 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3014 	written_size += SUM_JOURNAL_SIZE;
3015 
3016 	/* Step 2: write sit cache */
3017 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3018 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3019 	written_size += SUM_JOURNAL_SIZE;
3020 
3021 	/* Step 3: write summary entries */
3022 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3023 		unsigned short blkoff;
3024 		seg_i = CURSEG_I(sbi, i);
3025 		if (sbi->ckpt->alloc_type[i] == SSR)
3026 			blkoff = sbi->blocks_per_seg;
3027 		else
3028 			blkoff = curseg_blkoff(sbi, i);
3029 
3030 		for (j = 0; j < blkoff; j++) {
3031 			if (!page) {
3032 				page = grab_meta_page(sbi, blkaddr++);
3033 				kaddr = (unsigned char *)page_address(page);
3034 				written_size = 0;
3035 			}
3036 			summary = (struct f2fs_summary *)(kaddr + written_size);
3037 			*summary = seg_i->sum_blk->entries[j];
3038 			written_size += SUMMARY_SIZE;
3039 
3040 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3041 							SUM_FOOTER_SIZE)
3042 				continue;
3043 
3044 			set_page_dirty(page);
3045 			f2fs_put_page(page, 1);
3046 			page = NULL;
3047 		}
3048 	}
3049 	if (page) {
3050 		set_page_dirty(page);
3051 		f2fs_put_page(page, 1);
3052 	}
3053 }
3054 
3055 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3056 					block_t blkaddr, int type)
3057 {
3058 	int i, end;
3059 	if (IS_DATASEG(type))
3060 		end = type + NR_CURSEG_DATA_TYPE;
3061 	else
3062 		end = type + NR_CURSEG_NODE_TYPE;
3063 
3064 	for (i = type; i < end; i++)
3065 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3066 }
3067 
3068 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3069 {
3070 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3071 		write_compacted_summaries(sbi, start_blk);
3072 	else
3073 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3074 }
3075 
3076 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3077 {
3078 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3079 }
3080 
3081 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3082 					unsigned int val, int alloc)
3083 {
3084 	int i;
3085 
3086 	if (type == NAT_JOURNAL) {
3087 		for (i = 0; i < nats_in_cursum(journal); i++) {
3088 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3089 				return i;
3090 		}
3091 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3092 			return update_nats_in_cursum(journal, 1);
3093 	} else if (type == SIT_JOURNAL) {
3094 		for (i = 0; i < sits_in_cursum(journal); i++)
3095 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3096 				return i;
3097 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3098 			return update_sits_in_cursum(journal, 1);
3099 	}
3100 	return -1;
3101 }
3102 
3103 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3104 					unsigned int segno)
3105 {
3106 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
3107 }
3108 
3109 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3110 					unsigned int start)
3111 {
3112 	struct sit_info *sit_i = SIT_I(sbi);
3113 	struct page *page;
3114 	pgoff_t src_off, dst_off;
3115 
3116 	src_off = current_sit_addr(sbi, start);
3117 	dst_off = next_sit_addr(sbi, src_off);
3118 
3119 	page = grab_meta_page(sbi, dst_off);
3120 	seg_info_to_sit_page(sbi, page, start);
3121 
3122 	set_page_dirty(page);
3123 	set_to_next_sit(sit_i, start);
3124 
3125 	return page;
3126 }
3127 
3128 static struct sit_entry_set *grab_sit_entry_set(void)
3129 {
3130 	struct sit_entry_set *ses =
3131 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3132 
