1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 release_atomic_write_cnt(inode); 196 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 197 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 198 clear_inode_flag(inode, FI_ATOMIC_FILE); 199 stat_dec_atomic_inode(inode); 200 201 F2FS_I(inode)->atomic_write_task = NULL; 202 203 if (clean) { 204 truncate_inode_pages_final(inode->i_mapping); 205 f2fs_i_size_write(inode, fi->original_i_size); 206 fi->original_i_size = 0; 207 } 208 /* avoid stale dirty inode during eviction */ 209 sync_inode_metadata(inode, 0); 210 } 211 212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 213 block_t new_addr, block_t *old_addr, bool recover) 214 { 215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 216 struct dnode_of_data dn; 217 struct node_info ni; 218 int err; 219 220 retry: 221 set_new_dnode(&dn, inode, NULL, NULL, 0); 222 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 223 if (err) { 224 if (err == -ENOMEM) { 225 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 226 goto retry; 227 } 228 return err; 229 } 230 231 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 232 if (err) { 233 f2fs_put_dnode(&dn); 234 return err; 235 } 236 237 if (recover) { 238 /* dn.data_blkaddr is always valid */ 239 if (!__is_valid_data_blkaddr(new_addr)) { 240 if (new_addr == NULL_ADDR) 241 dec_valid_block_count(sbi, inode, 1); 242 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 243 f2fs_update_data_blkaddr(&dn, new_addr); 244 } else { 245 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 246 new_addr, ni.version, true, true); 247 } 248 } else { 249 blkcnt_t count = 1; 250 251 err = inc_valid_block_count(sbi, inode, &count, true); 252 if (err) { 253 f2fs_put_dnode(&dn); 254 return err; 255 } 256 257 *old_addr = dn.data_blkaddr; 258 f2fs_truncate_data_blocks_range(&dn, 1); 259 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 260 261 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 262 ni.version, true, false); 263 } 264 265 f2fs_put_dnode(&dn); 266 267 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 268 index, old_addr ? *old_addr : 0, new_addr, recover); 269 return 0; 270 } 271 272 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 273 bool revoke) 274 { 275 struct revoke_entry *cur, *tmp; 276 pgoff_t start_index = 0; 277 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 278 279 list_for_each_entry_safe(cur, tmp, head, list) { 280 if (revoke) { 281 __replace_atomic_write_block(inode, cur->index, 282 cur->old_addr, NULL, true); 283 } else if (truncate) { 284 f2fs_truncate_hole(inode, start_index, cur->index); 285 start_index = cur->index + 1; 286 } 287 288 list_del(&cur->list); 289 kmem_cache_free(revoke_entry_slab, cur); 290 } 291 292 if (!revoke && truncate) 293 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 294 } 295 296 static int __f2fs_commit_atomic_write(struct inode *inode) 297 { 298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 299 struct f2fs_inode_info *fi = F2FS_I(inode); 300 struct inode *cow_inode = fi->cow_inode; 301 struct revoke_entry *new; 302 struct list_head revoke_list; 303 block_t blkaddr; 304 struct dnode_of_data dn; 305 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 306 pgoff_t off = 0, blen, index; 307 int ret = 0, i; 308 309 INIT_LIST_HEAD(&revoke_list); 310 311 while (len) { 312 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 313 314 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 315 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 316 if (ret && ret != -ENOENT) { 317 goto out; 318 } else if (ret == -ENOENT) { 319 ret = 0; 320 if (dn.max_level == 0) 321 goto out; 322 goto next; 323 } 324 325 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 326 len); 327 index = off; 328 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 329 blkaddr = f2fs_data_blkaddr(&dn); 330 331 if (!__is_valid_data_blkaddr(blkaddr)) { 332 continue; 333 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 334 DATA_GENERIC_ENHANCE)) { 335 f2fs_put_dnode(&dn); 336 ret = -EFSCORRUPTED; 337 f2fs_handle_error(sbi, 338 ERROR_INVALID_BLKADDR); 339 goto out; 340 } 341 342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 343 true, NULL); 344 345 ret = __replace_atomic_write_block(inode, index, blkaddr, 346 &new->old_addr, false); 347 if (ret) { 348 f2fs_put_dnode(&dn); 349 kmem_cache_free(revoke_entry_slab, new); 350 goto out; 351 } 352 353 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 354 new->index = index; 355 list_add_tail(&new->list, &revoke_list); 356 } 357 f2fs_put_dnode(&dn); 358 next: 359 off += blen; 360 len -= blen; 361 } 362 363 out: 364 if (ret) { 365 sbi->revoked_atomic_block += fi->atomic_write_cnt; 366 } else { 367 sbi->committed_atomic_block += fi->atomic_write_cnt; 368 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 369 } 370 371 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 372 373 return ret; 374 } 375 376 int f2fs_commit_atomic_write(struct inode *inode) 377 { 378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 379 struct f2fs_inode_info *fi = F2FS_I(inode); 380 int err; 381 382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 383 if (err) 384 return err; 385 386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 387 f2fs_lock_op(sbi); 388 389 err = __f2fs_commit_atomic_write(inode); 390 391 f2fs_unlock_op(sbi); 392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 393 394 return err; 395 } 396 397 /* 398 * This function balances dirty node and dentry pages. 399 * In addition, it controls garbage collection. 400 */ 401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 402 { 403 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 404 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 405 406 /* balance_fs_bg is able to be pending */ 407 if (need && excess_cached_nats(sbi)) 408 f2fs_balance_fs_bg(sbi, false); 409 410 if (!f2fs_is_checkpoint_ready(sbi)) 411 return; 412 413 /* 414 * We should do GC or end up with checkpoint, if there are so many dirty 415 * dir/node pages without enough free segments. 416 */ 417 if (has_enough_free_secs(sbi, 0, 0)) 418 return; 419 420 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 421 sbi->gc_thread->f2fs_gc_task) { 422 DEFINE_WAIT(wait); 423 424 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 425 TASK_UNINTERRUPTIBLE); 426 wake_up(&sbi->gc_thread->gc_wait_queue_head); 427 io_schedule(); 428 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 429 } else { 430 struct f2fs_gc_control gc_control = { 431 .victim_segno = NULL_SEGNO, 432 .init_gc_type = BG_GC, 433 .no_bg_gc = true, 434 .should_migrate_blocks = false, 435 .err_gc_skipped = false, 436 .nr_free_secs = 1 }; 437 f2fs_down_write(&sbi->gc_lock); 438 stat_inc_gc_call_count(sbi, FOREGROUND); 439 f2fs_gc(sbi, &gc_control); 440 } 441 } 442 443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 444 { 445 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 446 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 447 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 448 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 449 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 450 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 451 unsigned int threshold = sbi->blocks_per_seg * factor * 452 DEFAULT_DIRTY_THRESHOLD; 453 unsigned int global_threshold = threshold * 3 / 2; 454 455 if (dents >= threshold || qdata >= threshold || 456 nodes >= threshold || meta >= threshold || 457 imeta >= threshold) 458 return true; 459 return dents + qdata + nodes + meta + imeta > global_threshold; 460 } 461 462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 463 { 464 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 465 return; 466 467 /* try to shrink extent cache when there is no enough memory */ 468 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 469 f2fs_shrink_read_extent_tree(sbi, 470 READ_EXTENT_CACHE_SHRINK_NUMBER); 471 472 /* try to shrink age extent cache when there is no enough memory */ 473 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 474 f2fs_shrink_age_extent_tree(sbi, 475 AGE_EXTENT_CACHE_SHRINK_NUMBER); 476 477 /* check the # of cached NAT entries */ 478 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 479 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 480 481 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 482 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 483 else 484 f2fs_build_free_nids(sbi, false, false); 485 486 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 487 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 488 goto do_sync; 489 490 /* there is background inflight IO or foreground operation recently */ 491 if (is_inflight_io(sbi, REQ_TIME) || 492 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 493 return; 494 495 /* exceed periodical checkpoint timeout threshold */ 496 if (f2fs_time_over(sbi, CP_TIME)) 497 goto do_sync; 498 499 /* checkpoint is the only way to shrink partial cached entries */ 500 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 501 f2fs_available_free_memory(sbi, INO_ENTRIES)) 502 return; 503 504 do_sync: 505 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 506 struct blk_plug plug; 507 508 mutex_lock(&sbi->flush_lock); 509 510 blk_start_plug(&plug); 511 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 512 blk_finish_plug(&plug); 513 514 mutex_unlock(&sbi->flush_lock); 515 } 516 stat_inc_cp_call_count(sbi, BACKGROUND); 517 f2fs_sync_fs(sbi->sb, 1); 518 } 519 520 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 521 struct block_device *bdev) 522 { 523 int ret = blkdev_issue_flush(bdev); 524 525 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 526 test_opt(sbi, FLUSH_MERGE), ret); 527 if (!ret) 528 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 529 return ret; 530 } 531 532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 533 { 534 int ret = 0; 535 int i; 536 537 if (!f2fs_is_multi_device(sbi)) 538 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 539 540 for (i = 0; i < sbi->s_ndevs; i++) { 541 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 542 continue; 543 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 544 if (ret) 545 break; 546 } 547 return ret; 548 } 549 550 static int issue_flush_thread(void *data) 551 { 552 struct f2fs_sb_info *sbi = data; 553 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 554 wait_queue_head_t *q = &fcc->flush_wait_queue; 555 repeat: 556 if (kthread_should_stop()) 557 return 0; 558 559 if (!llist_empty(&fcc->issue_list)) { 560 struct flush_cmd *cmd, *next; 561 int ret; 562 563 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 564 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 565 566 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 567 568 ret = submit_flush_wait(sbi, cmd->ino); 569 atomic_inc(&fcc->issued_flush); 570 571 llist_for_each_entry_safe(cmd, next, 572 fcc->dispatch_list, llnode) { 573 cmd->ret = ret; 574 complete(&cmd->wait); 575 } 576 fcc->dispatch_list = NULL; 577 } 578 579 wait_event_interruptible(*q, 580 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 581 goto repeat; 582 } 583 584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 585 { 586 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 587 struct flush_cmd cmd; 588 int ret; 589 590 if (test_opt(sbi, NOBARRIER)) 591 return 0; 592 593 if (!test_opt(sbi, FLUSH_MERGE)) { 594 atomic_inc(&fcc->queued_flush); 595 ret = submit_flush_wait(sbi, ino); 596 atomic_dec(&fcc->queued_flush); 597 atomic_inc(&fcc->issued_flush); 598 return ret; 599 } 600 601 if (atomic_inc_return(&fcc->queued_flush) == 1 || 602 f2fs_is_multi_device(sbi)) { 603 ret = submit_flush_wait(sbi, ino); 604 atomic_dec(&fcc->queued_flush); 605 606 atomic_inc(&fcc->issued_flush); 607 return ret; 608 } 609 610 cmd.ino = ino; 611 init_completion(&cmd.wait); 612 613 llist_add(&cmd.llnode, &fcc->issue_list); 614 615 /* 616 * update issue_list before we wake up issue_flush thread, this 617 * smp_mb() pairs with another barrier in ___wait_event(), see 618 * more details in comments of waitqueue_active(). 619 */ 620 smp_mb(); 621 622 if (waitqueue_active(&fcc->flush_wait_queue)) 623 wake_up(&fcc->flush_wait_queue); 624 625 if (fcc->f2fs_issue_flush) { 626 wait_for_completion(&cmd.wait); 627 atomic_dec(&fcc->queued_flush); 628 } else { 629 struct llist_node *list; 630 631 list = llist_del_all(&fcc->issue_list); 632 if (!list) { 633 wait_for_completion(&cmd.wait); 634 atomic_dec(&fcc->queued_flush); 635 } else { 636 struct flush_cmd *tmp, *next; 637 638 ret = submit_flush_wait(sbi, ino); 639 640 llist_for_each_entry_safe(tmp, next, list, llnode) { 641 if (tmp == &cmd) { 642 cmd.ret = ret; 643 atomic_dec(&fcc->queued_flush); 644 continue; 645 } 646 tmp->ret = ret; 647 complete(&tmp->wait); 648 } 649 } 650 } 651 652 return cmd.ret; 653 } 654 655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 656 { 657 dev_t dev = sbi->sb->s_bdev->bd_dev; 658 struct flush_cmd_control *fcc; 659 660 if (SM_I(sbi)->fcc_info) { 661 fcc = SM_I(sbi)->fcc_info; 662 if (fcc->f2fs_issue_flush) 663 return 0; 664 goto init_thread; 665 } 666 667 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 668 if (!fcc) 669 return -ENOMEM; 670 atomic_set(&fcc->issued_flush, 0); 671 atomic_set(&fcc->queued_flush, 0); 672 init_waitqueue_head(&fcc->flush_wait_queue); 673 init_llist_head(&fcc->issue_list); 674 SM_I(sbi)->fcc_info = fcc; 675 if (!test_opt(sbi, FLUSH_MERGE)) 676 return 0; 677 678 init_thread: 679 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 680 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 681 if (IS_ERR(fcc->f2fs_issue_flush)) { 682 int err = PTR_ERR(fcc->f2fs_issue_flush); 683 684 fcc->f2fs_issue_flush = NULL; 685 return err; 686 } 687 688 return 0; 689 } 690 691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 692 { 693 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 694 695 if (fcc && fcc->f2fs_issue_flush) { 696 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 697 698 fcc->f2fs_issue_flush = NULL; 699 kthread_stop(flush_thread); 700 } 701 if (free) { 702 kfree(fcc); 703 SM_I(sbi)->fcc_info = NULL; 704 } 705 } 706 707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 708 { 709 int ret = 0, i; 710 711 if (!f2fs_is_multi_device(sbi)) 712 return 0; 713 714 if (test_opt(sbi, NOBARRIER)) 715 return 0; 716 717 for (i = 1; i < sbi->s_ndevs; i++) { 718 int count = DEFAULT_RETRY_IO_COUNT; 719 720 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 721 continue; 722 723 do { 724 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 725 if (ret) 726 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 727 } while (ret && --count); 728 729 if (ret) { 730 f2fs_stop_checkpoint(sbi, false, 731 STOP_CP_REASON_FLUSH_FAIL); 732 break; 733 } 734 735 spin_lock(&sbi->dev_lock); 736 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 737 spin_unlock(&sbi->dev_lock); 738 } 739 740 return ret; 741 } 742 743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 744 enum dirty_type dirty_type) 745 { 746 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 747 748 /* need not be added */ 749 if (IS_CURSEG(sbi, segno)) 750 return; 751 752 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 753 dirty_i->nr_dirty[dirty_type]++; 754 755 if (dirty_type == DIRTY) { 756 struct seg_entry *sentry = get_seg_entry(sbi, segno); 757 enum dirty_type t = sentry->type; 758 759 if (unlikely(t >= DIRTY)) { 760 f2fs_bug_on(sbi, 1); 761 return; 762 } 763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 764 dirty_i->nr_dirty[t]++; 765 766 if (__is_large_section(sbi)) { 767 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 768 block_t valid_blocks = 769 get_valid_blocks(sbi, segno, true); 770 771 f2fs_bug_on(sbi, unlikely(!valid_blocks || 772 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 773 774 if (!IS_CURSEC(sbi, secno)) 775 set_bit(secno, dirty_i->dirty_secmap); 776 } 777 } 778 } 779 780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 781 enum dirty_type dirty_type) 782 { 783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 784 block_t valid_blocks; 785 786 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 787 dirty_i->nr_dirty[dirty_type]--; 788 789 if (dirty_type == DIRTY) { 790 struct seg_entry *sentry = get_seg_entry(sbi, segno); 791 enum dirty_type t = sentry->type; 792 793 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 794 dirty_i->nr_dirty[t]--; 795 796 valid_blocks = get_valid_blocks(sbi, segno, true); 797 if (valid_blocks == 0) { 798 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 799 dirty_i->victim_secmap); 800 #ifdef CONFIG_F2FS_CHECK_FS 801 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 802 #endif 803 } 804 if (__is_large_section(sbi)) { 805 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 806 807 if (!valid_blocks || 808 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 809 clear_bit(secno, dirty_i->dirty_secmap); 810 return; 811 } 812 813 if (!IS_CURSEC(sbi, secno)) 814 set_bit(secno, dirty_i->dirty_secmap); 815 } 816 } 817 } 818 819 /* 820 * Should not occur error such as -ENOMEM. 821 * Adding dirty entry into seglist is not critical operation. 822 * If a given segment is one of current working segments, it won't be added. 823 */ 824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 825 { 826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 827 unsigned short valid_blocks, ckpt_valid_blocks; 828 unsigned int usable_blocks; 829 830 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 831 return; 832 833 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 834 mutex_lock(&dirty_i->seglist_lock); 835 836 valid_blocks = get_valid_blocks(sbi, segno, false); 837 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 838 839 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 840 ckpt_valid_blocks == usable_blocks)) { 841 __locate_dirty_segment(sbi, segno, PRE); 842 __remove_dirty_segment(sbi, segno, DIRTY); 843 } else if (valid_blocks < usable_blocks) { 844 __locate_dirty_segment(sbi, segno, DIRTY); 845 } else { 846 /* Recovery routine with SSR needs this */ 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } 849 850 mutex_unlock(&dirty_i->seglist_lock); 851 } 852 853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 855 { 856 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 857 unsigned int segno; 858 859 mutex_lock(&dirty_i->seglist_lock); 860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 861 if (get_valid_blocks(sbi, segno, false)) 862 continue; 863 if (IS_CURSEG(sbi, segno)) 864 continue; 865 __locate_dirty_segment(sbi, segno, PRE); 866 __remove_dirty_segment(sbi, segno, DIRTY); 867 } 868 mutex_unlock(&dirty_i->seglist_lock); 869 } 870 871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 872 { 873 int ovp_hole_segs = 874 (overprovision_segments(sbi) - reserved_segments(sbi)); 875 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 877 block_t holes[2] = {0, 0}; /* DATA and NODE */ 878 block_t unusable; 879 struct seg_entry *se; 880 unsigned int segno; 881 882 mutex_lock(&dirty_i->seglist_lock); 883 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 884 se = get_seg_entry(sbi, segno); 885 if (IS_NODESEG(se->type)) 886 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 887 se->valid_blocks; 888 else 889 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 890 se->valid_blocks; 891 } 892 mutex_unlock(&dirty_i->seglist_lock); 893 894 unusable = max(holes[DATA], holes[NODE]); 895 if (unusable > ovp_holes) 896 return unusable - ovp_holes; 897 return 0; 898 } 899 900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 901 { 902 int ovp_hole_segs = 903 (overprovision_segments(sbi) - reserved_segments(sbi)); 904 if (unusable > F2FS_OPTION(sbi).unusable_cap) 905 return -EAGAIN; 906 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 907 dirty_segments(sbi) > ovp_hole_segs) 908 return -EAGAIN; 909 return 0; 910 } 911 912 /* This is only used by SBI_CP_DISABLED */ 913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 914 { 915 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 916 unsigned int segno = 0; 917 918 mutex_lock(&dirty_i->seglist_lock); 919 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 920 if (get_valid_blocks(sbi, segno, false)) 921 continue; 922 if (get_ckpt_valid_blocks(sbi, segno, false)) 923 continue; 924 mutex_unlock(&dirty_i->seglist_lock); 925 return segno; 926 } 927 mutex_unlock(&dirty_i->seglist_lock); 928 return NULL_SEGNO; 929 } 930 931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 932 struct block_device *bdev, block_t lstart, 933 block_t start, block_t len) 934 { 935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 936 struct list_head *pend_list; 937 struct discard_cmd *dc; 938 939 f2fs_bug_on(sbi, !len); 940 941 pend_list = &dcc->pend_list[plist_idx(len)]; 942 943 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 944 INIT_LIST_HEAD(&dc->list); 945 dc->bdev = bdev; 946 dc->di.lstart = lstart; 947 dc->di.start = start; 948 dc->di.len = len; 949 dc->ref = 0; 950 dc->state = D_PREP; 