3133 	ses->entry_cnt = 0;
3134 	INIT_LIST_HEAD(&ses->set_list);
3135 	return ses;
3136 }
3137 
3138 static void release_sit_entry_set(struct sit_entry_set *ses)
3139 {
3140 	list_del(&ses->set_list);
3141 	kmem_cache_free(sit_entry_set_slab, ses);
3142 }
3143 
3144 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3145 						struct list_head *head)
3146 {
3147 	struct sit_entry_set *next = ses;
3148 
3149 	if (list_is_last(&ses->set_list, head))
3150 		return;
3151 
3152 	list_for_each_entry_continue(next, head, set_list)
3153 		if (ses->entry_cnt <= next->entry_cnt)
3154 			break;
3155 
3156 	list_move_tail(&ses->set_list, &next->set_list);
3157 }
3158 
3159 static void add_sit_entry(unsigned int segno, struct list_head *head)
3160 {
3161 	struct sit_entry_set *ses;
3162 	unsigned int start_segno = START_SEGNO(segno);
3163 
3164 	list_for_each_entry(ses, head, set_list) {
3165 		if (ses->start_segno == start_segno) {
3166 			ses->entry_cnt++;
3167 			adjust_sit_entry_set(ses, head);
3168 			return;
3169 		}
3170 	}
3171 
3172 	ses = grab_sit_entry_set();
3173 
3174 	ses->start_segno = start_segno;
3175 	ses->entry_cnt++;
3176 	list_add(&ses->set_list, head);
3177 }
3178 
3179 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3180 {
3181 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3182 	struct list_head *set_list = &sm_info->sit_entry_set;
3183 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3184 	unsigned int segno;
3185 
3186 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3187 		add_sit_entry(segno, set_list);
3188 }
3189 
3190 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3191 {
3192 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3193 	struct f2fs_journal *journal = curseg->journal;
3194 	int i;
3195 
3196 	down_write(&curseg->journal_rwsem);
3197 	for (i = 0; i < sits_in_cursum(journal); i++) {
3198 		unsigned int segno;
3199 		bool dirtied;
3200 
3201 		segno = le32_to_cpu(segno_in_journal(journal, i));
3202 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3203 
3204 		if (!dirtied)
3205 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3206 	}
3207 	update_sits_in_cursum(journal, -i);
3208 	up_write(&curseg->journal_rwsem);
3209 }
3210 
3211 /*
3212  * CP calls this function, which flushes SIT entries including sit_journal,
3213  * and moves prefree segs to free segs.
3214  */
3215 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3216 {
3217 	struct sit_info *sit_i = SIT_I(sbi);
3218 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3219 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3220 	struct f2fs_journal *journal = curseg->journal;
3221 	struct sit_entry_set *ses, *tmp;
3222 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3223 	bool to_journal = true;
3224 	struct seg_entry *se;
3225 
3226 	down_write(&sit_i->sentry_lock);
3227 
3228 	if (!sit_i->dirty_sentries)
3229 		goto out;
3230 
3231 	/*
3232 	 * add and account sit entries of dirty bitmap in sit entry
3233 	 * set temporarily
3234 	 */
3235 	add_sits_in_set(sbi);
3236 
3237 	/*
3238 	 * if there are no enough space in journal to store dirty sit
3239 	 * entries, remove all entries from journal and add and account
3240 	 * them in sit entry set.
3241 	 */
3242 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3243 		remove_sits_in_journal(sbi);
3244 
3245 	/*
3246 	 * there are two steps to flush sit entries:
3247 	 * #1, flush sit entries to journal in current cold data summary block.
3248 	 * #2, flush sit entries to sit page.
3249 	 */
3250 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3251 		struct page *page = NULL;
3252 		struct f2fs_sit_block *raw_sit = NULL;
3253 		unsigned int start_segno = ses->start_segno;
3254 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3255 						(unsigned long)MAIN_SEGS(sbi));
3256 		unsigned int segno = start_segno;
3257 
3258 		if (to_journal &&
3259 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3260 			to_journal = false;
3261 
3262 		if (to_journal) {
3263 			down_write(&curseg->journal_rwsem);
3264 		} else {
3265 			page = get_next_sit_page(sbi, start_segno);
3266 			raw_sit = page_address(page);
3267 		}
3268 
3269 		/* flush dirty sit entries in region of current sit set */
3270 		for_each_set_bit_from(segno, bitmap, end) {
3271 			int offset, sit_offset;
3272 
3273 			se = get_seg_entry(sbi, segno);
3274 
3275 			/* add discard candidates */
3276 			if (!(cpc->reason & CP_DISCARD)) {
3277 				cpc->trim_start = segno;
3278 				add_discard_addrs(sbi, cpc, false);
3279 			}
3280 
3281 			if (to_journal) {
3282 				offset = lookup_journal_in_cursum(journal,
3283 							SIT_JOURNAL, segno, 1);
3284 				f2fs_bug_on(sbi, offset < 0);
3285 				segno_in_journal(journal, offset) =
3286 							cpu_to_le32(segno);
3287 				seg_info_to_raw_sit(se,
3288 					&sit_in_journal(journal, offset));
3289 			} else {
3290 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3291 				seg_info_to_raw_sit(se,
3292 						&raw_sit->entries[sit_offset]);
3293 			}
3294 
3295 			__clear_bit(segno, bitmap);
3296 			sit_i->dirty_sentries--;
3297 			ses->entry_cnt--;
3298 		}
3299 
3300 		if (to_journal)
3301 			up_write(&curseg->journal_rwsem);
3302 		else
3303 			f2fs_put_page(page, 1);
3304 
3305 		f2fs_bug_on(sbi, ses->entry_cnt);
3306 		release_sit_entry_set(ses);
3307 	}
3308 
3309 	f2fs_bug_on(sbi, !list_empty(head));
3310 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3311 out:
3312 	if (cpc->reason & CP_DISCARD) {
3313 		__u64 trim_start = cpc->trim_start;
3314 
3315 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3316 			add_discard_addrs(sbi, cpc, false);
3317 
3318 		cpc->trim_start = trim_start;
3319 	}
3320 	up_write(&sit_i->sentry_lock);
3321 
3322 	set_prefree_as_free_segments(sbi);
3323 }
3324 
3325 static int build_sit_info(struct f2fs_sb_info *sbi)
3326 {
3327 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3328 	struct sit_info *sit_i;
3329 	unsigned int sit_segs, start;
3330 	char *src_bitmap;
3331 	unsigned int bitmap_size;
3332 
3333 	/* allocate memory for SIT information */
3334 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3335 	if (!sit_i)
3336 		return -ENOMEM;
3337 
3338 	SM_I(sbi)->sit_info = sit_i;
3339 
3340 	sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3341 					sizeof(struct seg_entry), GFP_KERNEL);
3342 	if (!sit_i->sentries)
3343 		return -ENOMEM;
3344 
3345 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3346 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3347 								GFP_KERNEL);
3348 	if (!sit_i->dirty_sentries_bitmap)
3349 		return -ENOMEM;
3350 
3351 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3352 		sit_i->sentries[start].cur_valid_map
3353 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3354 		sit_i->sentries[start].ckpt_valid_map
3355 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3356 		if (!sit_i->sentries[start].cur_valid_map ||
3357 				!sit_i->sentries[start].ckpt_valid_map)
3358 			return -ENOMEM;
3359 
3360 #ifdef CONFIG_F2FS_CHECK_FS
3361 		sit_i->sentries[start].cur_valid_map_mir
3362 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3363 		if (!sit_i->sentries[start].cur_valid_map_mir)
3364 			return -ENOMEM;
3365 #endif
3366 
3367 		if (f2fs_discard_en(sbi)) {
3368 			sit_i->sentries[start].discard_map
3369 				= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3370 								GFP_KERNEL);
3371 			if (!sit_i->sentries[start].discard_map)
3372 				return -ENOMEM;
3373 		}
3374 	}
3375 