951 dc->queued = 0; 952 dc->error = 0; 953 init_completion(&dc->wait); 954 list_add_tail(&dc->list, pend_list); 955 spin_lock_init(&dc->lock); 956 dc->bio_ref = 0; 957 atomic_inc(&dcc->discard_cmd_cnt); 958 dcc->undiscard_blks += len; 959 960 return dc; 961 } 962 963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 964 { 965 #ifdef CONFIG_F2FS_CHECK_FS 966 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 967 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 968 struct discard_cmd *cur_dc, *next_dc; 969 970 while (cur) { 971 next = rb_next(cur); 972 if (!next) 973 return true; 974 975 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 976 next_dc = rb_entry(next, struct discard_cmd, rb_node); 977 978 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 979 f2fs_info(sbi, "broken discard_rbtree, " 980 "cur(%u, %u) next(%u, %u)", 981 cur_dc->di.lstart, cur_dc->di.len, 982 next_dc->di.lstart, next_dc->di.len); 983 return false; 984 } 985 cur = next; 986 } 987 #endif 988 return true; 989 } 990 991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 992 block_t blkaddr) 993 { 994 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 995 struct rb_node *node = dcc->root.rb_root.rb_node; 996 struct discard_cmd *dc; 997 998 while (node) { 999 dc = rb_entry(node, struct discard_cmd, rb_node); 1000 1001 if (blkaddr < dc->di.lstart) 1002 node = node->rb_left; 1003 else if (blkaddr >= dc->di.lstart + dc->di.len) 1004 node = node->rb_right; 1005 else 1006 return dc; 1007 } 1008 return NULL; 1009 } 1010 1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1012 block_t blkaddr, 1013 struct discard_cmd **prev_entry, 1014 struct discard_cmd **next_entry, 1015 struct rb_node ***insert_p, 1016 struct rb_node **insert_parent) 1017 { 1018 struct rb_node **pnode = &root->rb_root.rb_node; 1019 struct rb_node *parent = NULL, *tmp_node; 1020 struct discard_cmd *dc; 1021 1022 *insert_p = NULL; 1023 *insert_parent = NULL; 1024 *prev_entry = NULL; 1025 *next_entry = NULL; 1026 1027 if (RB_EMPTY_ROOT(&root->rb_root)) 1028 return NULL; 1029 1030 while (*pnode) { 1031 parent = *pnode; 1032 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1033 1034 if (blkaddr < dc->di.lstart) 1035 pnode = &(*pnode)->rb_left; 1036 else if (blkaddr >= dc->di.lstart + dc->di.len) 1037 pnode = &(*pnode)->rb_right; 1038 else 1039 goto lookup_neighbors; 1040 } 1041 1042 *insert_p = pnode; 1043 *insert_parent = parent; 1044 1045 dc = rb_entry(parent, struct discard_cmd, rb_node); 1046 tmp_node = parent; 1047 if (parent && blkaddr > dc->di.lstart) 1048 tmp_node = rb_next(parent); 1049 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1050 1051 tmp_node = parent; 1052 if (parent && blkaddr < dc->di.lstart) 1053 tmp_node = rb_prev(parent); 1054 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1055 return NULL; 1056 1057 lookup_neighbors: 1058 /* lookup prev node for merging backward later */ 1059 tmp_node = rb_prev(&dc->rb_node); 1060 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1061 1062 /* lookup next node for merging frontward later */ 1063 tmp_node = rb_next(&dc->rb_node); 1064 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1065 return dc; 1066 } 1067 1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1069 struct discard_cmd *dc) 1070 { 1071 if (dc->state == D_DONE) 1072 atomic_sub(dc->queued, &dcc->queued_discard); 1073 1074 list_del(&dc->list); 1075 rb_erase_cached(&dc->rb_node, &dcc->root); 1076 dcc->undiscard_blks -= dc->di.len; 1077 1078 kmem_cache_free(discard_cmd_slab, dc); 1079 1080 atomic_dec(&dcc->discard_cmd_cnt); 1081 } 1082 1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1084 struct discard_cmd *dc) 1085 { 1086 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1087 unsigned long flags; 1088 1089 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1090 1091 spin_lock_irqsave(&dc->lock, flags); 1092 if (dc->bio_ref) { 1093 spin_unlock_irqrestore(&dc->lock, flags); 1094 return; 1095 } 1096 spin_unlock_irqrestore(&dc->lock, flags); 1097 1098 f2fs_bug_on(sbi, dc->ref); 1099 1100 if (dc->error == -EOPNOTSUPP) 1101 dc->error = 0; 1102 1103 if (dc->error) 1104 printk_ratelimited( 1105 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1106 KERN_INFO, sbi->sb->s_id, 1107 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1108 __detach_discard_cmd(dcc, dc); 1109 } 1110 1111 static void f2fs_submit_discard_endio(struct bio *bio) 1112 { 1113 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&dc->lock, flags); 1117 if (!dc->error) 1118 dc->error = blk_status_to_errno(bio->bi_status); 1119 dc->bio_ref--; 1120 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1121 dc->state = D_DONE; 1122 complete_all(&dc->wait); 1123 } 1124 spin_unlock_irqrestore(&dc->lock, flags); 1125 bio_put(bio); 1126 } 1127 1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1129 block_t start, block_t end) 1130 { 1131 #ifdef CONFIG_F2FS_CHECK_FS 1132 struct seg_entry *sentry; 1133 unsigned int segno; 1134 block_t blk = start; 1135 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1136 unsigned long *map; 1137 1138 while (blk < end) { 1139 segno = GET_SEGNO(sbi, blk); 1140 sentry = get_seg_entry(sbi, segno); 1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1142 1143 if (end < START_BLOCK(sbi, segno + 1)) 1144 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1145 else 1146 size = max_blocks; 1147 map = (unsigned long *)(sentry->cur_valid_map); 1148 offset = __find_rev_next_bit(map, size, offset); 1149 f2fs_bug_on(sbi, offset != size); 1150 blk = START_BLOCK(sbi, segno + 1); 1151 } 1152 #endif 1153 } 1154 1155 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1156 struct discard_policy *dpolicy, 1157 int discard_type, unsigned int granularity) 1158 { 1159 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1160 1161 /* common policy */ 1162 dpolicy->type = discard_type; 1163 dpolicy->sync = true; 1164 dpolicy->ordered = false; 1165 dpolicy->granularity = granularity; 1166 1167 dpolicy->max_requests = dcc->max_discard_request; 1168 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1169 dpolicy->timeout = false; 1170 1171 if (discard_type == DPOLICY_BG) { 1172 dpolicy->min_interval = dcc->min_discard_issue_time; 1173 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1174 dpolicy->max_interval = dcc->max_discard_issue_time; 1175 dpolicy->io_aware = true; 1176 dpolicy->sync = false; 1177 dpolicy->ordered = true; 1178 if (utilization(sbi) > dcc->discard_urgent_util) { 1179 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1180 if (atomic_read(&dcc->discard_cmd_cnt)) 1181 dpolicy->max_interval = 1182 dcc->min_discard_issue_time; 1183 } 1184 } else if (discard_type == DPOLICY_FORCE) { 1185 dpolicy->min_interval = dcc->min_discard_issue_time; 1186 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1187 dpolicy->max_interval = dcc->max_discard_issue_time; 1188 dpolicy->io_aware = false; 1189 } else if (discard_type == DPOLICY_FSTRIM) { 1190 dpolicy->io_aware = false; 1191 } else if (discard_type == DPOLICY_UMOUNT) { 1192 dpolicy->io_aware = false; 1193 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1194 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1195 dpolicy->timeout = true; 1196 } 1197 } 1198 1199 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1200 struct block_device *bdev, block_t lstart, 1201 block_t start, block_t len); 1202 1203 #ifdef CONFIG_BLK_DEV_ZONED 1204 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1205 struct discard_cmd *dc, blk_opf_t flag, 1206 struct list_head *wait_list, 1207 unsigned int *issued) 1208 { 1209 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1210 struct block_device *bdev = dc->bdev; 1211 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1212 unsigned long flags; 1213 1214 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1215 1216 spin_lock_irqsave(&dc->lock, flags); 1217 dc->state = D_SUBMIT; 1218 dc->bio_ref++; 1219 spin_unlock_irqrestore(&dc->lock, flags); 1220 1221 if (issued) 1222 (*issued)++; 1223 1224 atomic_inc(&dcc->queued_discard); 1225 dc->queued++; 1226 list_move_tail(&dc->list, wait_list); 1227 1228 /* sanity check on discard range */ 1229 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1230 1231 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1232 bio->bi_private = dc; 1233 bio->bi_end_io = f2fs_submit_discard_endio; 1234 submit_bio(bio); 1235 1236 atomic_inc(&dcc->issued_discard); 1237 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1238 } 1239 #endif 1240 1241 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1242 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1243 struct discard_policy *dpolicy, 1244 struct discard_cmd *dc, int *issued) 1245 { 1246 struct block_device *bdev = dc->bdev; 1247 unsigned int max_discard_blocks = 1248 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1250 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1251 &(dcc->fstrim_list) : &(dcc->wait_list); 1252 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1253 block_t lstart, start, len, total_len; 1254 int err = 0; 1255 1256 if (dc->state != D_PREP) 1257 return 0; 1258 1259 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1260 return 0; 1261 1262 #ifdef CONFIG_BLK_DEV_ZONED 1263 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1264 int devi = f2fs_bdev_index(sbi, bdev); 1265 1266 if (devi < 0) 1267 return -EINVAL; 1268 1269 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1270 __submit_zone_reset_cmd(sbi, dc, flag, 1271 wait_list, issued); 1272 return 0; 1273 } 1274 } 1275 #endif 1276 1277 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1278 1279 lstart = dc->di.lstart; 1280 start = dc->di.start; 1281 len = dc->di.len; 1282 total_len = len; 1283 1284 dc->di.len = 0; 1285 1286 while (total_len && *issued < dpolicy->max_requests && !err) { 1287 struct bio *bio = NULL; 1288 unsigned long flags; 1289 bool last = true; 1290 1291 if (len > max_discard_blocks) { 1292 len = max_discard_blocks; 1293 last = false; 1294 } 1295 1296 (*issued)++; 1297 if (*issued == dpolicy->max_requests) 1298 last = true; 1299 1300 dc->di.len += len; 1301 1302 if (time_to_inject(sbi, FAULT_DISCARD)) { 1303 err = -EIO; 1304 } else { 1305 err = __blkdev_issue_discard(bdev, 1306 SECTOR_FROM_BLOCK(start), 1307 SECTOR_FROM_BLOCK(len), 1308 GFP_NOFS, &bio); 1309 } 1310 if (err) { 1311 spin_lock_irqsave(&dc->lock, flags); 1312 if (dc->state == D_PARTIAL) 1313 dc->state = D_SUBMIT; 1314 spin_unlock_irqrestore(&dc->lock, flags); 1315 1316 break; 1317 } 1318 1319 f2fs_bug_on(sbi, !bio); 