3376 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3377 	if (!sit_i->tmp_map)
3378 		return -ENOMEM;
3379 
3380 	if (sbi->segs_per_sec > 1) {
3381 		sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3382 					sizeof(struct sec_entry), GFP_KERNEL);
3383 		if (!sit_i->sec_entries)
3384 			return -ENOMEM;
3385 	}
3386 
3387 	/* get information related with SIT */
3388 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3389 
3390 	/* setup SIT bitmap from ckeckpoint pack */
3391 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3392 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3393 
3394 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3395 	if (!sit_i->sit_bitmap)
3396 		return -ENOMEM;
3397 
3398 #ifdef CONFIG_F2FS_CHECK_FS
3399 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3400 	if (!sit_i->sit_bitmap_mir)
3401 		return -ENOMEM;
3402 #endif
3403 
3404 	/* init SIT information */
3405 	sit_i->s_ops = &default_salloc_ops;
3406 
3407 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3408 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3409 	sit_i->written_valid_blocks = 0;
3410 	sit_i->bitmap_size = bitmap_size;
3411 	sit_i->dirty_sentries = 0;
3412 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3413 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3414 	sit_i->mounted_time = ktime_get_real_seconds();
3415 	init_rwsem(&sit_i->sentry_lock);
3416 	return 0;
3417 }
3418 
3419 static int build_free_segmap(struct f2fs_sb_info *sbi)
3420 {
3421 	struct free_segmap_info *free_i;
3422 	unsigned int bitmap_size, sec_bitmap_size;
3423 
3424 	/* allocate memory for free segmap information */
3425 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3426 	if (!free_i)
3427 		return -ENOMEM;
3428 
3429 	SM_I(sbi)->free_info = free_i;
3430 
3431 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3432 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3433 	if (!free_i->free_segmap)
3434 		return -ENOMEM;
3435 
3436 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3437 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3438 	if (!free_i->free_secmap)
3439 		return -ENOMEM;
3440 
3441 	/* set all segments as dirty temporarily */
3442 	memset(free_i->free_segmap, 0xff, bitmap_size);
3443 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3444 
3445 	/* init free segmap information */
3446 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3447 	free_i->free_segments = 0;
3448 	free_i->free_sections = 0;
3449 	spin_lock_init(&free_i->segmap_lock);
3450 	return 0;
3451 }
3452 
3453 static int build_curseg(struct f2fs_sb_info *sbi)
3454 {
3455 	struct curseg_info *array;
3456 	int i;
3457 
3458 	array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3459 	if (!array)
3460 		return -ENOMEM;
3461 
3462 	SM_I(sbi)->curseg_array = array;
3463 
3464 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3465 		mutex_init(&array[i].curseg_mutex);
3466 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3467 		if (!array[i].sum_blk)
3468 			return -ENOMEM;
3469 		init_rwsem(&array[i].journal_rwsem);
3470 		array[i].journal = f2fs_kzalloc(sbi,
3471 				sizeof(struct f2fs_journal), GFP_KERNEL);
3472 		if (!array[i].journal)
3473 			return -ENOMEM;
3474 		array[i].segno = NULL_SEGNO;
3475 		array[i].next_blkoff = 0;
3476 	}
3477 	return restore_curseg_summaries(sbi);
3478 }
3479 
3480 static int build_sit_entries(struct f2fs_sb_info *sbi)
3481 {
3482 	struct sit_info *sit_i = SIT_I(sbi);
3483 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3484 	struct f2fs_journal *journal = curseg->journal;
3485 	struct seg_entry *se;
3486 	struct f2fs_sit_entry sit;
3487 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
3488 	unsigned int i, start, end;
3489 	unsigned int readed, start_blk = 0;
3490 	int err = 0;
3491 
3492 	do {
3493 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3494 							META_SIT, true);
3495 
3496 		start = start_blk * sit_i->sents_per_block;
3497 		end = (start_blk + readed) * sit_i->sents_per_block;