1320 1321 /* 1322 * should keep before submission to avoid D_DONE 1323 * right away 1324 */ 1325 spin_lock_irqsave(&dc->lock, flags); 1326 if (last) 1327 dc->state = D_SUBMIT; 1328 else 1329 dc->state = D_PARTIAL; 1330 dc->bio_ref++; 1331 spin_unlock_irqrestore(&dc->lock, flags); 1332 1333 atomic_inc(&dcc->queued_discard); 1334 dc->queued++; 1335 list_move_tail(&dc->list, wait_list); 1336 1337 /* sanity check on discard range */ 1338 __check_sit_bitmap(sbi, lstart, lstart + len); 1339 1340 bio->bi_private = dc; 1341 bio->bi_end_io = f2fs_submit_discard_endio; 1342 bio->bi_opf |= flag; 1343 submit_bio(bio); 1344 1345 atomic_inc(&dcc->issued_discard); 1346 1347 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1348 1349 lstart += len; 1350 start += len; 1351 total_len -= len; 1352 len = total_len; 1353 } 1354 1355 if (!err && len) { 1356 dcc->undiscard_blks -= len; 1357 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1358 } 1359 return err; 1360 } 1361 1362 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1363 struct block_device *bdev, block_t lstart, 1364 block_t start, block_t len) 1365 { 1366 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1367 struct rb_node **p = &dcc->root.rb_root.rb_node; 1368 struct rb_node *parent = NULL; 1369 struct discard_cmd *dc; 1370 bool leftmost = true; 1371 1372 /* look up rb tree to find parent node */ 1373 while (*p) { 1374 parent = *p; 1375 dc = rb_entry(parent, struct discard_cmd, rb_node); 1376 1377 if (lstart < dc->di.lstart) { 1378 p = &(*p)->rb_left; 1379 } else if (lstart >= dc->di.lstart + dc->di.len) { 1380 p = &(*p)->rb_right; 1381 leftmost = false; 1382 } else { 1383 f2fs_bug_on(sbi, 1); 1384 } 1385 } 1386 1387 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1388 1389 rb_link_node(&dc->rb_node, parent, p); 1390 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1391 } 1392 1393 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1394 struct discard_cmd *dc) 1395 { 1396 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1397 } 1398 1399 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1400 struct discard_cmd *dc, block_t blkaddr) 1401 { 1402 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1403 struct discard_info di = dc->di; 1404 bool modified = false; 1405 1406 if (dc->state == D_DONE || dc->di.len == 1) { 1407 __remove_discard_cmd(sbi, dc); 1408 return; 1409 } 1410 1411 dcc->undiscard_blks -= di.len; 1412 1413 if (blkaddr > di.lstart) { 1414 dc->di.len = blkaddr - dc->di.lstart; 1415 dcc->undiscard_blks += dc->di.len; 1416 __relocate_discard_cmd(dcc, dc); 1417 modified = true; 1418 } 1419 1420 if (blkaddr < di.lstart + di.len - 1) { 1421 if (modified) { 1422 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1423 di.start + blkaddr + 1 - di.lstart, 1424 di.lstart + di.len - 1 - blkaddr); 1425 } else { 1426 dc->di.lstart++; 1427 dc->di.len--; 1428 dc->di.start++; 1429 dcc->undiscard_blks += dc->di.len; 1430 __relocate_discard_cmd(dcc, dc); 1431 } 1432 } 1433 } 1434 1435 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1436 struct block_device *bdev, block_t lstart, 1437 block_t start, block_t len) 1438 { 1439 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1440 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1441 struct discard_cmd *dc; 1442 struct discard_info di = {0}; 1443 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1444 unsigned int max_discard_blocks = 1445 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1446 block_t end = lstart + len; 1447 1448 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1449 &prev_dc, &next_dc, &insert_p, &insert_parent); 1450 if (dc) 1451 prev_dc = dc; 1452 1453 if (!prev_dc) { 1454 di.lstart = lstart; 1455 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1456 di.len = min(di.len, len); 1457 di.start = start; 1458 } 1459 1460 while (1) { 1461 struct rb_node *node; 1462 bool merged = false; 1463 struct discard_cmd *tdc = NULL; 1464 1465 if (prev_dc) { 1466 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1467 if (di.lstart < lstart) 1468 di.lstart = lstart; 1469 if (di.lstart >= end) 1470 break; 1471 1472 if (!next_dc || next_dc->di.lstart > end) 1473 di.len = end - di.lstart; 1474 else 1475 di.len = next_dc->di.lstart - di.lstart; 1476 di.start = start + di.lstart - lstart; 1477 } 1478 1479 if (!di.len) 1480 goto next; 1481 1482 if (prev_dc && prev_dc->state == D_PREP && 1483 prev_dc->bdev == bdev && 1484 __is_discard_back_mergeable(&di, &prev_dc->di, 1485 max_discard_blocks)) { 1486 prev_dc->di.len += di.len; 1487 dcc->undiscard_blks += di.len; 1488 __relocate_discard_cmd(dcc, prev_dc); 1489 di = prev_dc->di; 1490 tdc = prev_dc; 1491 merged = true; 1492 } 1493 1494 if (next_dc && next_dc->state == D_PREP && 1495 next_dc->bdev == bdev && 1496 __is_discard_front_mergeable(&di, &next_dc->di, 1497 max_discard_blocks)) { 1498 next_dc->di.lstart = di.lstart; 1499 next_dc->di.len += di.len; 1500 next_dc->di.start = di.start; 1501 dcc->undiscard_blks += di.len; 1502 __relocate_discard_cmd(dcc, next_dc); 1503 if (tdc) 1504 __remove_discard_cmd(sbi, tdc); 1505 merged = true; 1506 } 1507 1508 if (!merged) 1509 __insert_discard_cmd(sbi, bdev, 1510 di.lstart, di.start, di.len); 1511 next: 1512 prev_dc = next_dc; 1513 if (!prev_dc) 1514 break; 1515 1516 node = rb_next(&prev_dc->rb_node); 1517 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1518 } 1519 } 1520 1521 #ifdef CONFIG_BLK_DEV_ZONED 1522 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1523 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1524 block_t blklen) 1525 { 1526 trace_f2fs_queue_reset_zone(bdev, blkstart); 1527 1528 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1529 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1530 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1531 } 1532 #endif 1533 1534 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1535 struct block_device *bdev, block_t blkstart, block_t blklen) 1536 { 1537 block_t lblkstart = blkstart; 1538 1539 if (!f2fs_bdev_support_discard(bdev)) 1540 return; 1541 1542 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1543 1544 if (f2fs_is_multi_device(sbi)) { 1545 int devi = f2fs_target_device_index(sbi, blkstart); 1546 1547 blkstart -= FDEV(devi).start_blk; 1548 } 1549 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1550 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1551 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1552 } 1553 1554 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1555 struct discard_policy *dpolicy, int *issued) 1556 { 1557 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1558 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1559 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1560 struct discard_cmd *dc; 1561 struct blk_plug plug; 1562 bool io_interrupted = false; 1563 1564 mutex_lock(&dcc->cmd_lock); 1565 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1566 &prev_dc, &next_dc, &insert_p, &insert_parent); 1567 if (!dc) 1568 dc = next_dc; 1569 1570 blk_start_plug(&plug); 1571 1572 while (dc) { 1573 struct rb_node *node; 1574 int err = 0; 1575 1576 if (dc->state != D_PREP) 1577 goto next; 1578 1579 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1580 io_interrupted = true; 1581 break; 1582 } 1583 1584 dcc->next_pos = dc->di.lstart + dc->di.len; 1585 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1586 1587 if (*issued >= dpolicy->max_requests) 1588 break; 1589 next: 1590 node = rb_next(&dc->rb_node); 1591 if (err) 1592 __remove_discard_cmd(sbi, dc); 1593 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1594 } 1595 1596 blk_finish_plug(&plug); 1597 1598 if (!dc) 1599 dcc->next_pos = 0; 1600 1601 mutex_unlock(&dcc->cmd_lock); 1602 1603 if (!(*issued) && io_interrupted) 1604 *issued = -1; 1605 } 1606 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1607 struct discard_policy *dpolicy); 1608 1609 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1610 struct discard_policy *dpolicy) 1611 { 1612 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1613 struct list_head *pend_list; 1614 struct discard_cmd *dc, *tmp; 1615 struct blk_plug plug; 1616 int i, issued; 1617 bool io_interrupted = false; 1618 1619 if (dpolicy->timeout) 1620 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1621 1622 retry: 1623 issued = 0; 1624 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1625 if (dpolicy->timeout && 1626 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1627 break; 1628 1629 if (i + 1 < dpolicy->granularity) 1630 break; 1631 1632 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1633 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1634 return issued; 1635 } 1636 1637 pend_list = &dcc->pend_list[i]; 1638 1639 mutex_lock(&dcc->cmd_lock); 1640 if (list_empty(pend_list)) 1641 goto next; 1642 if (unlikely(dcc->rbtree_check)) 1643 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1644 blk_start_plug(&plug); 1645 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1646 f2fs_bug_on(sbi, dc->state != D_PREP); 1647 1648 if (dpolicy->timeout && 1649 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1650 break; 1651 1652 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1653 !is_idle(sbi, DISCARD_TIME)) { 1654 io_interrupted = true; 1655 break; 1656 } 1657 1658 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1659 1660 if (issued >= dpolicy->max_requests) 1661 break; 1662 } 1663 blk_finish_plug(&plug); 1664 next: 1665 mutex_unlock(&dcc->cmd_lock); 1666 1667 if (issued >= dpolicy->max_requests || io_interrupted) 1668 break; 1669 } 1670 1671 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1672 __wait_all_discard_cmd(sbi, dpolicy); 1673 goto retry; 1674 } 1675 1676 if (!issued && io_interrupted) 1677 issued = -1; 1678 1679 return issued; 1680 } 1681 1682 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1683 { 1684 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1685 struct list_head *pend_list; 1686 struct discard_cmd *dc, *tmp; 1687 int i; 1688 bool dropped = false; 1689 1690 mutex_lock(&dcc->cmd_lock); 1691 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1692 pend_list = &dcc->pend_list[i]; 1693 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1694 f2fs_bug_on(sbi, dc->state != D_PREP); 1695 __remove_discard_cmd(sbi, dc); 1696 dropped = true; 1697 } 1698 } 1699 mutex_unlock(&dcc->cmd_lock); 1700 1701 return dropped; 1702 } 1703 1704 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1705 { 1706 __drop_discard_cmd(sbi); 1707 } 1708 1709 