3498 
3499 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
3500 			struct f2fs_sit_block *sit_blk;
3501 			struct page *page;
3502 
3503 			se = &sit_i->sentries[start];
3504 			page = get_current_sit_page(sbi, start);
3505 			sit_blk = (struct f2fs_sit_block *)page_address(page);
3506 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3507 			f2fs_put_page(page, 1);
3508 
3509 			err = check_block_count(sbi, start, &sit);
3510 			if (err)
3511 				return err;
3512 			seg_info_from_raw_sit(se, &sit);
3513 
3514 			/* build discard map only one time */
3515 			if (f2fs_discard_en(sbi)) {
3516 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3517 					memset(se->discard_map, 0xff,
3518 						SIT_VBLOCK_MAP_SIZE);
3519 				} else {
3520 					memcpy(se->discard_map,
3521 						se->cur_valid_map,
3522 						SIT_VBLOCK_MAP_SIZE);
3523 					sbi->discard_blks +=
3524 						sbi->blocks_per_seg -
3525 						se->valid_blocks;
3526 				}
3527 			}
3528 
3529 			if (sbi->segs_per_sec > 1)
3530 				get_sec_entry(sbi, start)->valid_blocks +=
3531 							se->valid_blocks;
3532 		}
3533 		start_blk += readed;
3534 	} while (start_blk < sit_blk_cnt);
3535 
3536 	down_read(&curseg->journal_rwsem);
3537 	for (i = 0; i < sits_in_cursum(journal); i++) {
3538 		unsigned int old_valid_blocks;
3539 
3540 		start = le32_to_cpu(segno_in_journal(journal, i));
3541 		se = &sit_i->sentries[start];
3542 		sit = sit_in_journal(journal, i);
3543 
3544 		old_valid_blocks = se->valid_blocks;
3545 
3546 		err = check_block_count(sbi, start, &sit);
3547 		if (err)
3548 			break;
3549 		seg_info_from_raw_sit(se, &sit);
3550 
3551 		if (f2fs_discard_en(sbi)) {
3552 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3553 				memset(se->discard_map, 0xff,
3554 							SIT_VBLOCK_MAP_SIZE);
3555 			} else {
3556 				memcpy(se->discard_map, se->cur_valid_map,
3557 							SIT_VBLOCK_MAP_SIZE);
3558 				sbi->discard_blks += old_valid_blocks -
3559 							se->valid_blocks;
3560 			}
3561 		}
3562 
3563 		if (sbi->segs_per_sec > 1)
3564 			get_sec_entry(sbi, start)->valid_blocks +=
3565 				se->valid_blocks - old_valid_blocks;
3566 	}
3567 	up_read(&curseg->journal_rwsem);
3568 	return err;
3569 }
3570 
3571 static void init_free_segmap(struct f2fs_sb_info *sbi)
3572 {
3573 	unsigned int start;
3574 	int type;
3575 
3576 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3577 		struct seg_entry *sentry = get_seg_entry(sbi, start);
3578 		if (!sentry->valid_blocks)
3579 			__set_free(sbi, start);
3580 		else
3581 			SIT_I(sbi)->written_valid_blocks +=
3582 						sentry->valid_blocks;
3583 	}
3584 
3585 	/* set use the current segments */
3586 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3587 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3588 		__set_test_and_inuse(sbi, curseg_t->segno);
3589 	}
3590 }
3591 
3592 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3593 {
3594 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3595 	struct free_segmap_info *free_i = FREE_I(sbi);
3596 	unsigned int segno = 0, offset = 0;
3597 	unsigned short valid_blocks;
3598 
3599 	while (1) {
3600 		/* find dirty segment based on free segmap */
3601 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3602 		if (segno >= MAIN_SEGS(sbi))
3603 			break;
3604 		offset = segno + 1;
3605 		valid_blocks = get_valid_blocks(sbi, segno, false);
3606 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3607 			continue;
3608 		if (valid_blocks > sbi->blocks_per_seg) {
3609 			f2fs_bug_on(sbi, 1);
3610 			continue;
3611 		}
3612 		mutex_lock(&dirty_i->seglist_lock);
3613 		__locate_dirty_segment(sbi, segno, DIRTY);
3614 		mutex_unlock(&dirty_i->seglist_lock);
3615 	}
3616 }
3617 
3618 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3619 {
3620 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3621 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3622 
3623 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3624 	if (!dirty_i->victim_secmap)
3625 		return -ENOMEM;