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1710 struct discard_cmd *dc) 1711 { 1712 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1713 unsigned int len = 0; 1714 1715 wait_for_completion_io(&dc->wait); 1716 mutex_lock(&dcc->cmd_lock); 1717 f2fs_bug_on(sbi, dc->state != D_DONE); 1718 dc->ref--; 1719 if (!dc->ref) { 1720 if (!dc->error) 1721 len = dc->di.len; 1722 __remove_discard_cmd(sbi, dc); 1723 } 1724 mutex_unlock(&dcc->cmd_lock); 1725 1726 return len; 1727 } 1728 1729 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1730 struct discard_policy *dpolicy, 1731 block_t start, block_t end) 1732 { 1733 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1734 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1735 &(dcc->fstrim_list) : &(dcc->wait_list); 1736 struct discard_cmd *dc = NULL, *iter, *tmp; 1737 unsigned int trimmed = 0; 1738 1739 next: 1740 dc = NULL; 1741 1742 mutex_lock(&dcc->cmd_lock); 1743 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1744 if (iter->di.lstart + iter->di.len <= start || 1745 end <= iter->di.lstart) 1746 continue; 1747 if (iter->di.len < dpolicy->granularity) 1748 continue; 1749 if (iter->state == D_DONE && !iter->ref) { 1750 wait_for_completion_io(&iter->wait); 1751 if (!iter->error) 1752 trimmed += iter->di.len; 1753 __remove_discard_cmd(sbi, iter); 1754 } else { 1755 iter->ref++; 1756 dc = iter; 1757 break; 1758 } 1759 } 1760 mutex_unlock(&dcc->cmd_lock); 1761 1762 if (dc) { 1763 trimmed += __wait_one_discard_bio(sbi, dc); 1764 goto next; 1765 } 1766 1767 return trimmed; 1768 } 1769 1770 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1771 struct discard_policy *dpolicy) 1772 { 1773 struct discard_policy dp; 1774 unsigned int discard_blks; 1775 1776 if (dpolicy) 1777 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1778 1779 /* wait all */ 1780 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1781 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1782 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1783 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1784 1785 return discard_blks; 1786 } 1787 1788 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1789 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1790 { 1791 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1792 struct discard_cmd *dc; 1793 bool need_wait = false; 1794 1795 mutex_lock(&dcc->cmd_lock); 1796 dc = __lookup_discard_cmd(sbi, blkaddr); 1797 #ifdef CONFIG_BLK_DEV_ZONED 1798 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1799 int devi = f2fs_bdev_index(sbi, dc->bdev); 1800 1801 if (devi < 0) { 1802 mutex_unlock(&dcc->cmd_lock); 1803 return; 1804 } 1805 1806 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1807 /* force submit zone reset */ 1808 if (dc->state == D_PREP) 1809 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1810 &dcc->wait_list, NULL); 1811 dc->ref++; 1812 mutex_unlock(&dcc->cmd_lock); 1813 /* wait zone reset */ 1814 __wait_one_discard_bio(sbi, dc); 1815 return; 1816 } 1817 } 1818 #endif 1819 if (dc) { 1820 if (dc->state == D_PREP) { 1821 __punch_discard_cmd(sbi, dc, blkaddr); 1822 } else { 1823 dc->ref++; 1824 need_wait = true; 1825 } 1826 } 1827 mutex_unlock(&dcc->cmd_lock); 1828 1829 if (need_wait) 1830 __wait_one_discard_bio(sbi, dc); 1831 } 1832 1833 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1834 { 1835 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1836 1837 if (dcc && dcc->f2fs_issue_discard) { 1838 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1839 1840 dcc->f2fs_issue_discard = NULL; 1841 kthread_stop(discard_thread); 1842 } 1843 } 1844 1845 /** 1846 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1847 * @sbi: the f2fs_sb_info data for discard cmd to issue 1848 * 1849 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1850 * 1851 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1852 */ 1853 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1854 { 1855 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1856 struct discard_policy dpolicy; 1857 bool dropped; 1858 1859 if (!atomic_read(&dcc->discard_cmd_cnt)) 1860 return true; 1861 1862 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1863 dcc->discard_granularity); 1864 __issue_discard_cmd(sbi, &dpolicy); 1865 dropped = __drop_discard_cmd(sbi); 1866 1867 /* just to make sure there is no pending discard commands */ 1868 __wait_all_discard_cmd(sbi, NULL); 1869 1870 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1871 return !dropped; 1872 } 1873 1874 static int issue_discard_thread(void *data) 1875 { 1876 struct f2fs_sb_info *sbi = data; 1877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1878 wait_queue_head_t *q = &dcc->discard_wait_queue; 1879 struct discard_policy dpolicy; 1880 unsigned int wait_ms = dcc->min_discard_issue_time; 1881 int issued; 1882 1883 set_freezable(); 1884 1885 do { 1886 wait_event_interruptible_timeout(*q, 1887 kthread_should_stop() || freezing(current) || 1888 dcc->discard_wake, 1889 msecs_to_jiffies(wait_ms)); 1890 1891 if (sbi->gc_mode == GC_URGENT_HIGH || 1892 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1893 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1894 MIN_DISCARD_GRANULARITY); 1895 else 1896 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1897 dcc->discard_granularity); 1898 1899 if (dcc->discard_wake) 1900 dcc->discard_wake = false; 1901 1902 /* clean up pending candidates before going to sleep */ 1903 if (atomic_read(&dcc->queued_discard)) 1904 __wait_all_discard_cmd(sbi, NULL); 1905 1906 if (try_to_freeze()) 1907 continue; 1908 if (f2fs_readonly(sbi->sb)) 1909 continue; 1910 if (kthread_should_stop()) 1911 return 0; 1912 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1913 !atomic_read(&dcc->discard_cmd_cnt)) { 1914 wait_ms = dpolicy.max_interval; 1915 continue; 1916 } 1917 1918 sb_start_intwrite(sbi->sb); 1919 1920 issued = __issue_discard_cmd(sbi, &dpolicy); 1921 if (issued > 0) { 1922 __wait_all_discard_cmd(sbi, &dpolicy); 1923 wait_ms = dpolicy.min_interval; 1924 } else if (issued == -1) { 1925 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1926 if (!wait_ms) 1927 wait_ms = dpolicy.mid_interval; 1928 } else { 1929 wait_ms = dpolicy.max_interval; 1930 } 1931 if (!atomic_read(&dcc->discard_cmd_cnt)) 1932 wait_ms = dpolicy.max_interval; 1933 1934 sb_end_intwrite(sbi->sb); 1935 1936 } while (!kthread_should_stop()); 1937 return 0; 1938 } 1939 1940 #ifdef CONFIG_BLK_DEV_ZONED 1941 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1942 struct block_device *bdev, block_t blkstart, block_t blklen) 1943 { 1944 sector_t sector, nr_sects; 1945 block_t lblkstart = blkstart; 1946 int devi = 0; 1947 u64 remainder = 0; 1948 1949 if (f2fs_is_multi_device(sbi)) { 1950 devi = f2fs_target_device_index(sbi, blkstart); 1951 if (blkstart < FDEV(devi).start_blk || 1952 blkstart > FDEV(devi).end_blk) { 1953 f2fs_err(sbi, "Invalid block %x", blkstart); 1954 return -EIO; 1955 } 1956 blkstart -= FDEV(devi).start_blk; 1957 } 1958 1959 /* For sequential zones, reset the zone write pointer */ 1960 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1961 sector = SECTOR_FROM_BLOCK(blkstart); 1962 nr_sects = SECTOR_FROM_BLOCK(blklen); 1963 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1964 1965 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1966 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1967 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1968 blkstart, blklen); 1969 return -EIO; 1970 } 1971 1972 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1973 trace_f2fs_issue_reset_zone(bdev, blkstart); 1974 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1975 sector, nr_sects, GFP_NOFS); 1976 } 1977 1978 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1979 return 0; 1980 } 1981 1982 /* For conventional zones, use regular discard if supported */ 1983 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1984 return 0; 1985 } 1986 #endif 1987 1988 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1989 struct block_device *bdev, block_t blkstart, block_t blklen) 1990 { 1991 #ifdef CONFIG_BLK_DEV_ZONED 1992 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1993 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1994 #endif 1995 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1996 return 0; 1997 } 1998 1999 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2000 block_t blkstart, block_t blklen) 2001 { 2002 sector_t start = blkstart, len = 0; 2003 struct block_device *bdev; 2004 struct seg_entry *se; 2005 unsigned int offset; 2006 block_t i; 2007 int err = 0; 2008 2009 bdev = f2fs_target_device(sbi, blkstart, NULL); 2010 2011 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2012 if (i != start) { 2013 struct block_device *bdev2 = 2014 f2fs_target_device(sbi, i, NULL); 2015 2016 if (bdev2 != bdev) { 2017 err = __issue_discard_async(sbi, bdev, 2018 start, len); 2019 if (err) 2020 return err; 2021 bdev = bdev2; 2022 start = i; 2023 len = 0; 2024 } 2025 } 2026 2027 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2028 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2029 2030 if (f2fs_block_unit_discard(sbi) && 2031 !f2fs_test_and_set_bit(offset, se->discard_map)) 2032 sbi->discard_blks--; 2033 } 2034 2035 if (len) 2036 err = __issue_discard_async(sbi, bdev, start, len); 2037 return err; 2038 } 2039 2040 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2041 bool check_only) 2042 { 2043 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2044 int max_blocks = sbi->blocks_per_seg; 2045 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2046 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2047 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2048 unsigned long *discard_map = (unsigned long *)se->discard_map; 2049 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2050 unsigned int start = 0, end = -1; 2051 bool force = (cpc->reason & CP_DISCARD); 2052 struct discard_entry *de = NULL; 2053 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2054 int i; 2055 2056 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 2057 !f2fs_block_unit_discard(sbi)) 2058 return false; 2059 2060 if (!force) { 2061 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2062 SM_I(sbi)->dcc_info->nr_discards >= 2063 SM_I(sbi)->dcc_info->max_discards) 2064 return false; 2065 } 2066 2067 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2068 for (i = 0; i < entries; i++) 2069 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2070 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2071 