3626 	return 0;
3627 }
3628 
3629 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3630 {
3631 	struct dirty_seglist_info *dirty_i;
3632 	unsigned int bitmap_size, i;
3633 
3634 	/* allocate memory for dirty segments list information */
3635 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3636 								GFP_KERNEL);
3637 	if (!dirty_i)
3638 		return -ENOMEM;
3639 
3640 	SM_I(sbi)->dirty_info = dirty_i;
3641 	mutex_init(&dirty_i->seglist_lock);
3642 
3643 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3644 
3645 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
3646 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3647 								GFP_KERNEL);
3648 		if (!dirty_i->dirty_segmap[i])
3649 			return -ENOMEM;
3650 	}
3651 
3652 	init_dirty_segmap(sbi);
3653 	return init_victim_secmap(sbi);
3654 }
3655 
3656 /*
3657  * Update min, max modified time for cost-benefit GC algorithm
3658  */
3659 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3660 {
3661 	struct sit_info *sit_i = SIT_I(sbi);
3662 	unsigned int segno;
3663 
3664 	down_write(&sit_i->sentry_lock);
3665 
3666 	sit_i->min_mtime = LLONG_MAX;
3667 
3668 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3669 		unsigned int i;
3670 		unsigned long long mtime = 0;
3671 
3672 		for (i = 0; i < sbi->segs_per_sec; i++)
3673 			mtime += get_seg_entry(sbi, segno + i)->mtime;
3674 
3675 		mtime = div_u64(mtime, sbi->segs_per_sec);
3676 
3677 		if (sit_i->min_mtime > mtime)
3678 			sit_i->min_mtime = mtime;
3679 	}
3680 	sit_i->max_mtime = get_mtime(sbi);
3681 	up_write(&sit_i->sentry_lock);
3682 }
3683 
3684 int build_segment_manager(struct f2fs_sb_info *sbi)
3685 {
3686 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3687 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3688 	struct f2fs_sm_info *sm_info;
3689 	int err;
3690 
3691 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3692 	if (!sm_info)
3693 		return -ENOMEM;
3694 
3695 	/* init sm info */
3696 	sbi->sm_info = sm_info;
3697 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3698 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3699 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3700 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3701 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3702 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3703 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3704 	sm_info->rec_prefree_segments = sm_info->main_segments *
3705 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3706 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3707 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3708 
3709 	if (!test_opt(sbi, LFS))
3710 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3711 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3712 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3713 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3714 	sm_info->min_ssr_sections = reserved_sections(sbi);
3715 
3716 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3717 
3718 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
3719 
3720 	init_rwsem(&sm_info->curseg_lock);
3721 
3722 	if (!f2fs_readonly(sbi->sb)) {
3723 		err = create_flush_cmd_control(sbi);
3724 		if (err)
3725 			return err;
3726 	}
3727 
3728 	err = create_discard_cmd_control(sbi);
3729 	if (err)
3730 		return err;
3731 
3732 	err = build_sit_info(sbi);
3733 	if (err)
3734 		return err;
3735 	err = build_free_segmap(sbi);
3736 	if (err)
3737 		return err;
3738 	err = build_curseg(sbi);
3739 	if (err)
3740 		return err;
3741 
3742 	/* reinit free segmap based on SIT */
3743 	err = build_sit_entries(sbi);
3744 	if (err)
3745 		return err;
3746 
3747 	init_free_segmap(sbi);
3748 	err = build_dirty_segmap(sbi);
3749 	if (err)
3750 		return err;
3751 
3752 	init_min_max_mtime(sbi);
3753 	return 0;
3754 }
3755 
3756 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3757 		enum dirty_type dirty_type)
3758 {
3759 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3760 