2072 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2073 SM_I(sbi)->dcc_info->max_discards) { 2074 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 2075 if (start >= max_blocks) 2076 break; 2077 2078 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 2079 if (force && start && end != max_blocks 2080 && (end - start) < cpc->trim_minlen) 2081 continue; 2082 2083 if (check_only) 2084 return true; 2085 2086 if (!de) { 2087 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2088 GFP_F2FS_ZERO, true, NULL); 2089 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2090 list_add_tail(&de->list, head); 2091 } 2092 2093 for (i = start; i < end; i++) 2094 __set_bit_le(i, (void *)de->discard_map); 2095 2096 SM_I(sbi)->dcc_info->nr_discards += end - start; 2097 } 2098 return false; 2099 } 2100 2101 static void release_discard_addr(struct discard_entry *entry) 2102 { 2103 list_del(&entry->list); 2104 kmem_cache_free(discard_entry_slab, entry); 2105 } 2106 2107 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2108 { 2109 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2110 struct discard_entry *entry, *this; 2111 2112 /* drop caches */ 2113 list_for_each_entry_safe(entry, this, head, list) 2114 release_discard_addr(entry); 2115 } 2116 2117 /* 2118 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2119 */ 2120 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2121 { 2122 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2123 unsigned int segno; 2124 2125 mutex_lock(&dirty_i->seglist_lock); 2126 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2127 __set_test_and_free(sbi, segno, false); 2128 mutex_unlock(&dirty_i->seglist_lock); 2129 } 2130 2131 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2132 struct cp_control *cpc) 2133 { 2134 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2135 struct list_head *head = &dcc->entry_list; 2136 struct discard_entry *entry, *this; 2137 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2138 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2139 unsigned int start = 0, end = -1; 2140 unsigned int secno, start_segno; 2141 bool force = (cpc->reason & CP_DISCARD); 2142 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2143 DISCARD_UNIT_SECTION; 2144 2145 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2146 section_alignment = true; 2147 2148 mutex_lock(&dirty_i->seglist_lock); 2149 2150 while (1) { 2151 int i; 2152 2153 if (section_alignment && end != -1) 2154 end--; 2155 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2156 if (start >= MAIN_SEGS(sbi)) 2157 break; 2158 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2159 start + 1); 2160 2161 if (section_alignment) { 2162 start = rounddown(start, sbi->segs_per_sec); 2163 end = roundup(end, sbi->segs_per_sec); 2164 } 2165 2166 for (i = start; i < end; i++) { 2167 if (test_and_clear_bit(i, prefree_map)) 2168 dirty_i->nr_dirty[PRE]--; 2169 } 2170 2171 if (!f2fs_realtime_discard_enable(sbi)) 2172 continue; 2173 2174 if (force && start >= cpc->trim_start && 2175 (end - 1) <= cpc->trim_end) 2176 continue; 2177 2178 /* Should cover 2MB zoned device for zone-based reset */ 2179 if (!f2fs_sb_has_blkzoned(sbi) && 2180 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2181 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2182 (end - start) << sbi->log_blocks_per_seg); 2183 continue; 2184 } 2185 next: 2186 secno = GET_SEC_FROM_SEG(sbi, start); 2187 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2188 if (!IS_CURSEC(sbi, secno) && 2189 !get_valid_blocks(sbi, start, true)) 2190 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2191 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2192 2193 start = start_segno + sbi->segs_per_sec; 2194 if (start < end) 2195 goto next; 2196 else 2197 end = start - 1; 2198 } 2199 mutex_unlock(&dirty_i->seglist_lock); 2200 2201 if (!f2fs_block_unit_discard(sbi)) 2202 goto wakeup; 2203 2204 /* send small discards */ 2205 list_for_each_entry_safe(entry, this, head, list) { 2206 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2207 bool is_valid = test_bit_le(0, entry->discard_map); 2208 2209 find_next: 2210 if (is_valid) { 2211 next_pos = find_next_zero_bit_le(entry->discard_map, 2212 sbi->blocks_per_seg, cur_pos); 2213 len = next_pos - cur_pos; 2214 2215 if (f2fs_sb_has_blkzoned(sbi) || 2216 (force && len < cpc->trim_minlen)) 2217 goto skip; 2218 2219 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2220 len); 2221 total_len += len; 2222 } else { 2223 next_pos = find_next_bit_le(entry->discard_map, 2224 sbi->blocks_per_seg, cur_pos); 2225 } 2226 skip: 2227 cur_pos = next_pos; 2228 is_valid = !is_valid; 2229 2230 if (cur_pos < sbi->blocks_per_seg) 2231 goto find_next; 2232 2233 release_discard_addr(entry); 2234 dcc->nr_discards -= total_len; 2235 } 2236 2237 wakeup: 2238 wake_up_discard_thread(sbi, false); 2239 } 2240 2241 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2242 { 2243 dev_t dev = sbi->sb->s_bdev->bd_dev; 2244 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2245 int err = 0; 2246 2247 if (!f2fs_realtime_discard_enable(sbi)) 2248 return 0; 2249 2250 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2251 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2252 if (IS_ERR(dcc->f2fs_issue_discard)) { 2253 err = PTR_ERR(dcc->f2fs_issue_discard); 2254 dcc->f2fs_issue_discard = NULL; 2255 } 2256 2257 return err; 2258 } 2259 2260 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2261 { 2262 struct discard_cmd_control *dcc; 2263 int err = 0, i; 2264 2265 if (SM_I(sbi)->dcc_info) { 2266 dcc = SM_I(sbi)->dcc_info; 2267 goto init_thread; 2268 } 2269 2270 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2271 if (!dcc) 2272 return -ENOMEM; 2273 2274 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2275 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2276 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2277 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2278 dcc->discard_granularity = sbi->blocks_per_seg; 2279 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2280 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2281 2282 INIT_LIST_HEAD(&dcc->entry_list); 2283 for (i = 0; i < MAX_PLIST_NUM; i++) 2284 INIT_LIST_HEAD(&dcc->pend_list[i]); 2285 INIT_LIST_HEAD(&dcc->wait_list); 2286 INIT_LIST_HEAD(&dcc->fstrim_list); 2287 mutex_init(&dcc->cmd_lock); 2288 atomic_set(&dcc->issued_discard, 0); 2289 atomic_set(&dcc->queued_discard, 0); 2290 atomic_set(&dcc->discard_cmd_cnt, 0); 2291 dcc->nr_discards = 0; 2292 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2293 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2294 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2295 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2296 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2297 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2298 dcc->undiscard_blks = 0; 2299 dcc->next_pos = 0; 2300 dcc->root = RB_ROOT_CACHED; 2301 dcc->rbtree_check = false; 2302 2303 init_waitqueue_head(&dcc->discard_wait_queue); 2304 SM_I(sbi)->dcc_info = dcc; 2305 init_thread: 2306 err = f2fs_start_discard_thread(sbi); 2307 if (err) { 2308 kfree(dcc); 2309 SM_I(sbi)->dcc_info = NULL; 2310 } 2311 2312 return err; 2313 } 2314 2315 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2316 { 2317 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2318 2319 if (!dcc) 2320 return; 2321 2322 f2fs_stop_discard_thread(sbi); 2323 2324 /* 2325 * Recovery can cache discard commands, so in error path of 2326 * fill_super(), it needs to give a chance to handle them. 2327 */ 2328 f2fs_issue_discard_timeout(sbi); 2329 2330 kfree(dcc); 2331 SM_I(sbi)->dcc_info = NULL; 2332 } 2333 2334 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2335 { 2336 struct sit_info *sit_i = SIT_I(sbi); 2337 2338 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2339 sit_i->dirty_sentries++; 2340 return false; 2341 } 2342 2343 return true; 2344 } 2345 2346 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2347 unsigned int segno, int modified) 2348 { 2349 struct seg_entry *se = get_seg_entry(sbi, segno); 2350 2351 se->type = type; 2352 if (modified) 2353 __mark_sit_entry_dirty(sbi, segno); 2354 } 2355 2356 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2357 block_t blkaddr) 2358 { 2359 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2360 2361 if (segno == NULL_SEGNO) 2362 return 0; 2363 return get_seg_entry(sbi, segno)->mtime; 2364 } 2365 2366 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2367 unsigned long long old_mtime) 2368 { 2369 struct seg_entry *se; 2370 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2371 unsigned long long ctime = get_mtime(sbi, false); 2372 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2373 2374 if (segno == NULL_SEGNO) 2375 return; 2376 2377 se = get_seg_entry(sbi, segno); 2378 2379 if (!se->mtime) 2380 se->mtime = mtime; 2381 else 2382 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2383 se->valid_blocks + 1); 2384 2385 if (ctime > SIT_I(sbi)->max_mtime) 2386 SIT_I(sbi)->max_mtime = ctime; 2387 } 2388 2389 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2390 { 2391 struct seg_entry *se; 2392 unsigned int segno, offset; 2393 long int new_vblocks; 2394 bool exist; 2395 #ifdef CONFIG_F2FS_CHECK_FS 2396 bool mir_exist; 2397 #endif 2398 2399 segno = GET_SEGNO(sbi, blkaddr); 2400 2401 se = get_seg_entry(sbi, segno); 2402 new_vblocks = se->valid_blocks + del; 2403 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2404 2405 f2fs_bug_on(sbi, (new_vblocks < 0 || 2406 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2407 2408 se->valid_blocks = new_vblocks; 2409 2410 /* Update valid block bitmap */ 2411 if (del > 0) { 2412 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2413 #ifdef CONFIG_F2FS_CHECK_FS 2414 mir_exist = f2fs_test_and_set_bit(offset, 2415 se->cur_valid_map_mir); 2416 if (unlikely(exist != mir_exist)) { 2417 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2418 blkaddr, exist); 2419 f2fs_bug_on(sbi, 1); 2420 } 2421 #endif 2422 if (unlikely(exist)) { 2423 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2424 blkaddr); 2425 f2fs_bug_on(sbi, 1); 2426 se->valid_blocks--; 2427 del = 0; 2428 } 2429 2430 if (f2fs_block_unit_discard(sbi) && 2431 !f2fs_test_and_set_bit(offset, se->discard_map)) 2432 sbi->discard_blks--; 2433 2434 /* 2435 * SSR should never reuse block which is checkpointed 2436 * or newly invalidated. 