3761 	mutex_lock(&dirty_i->seglist_lock);
3762 	kvfree(dirty_i->dirty_segmap[dirty_type]);
3763 	dirty_i->nr_dirty[dirty_type] = 0;
3764 	mutex_unlock(&dirty_i->seglist_lock);
3765 }
3766 
3767 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3768 {
3769 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3770 	kvfree(dirty_i->victim_secmap);
3771 }
3772 
3773 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3774 {
3775 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3776 	int i;
3777 
3778 	if (!dirty_i)
3779 		return;
3780 
3781 	/* discard pre-free/dirty segments list */
3782 	for (i = 0; i < NR_DIRTY_TYPE; i++)
3783 		discard_dirty_segmap(sbi, i);
3784 
3785 	destroy_victim_secmap(sbi);
3786 	SM_I(sbi)->dirty_info = NULL;
3787 	kfree(dirty_i);
3788 }
3789 
3790 static void destroy_curseg(struct f2fs_sb_info *sbi)
3791 {
3792 	struct curseg_info *array = SM_I(sbi)->curseg_array;
3793 	int i;
3794 
3795 	if (!array)
3796 		return;
3797 	SM_I(sbi)->curseg_array = NULL;
3798 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3799 		kfree(array[i].sum_blk);
3800 		kfree(array[i].journal);
3801 	}
3802 	kfree(array);
3803 }
3804 
3805 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3806 {
3807 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3808 	if (!free_i)
3809 		return;
3810 	SM_I(sbi)->free_info = NULL;
3811 	kvfree(free_i->free_segmap);
3812 	kvfree(free_i->free_secmap);
3813 	kfree(free_i);
3814 }
3815 
3816 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3817 {
3818 	struct sit_info *sit_i = SIT_I(sbi);
3819 	unsigned int start;
3820 
3821 	if (!sit_i)
3822 		return;
3823 
3824 	if (sit_i->sentries) {
3825 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
3826 			kfree(sit_i->sentries[start].cur_valid_map);
3827 #ifdef CONFIG_F2FS_CHECK_FS
3828 			kfree(sit_i->sentries[start].cur_valid_map_mir);
3829 #endif
3830 			kfree(sit_i->sentries[start].ckpt_valid_map);
3831 			kfree(sit_i->sentries[start].discard_map);
3832 		}
3833 	}
3834 	kfree(sit_i->tmp_map);
3835 
3836 	kvfree(sit_i->sentries);
3837 	kvfree(sit_i->sec_entries);
3838 	kvfree(sit_i->dirty_sentries_bitmap);
3839 
3840 	SM_I(sbi)->sit_info = NULL;
3841 	kfree(sit_i->sit_bitmap);
3842 #ifdef CONFIG_F2FS_CHECK_FS
3843 	kfree(sit_i->sit_bitmap_mir);
3844 #endif
3845 	kfree(sit_i);
3846 }
3847 
3848 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3849 {
3850 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3851 
3852 	if (!sm_info)
3853 		return;
3854 	destroy_flush_cmd_control(sbi, true);
3855 	destroy_discard_cmd_control(sbi);
3856 	destroy_dirty_segmap(sbi);
3857 	destroy_curseg(sbi);
3858 	destroy_free_segmap(sbi);
3859 	destroy_sit_info(sbi);
3860 	sbi->sm_info = NULL;
3861 	kfree(sm_info);
3862 }
3863 
3864 int __init create_segment_manager_caches(void)
3865 {
3866 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3867 			sizeof(struct discard_entry));
3868 	if (!discard_entry_slab)
3869 		goto fail;
3870 
3871 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3872 			sizeof(struct discard_cmd));
3873 	if (!discard_cmd_slab)
3874 		goto destroy_discard_entry;
3875 
3876 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3877 			sizeof(struct sit_entry_set));
3878 	if (!sit_entry_set_slab)
3879 		goto destroy_discard_cmd;
3880 
3881 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3882 			sizeof(struct inmem_pages));
3883 	if (!inmem_entry_slab)
3884 		goto destroy_sit_entry_set;
3885 	return 0;
3886 
3887 destroy_sit_entry_set:
3888 	kmem_cache_destroy(sit_entry_set_slab);
3889 destroy_discard_cmd:
3890 	kmem_cache_destroy(discard_cmd_slab);
3891 destroy_discard_entry:
3892 	kmem_cache_destroy(discard_entry_slab);
3893 fail:
3894 	return -ENOMEM;
3895 }
3896 
3897 void destroy_segment_manager_caches(void)
3898 {
3899 	kmem_cache_destroy(sit_entry_set_slab);
3900 	kmem_cache_destroy(discard_cmd_slab);
3901 	kmem_cache_destroy(discard_entry_slab);
3902 	kmem_cache_destroy(inmem_entry_slab);
3903 }
3904