2437 */ 2438 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2439 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2440 se->ckpt_valid_blocks++; 2441 } 2442 } else { 2443 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2444 #ifdef CONFIG_F2FS_CHECK_FS 2445 mir_exist = f2fs_test_and_clear_bit(offset, 2446 se->cur_valid_map_mir); 2447 if (unlikely(exist != mir_exist)) { 2448 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2449 blkaddr, exist); 2450 f2fs_bug_on(sbi, 1); 2451 } 2452 #endif 2453 if (unlikely(!exist)) { 2454 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2455 blkaddr); 2456 f2fs_bug_on(sbi, 1); 2457 se->valid_blocks++; 2458 del = 0; 2459 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2460 /* 2461 * If checkpoints are off, we must not reuse data that 2462 * was used in the previous checkpoint. If it was used 2463 * before, we must track that to know how much space we 2464 * really have. 2465 */ 2466 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2467 spin_lock(&sbi->stat_lock); 2468 sbi->unusable_block_count++; 2469 spin_unlock(&sbi->stat_lock); 2470 } 2471 } 2472 2473 if (f2fs_block_unit_discard(sbi) && 2474 f2fs_test_and_clear_bit(offset, se->discard_map)) 2475 sbi->discard_blks++; 2476 } 2477 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2478 se->ckpt_valid_blocks += del; 2479 2480 __mark_sit_entry_dirty(sbi, segno); 2481 2482 /* update total number of valid blocks to be written in ckpt area */ 2483 SIT_I(sbi)->written_valid_blocks += del; 2484 2485 if (__is_large_section(sbi)) 2486 get_sec_entry(sbi, segno)->valid_blocks += del; 2487 } 2488 2489 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2490 { 2491 unsigned int segno = GET_SEGNO(sbi, addr); 2492 struct sit_info *sit_i = SIT_I(sbi); 2493 2494 f2fs_bug_on(sbi, addr == NULL_ADDR); 2495 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2496 return; 2497 2498 f2fs_invalidate_internal_cache(sbi, addr); 2499 2500 /* add it into sit main buffer */ 2501 down_write(&sit_i->sentry_lock); 2502 2503 update_segment_mtime(sbi, addr, 0); 2504 update_sit_entry(sbi, addr, -1); 2505 2506 /* add it into dirty seglist */ 2507 locate_dirty_segment(sbi, segno); 2508 2509 up_write(&sit_i->sentry_lock); 2510 } 2511 2512 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2513 { 2514 struct sit_info *sit_i = SIT_I(sbi); 2515 unsigned int segno, offset; 2516 struct seg_entry *se; 2517 bool is_cp = false; 2518 2519 if (!__is_valid_data_blkaddr(blkaddr)) 2520 return true; 2521 2522 down_read(&sit_i->sentry_lock); 2523 2524 segno = GET_SEGNO(sbi, blkaddr); 2525 se = get_seg_entry(sbi, segno); 2526 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2527 2528 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2529 is_cp = true; 2530 2531 up_read(&sit_i->sentry_lock); 2532 2533 return is_cp; 2534 } 2535 2536 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2537 { 2538 struct curseg_info *curseg = CURSEG_I(sbi, type); 2539 2540 if (sbi->ckpt->alloc_type[type] == SSR) 2541 return sbi->blocks_per_seg; 2542 return curseg->next_blkoff; 2543 } 2544 2545 /* 2546 * Calculate the number of current summary pages for writing 2547 */ 2548 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2549 { 2550 int valid_sum_count = 0; 2551 int i, sum_in_page; 2552 2553 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2554 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2555 valid_sum_count += 2556 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2557 else 2558 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2559 } 2560 2561 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2562 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2563 if (valid_sum_count <= sum_in_page) 2564 return 1; 2565 else if ((valid_sum_count - sum_in_page) <= 2566 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2567 return 2; 2568 return 3; 2569 } 2570 2571 /* 2572 * Caller should put this summary page 2573 */ 2574 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2575 { 2576 if (unlikely(f2fs_cp_error(sbi))) 2577 return ERR_PTR(-EIO); 2578 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2579 } 2580 2581 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2582 void *src, block_t blk_addr) 2583 { 2584 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2585 2586 memcpy(page_address(page), src, PAGE_SIZE); 2587 set_page_dirty(page); 2588 f2fs_put_page(page, 1); 2589 } 2590 2591 static void write_sum_page(struct f2fs_sb_info *sbi, 2592 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2593 { 2594 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2595 } 2596 2597 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2598 int type, block_t blk_addr) 2599 { 2600 struct curseg_info *curseg = CURSEG_I(sbi, type); 2601 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2602 struct f2fs_summary_block *src = curseg->sum_blk; 2603 struct f2fs_summary_block *dst; 2604 2605 dst = (struct f2fs_summary_block *)page_address(page); 2606 memset(dst, 0, PAGE_SIZE); 2607 2608 mutex_lock(&curseg->curseg_mutex); 2609 2610 down_read(&curseg->journal_rwsem); 2611 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2612 up_read(&curseg->journal_rwsem); 2613 2614 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2615 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2616 2617 mutex_unlock(&curseg->curseg_mutex); 2618 2619 set_page_dirty(page); 2620 f2fs_put_page(page, 1); 2621 } 2622 2623 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2624 struct curseg_info *curseg, int type) 2625 { 2626 unsigned int segno = curseg->segno + 1; 2627 struct free_segmap_info *free_i = FREE_I(sbi); 2628 2629 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2630 return !test_bit(segno, free_i->free_segmap); 2631 return 0; 2632 } 2633 2634 /* 2635 * Find a new segment from the free segments bitmap to right order 2636 * This function should be returned with success, otherwise BUG 2637 */ 2638 static void get_new_segment(struct f2fs_sb_info *sbi, 2639 unsigned int *newseg, bool new_sec, int dir) 2640 { 2641 struct free_segmap_info *free_i = FREE_I(sbi); 2642 unsigned int segno, secno, zoneno; 2643 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2644 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2645 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2646 unsigned int left_start = hint; 2647 bool init = true; 2648 int go_left = 0; 2649 int i; 2650 2651 spin_lock(&free_i->segmap_lock); 2652 2653 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2654 segno = find_next_zero_bit(free_i->free_segmap, 2655 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2656 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2657 goto got_it; 2658 } 2659 find_other_zone: 2660 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2661 if (secno >= MAIN_SECS(sbi)) { 2662 if (dir == ALLOC_RIGHT) { 2663 secno = find_first_zero_bit(free_i->free_secmap, 2664 MAIN_SECS(sbi)); 2665 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2666 } else { 2667 go_left = 1; 2668 left_start = hint - 1; 2669 } 2670 } 2671 if (go_left == 0) 2672 goto skip_left; 2673 2674 while (test_bit(left_start, free_i->free_secmap)) { 2675 if (left_start > 0) { 2676 left_start--; 2677 continue; 2678 } 2679 left_start = find_first_zero_bit(free_i->free_secmap, 2680 MAIN_SECS(sbi)); 2681 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2682 break; 2683 } 2684 secno = left_start; 2685 skip_left: 2686 segno = GET_SEG_FROM_SEC(sbi, secno); 2687 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2688 2689 /* give up on finding another zone */ 2690 if (!init) 2691 goto got_it; 2692 if (sbi->secs_per_zone == 1) 2693 goto got_it; 2694 if (zoneno == old_zoneno) 2695 goto got_it; 2696 if (dir == ALLOC_LEFT) { 2697 if (!go_left && zoneno + 1 >= total_zones) 2698 goto got_it; 2699 if (go_left && zoneno == 0) 2700 goto got_it; 2701 } 2702 for (i = 0; i < NR_CURSEG_TYPE; i++) 2703 if (CURSEG_I(sbi, i)->zone == zoneno) 2704 break; 2705 2706 if (i < NR_CURSEG_TYPE) { 2707 /* zone is in user, try another */ 2708 if (go_left) 2709 hint = zoneno * sbi->secs_per_zone - 1; 2710 else if (zoneno + 1 >= total_zones) 2711 hint = 0; 2712 else 2713 hint = (zoneno + 1) * sbi->secs_per_zone; 2714 init = false; 2715 goto find_other_zone; 2716 } 2717 got_it: 2718 /* set it as dirty segment in free segmap */ 2719 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2720 __set_inuse(sbi, segno); 2721 *newseg = segno; 2722 spin_unlock(&free_i->segmap_lock); 2723 } 2724 2725 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2726 { 2727 struct curseg_info *curseg = CURSEG_I(sbi, type); 2728 struct summary_footer *sum_footer; 2729 unsigned short seg_type = curseg->seg_type; 2730 2731 curseg->inited = true; 2732 curseg->segno = curseg->next_segno; 2733 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2734 curseg->next_blkoff = 0; 2735 curseg->next_segno = NULL_SEGNO; 2736 2737 sum_footer = &(curseg->sum_blk->footer); 2738 memset(sum_footer, 0, sizeof(struct summary_footer)); 2739 2740 sanity_check_seg_type(sbi, seg_type); 2741 2742 if (IS_DATASEG(seg_type)) 2743 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2744 if (IS_NODESEG(seg_type)) 2745 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2746 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2747 } 2748 2749 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2750 { 2751 struct curseg_info *curseg = CURSEG_I(sbi, type); 2752 unsigned short seg_type = curseg->seg_type; 2753 2754 sanity_check_seg_type(sbi, seg_type); 2755 if (f2fs_need_rand_seg(sbi)) 2756 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2757 2758 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2759 if (__is_large_section(sbi)) 2760 return curseg->segno; 2761 2762 /* inmem log may not locate on any segment after mount */ 2763 if (!curseg->inited) 2764 return 0; 2765 2766 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2767 return 0; 2768 2769 if (test_opt(sbi, NOHEAP) && 2770 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2771 return 0; 2772 2773 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2774 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2775 2776 /* find segments from 0 to reuse freed segments */ 2777 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2778 return 0; 2779 2780 return curseg->segno; 2781 } 2782 2783 /* 2784 * Allocate a current working segment. 2785 * This function always allocates a free segment in LFS manner. 2786 */ 2787 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2788 { 2789 struct curseg_info *curseg = CURSEG_I(sbi, type); 2790 unsigned short seg_type = curseg->seg_type; 2791 unsigned int segno = curseg->segno; 2792 int dir = ALLOC_LEFT; 2793 2794 if (curseg->inited) 2795 write_sum_page(sbi, curseg->sum_blk, 2796 GET_SUM_BLOCK(sbi, segno)); 2797 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2798 dir = ALLOC_RIGHT; 2799 2800 if (test_opt(sbi, NOHEAP)) 2801 dir = ALLOC_RIGHT; 2802 2803 segno = __get_next_segno(sbi, type); 2804 get_new_segment(sbi, &segno, new_sec, dir); 2805 curseg->next_segno = segno; 2806 reset_curseg(sbi, type, 1); 2807 curseg->alloc_type = LFS; 2808 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2809 curseg->fragment_remained_chunk = 2810 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2811 } 2812 2813 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2814 int segno, block_t start) 2815 { 2816 struct seg_entry *se = get_seg_entry(sbi, segno); 2817 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2818 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2819 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2820 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2821 int i; 2822 2823 for (i = 0; i < entries; i++) 2824 target_map[i] = ckpt_map[i] | cur_map[i]; 2825 2826 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2827 } 2828 2829 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2830 struct curseg_info *seg) 2831 { 2832 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2833 } 2834 2835 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2836 { 2837 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2838 } 2839 2840 /* 2841 * This function always allocates a used segment(from dirty seglist) by SSR 2842 * manner, so it should recover the existing segment information of valid blocks 2843 */ 2844 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2845 { 2846 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2847 struct curseg_info *curseg = CURSEG_I(sbi, type); 2848 unsigned int new_segno = curseg->next_segno; 2849 struct f2fs_summary_block *sum_node; 2850 struct page *sum_page; 2851 2852 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2853 2854 __set_test_and_inuse(sbi, new_segno); 2855 2856 mutex_lock(&dirty_i->seglist_lock); 2857 __remove_dirty_segment(sbi, new_segno, PRE); 2858 __remove_dirty_segment(sbi, new_segno, DIRTY); 2859 mutex_unlock(&dirty_i->seglist_lock); 2860 2861 reset_curseg(sbi, type, 1); 2862 curseg->alloc_type = SSR; 2863 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2864 2865 sum_page = f2fs_get_sum_page(sbi, new_segno); 2866 if (IS_ERR(sum_page)) { 2867 /* GC won't be able to use stale summary pages by cp_error */ 2868 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2869 return; 2870 } 2871 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2872 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2873 f2fs_put_page(sum_page, 1); 2874 } 2875 2876 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2877 int alloc_mode, unsigned long long age); 2878 2879 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2880 int target_type, int alloc_mode, 2881 unsigned long long age) 2882 { 2883 struct curseg_info *curseg = CURSEG_I(sbi, type); 2884 2885 curseg->seg_type = target_type; 2886 2887 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2888 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2889 2890 curseg->seg_type = se->type; 2891 change_curseg(sbi, type); 2892 } else { 2893 /* allocate cold segment by default */ 2894 curseg->seg_type = CURSEG_COLD_DATA; 2895 new_curseg(sbi, type, true); 2896 } 2897 stat_inc_seg_type(sbi, curseg); 2898 } 2899 2900 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2901 { 2902 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2903 2904 if (!sbi->am.atgc_enabled) 2905 return; 2906 2907 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2908 2909 mutex_lock(&curseg->curseg_mutex); 2910 down_write(&SIT_I(sbi)->sentry_lock); 2911 2912 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2913 2914 up_write(&SIT_I(sbi)->sentry_lock); 2915 mutex_unlock(&curseg->curseg_mutex); 2916 2917 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2918 2919 } 2920 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2921 { 2922 __f2fs_init_atgc_curseg(sbi); 2923 } 2924 2925 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2926 { 2927 struct curseg_info *curseg = CURSEG_I(sbi, type); 2928 2929 mutex_lock(&curseg->curseg_mutex); 2930 if (!curseg->inited) 2931 goto out; 2932 2933 if (get_valid_blocks(sbi, curseg->segno, false)) { 2934 write_sum_page(sbi, curseg->sum_blk, 2935 GET_SUM_BLOCK(sbi, curseg->segno)); 2936 } else { 2937 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2938 __set_test_and_free(sbi, curseg->segno, true); 2939 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2940 } 2941 out: 2942 mutex_unlock(&curseg->curseg_mutex); 2943 } 2944 2945 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2946 { 2947 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2948 2949 if (sbi->am.atgc_enabled) 2950 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2951 } 2952 2953 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2954 { 2955 struct curseg_info *curseg = CURSEG_I(sbi, type); 2956 2957 mutex_lock(&curseg->curseg_mutex); 2958 if (!curseg->inited) 2959 goto out; 2960 if (get_valid_blocks(sbi, curseg->segno, false)) 2961 goto out; 2962 2963 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2964 __set_test_and_inuse(sbi, curseg->segno); 2965 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2966 out: 2967 mutex_unlock(&curseg->curseg_mutex); 2968 } 2969 2970 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2971 { 2972 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2973 2974 if (sbi->am.atgc_enabled) 2975 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2976 } 2977 2978 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2979 int alloc_mode, unsigned long long age) 2980 { 2981 struct curseg_info *curseg = CURSEG_I(sbi, type); 2982 unsigned segno = NULL_SEGNO; 2983 unsigned short seg_type = curseg->seg_type; 2984 int i, cnt; 2985 bool reversed = false; 2986 2987 sanity_check_seg_type(sbi, seg_type); 2988 2989 /* f2fs_need_SSR() already forces to do this */ 2990 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2991 curseg->next_segno = segno; 2992 return 1; 2993 } 2994 2995 /* For node segments, let's do SSR more intensively */ 2996 if (IS_NODESEG(seg_type)) { 2997 if (seg_type >= CURSEG_WARM_NODE) { 2998 reversed = true; 2999 i = CURSEG_COLD_NODE; 3000 } else { 3001 i = CURSEG_HOT_NODE; 3002 } 3003 cnt = NR_CURSEG_NODE_TYPE; 3004 } else { 3005 if (seg_type >= CURSEG_WARM_DATA) { 3006 reversed = true; 3007 i = CURSEG_COLD_DATA; 3008 } else { 3009 i = CURSEG_HOT_DATA; 3010 } 3011 cnt = NR_CURSEG_DATA_TYPE; 3012 } 3013 3014 for (; cnt-- > 0; reversed ? i-- : i++) { 3015 if (i == seg_type) 3016 continue; 3017 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3018 curseg->next_segno = segno; 3019 return 1; 3020 } 3021 } 3022 3023 /* find valid_blocks=0 in dirty list */ 3024 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3025 segno = get_free_segment(sbi); 3026 if (segno != NULL_SEGNO) { 3027 curseg->next_segno = segno; 3028 return 1; 3029 } 3030 } 3031 return 0; 3032 } 3033 3034 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3035 { 3036 struct curseg_info *curseg = CURSEG_I(sbi, type); 3037 3038 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3039 curseg->seg_type == CURSEG_WARM_NODE) 3040 return true; 3041 if (curseg->alloc_type == LFS && 3042 is_next_segment_free(sbi, curseg, type) && 3043 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3044 return true; 3045 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3046 return true; 3047 return false; 3048 } 3049 3050 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3051 unsigned int start, unsigned int end) 3052 { 3053 struct curseg_info *curseg = CURSEG_I(sbi, type); 3054 unsigned int segno; 3055 3056 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3057 mutex_lock(&curseg->curseg_mutex); 3058 down_write(&SIT_I(sbi)->sentry_lock); 3059 3060 segno = CURSEG_I(sbi, type)->segno; 3061 if (segno < start || segno > end) 3062 goto unlock; 3063 3064 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3065 change_curseg(sbi, type); 3066 else 3067 new_curseg(sbi, type, true); 3068 3069 stat_inc_seg_type(sbi, curseg); 3070 3071 locate_dirty_segment(sbi, segno); 3072 unlock: 3073 up_write(&SIT_I(sbi)->sentry_lock); 3074 3075 if (segno != curseg->segno) 3076 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3077 type, segno, curseg->segno); 3078 3079 mutex_unlock(&curseg->curseg_mutex); 3080 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3081 } 3082 3083 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3084 bool new_sec, bool force) 3085 { 3086 struct curseg_info *curseg = CURSEG_I(sbi, type); 3087 unsigned int old_segno; 3088 3089 if (!force && curseg->inited && 3090 !curseg->next_blkoff && 3091 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3092 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3093 return; 3094 3095 old_segno = curseg->segno; 3096 new_curseg(sbi, type, true); 3097 stat_inc_seg_type(sbi, curseg); 3098 locate_dirty_segment(sbi, old_segno); 3099 } 3100 3101 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3102 { 3103 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3104 down_write(&SIT_I(sbi)->sentry_lock); 3105 __allocate_new_segment(sbi, type, true, force); 3106 up_write(&SIT_I(sbi)->sentry_lock); 3107 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3108 } 3109 3110 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3111 { 3112 int i; 3113 3114 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3115 down_write(&SIT_I(sbi)->sentry_lock); 3116 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3117 __allocate_new_segment(sbi, i, false, false); 3118 up_write(&SIT_I(sbi)->sentry_lock); 3119 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3120 } 3121 3122 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3123 struct cp_control *cpc) 3124 { 3125 __u64 trim_start = cpc->trim_start; 3126 bool has_candidate = false; 3127 3128 down_write(&SIT_I(sbi)->sentry_lock); 3129 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3130 if (add_discard_addrs(sbi, cpc, true)) { 3131 has_candidate = true; 3132 break; 3133 } 3134 } 3135 up_write(&SIT_I(sbi)->sentry_lock); 3136 3137 cpc->trim_start = trim_start; 3138 return has_candidate; 3139 } 3140 3141 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3142 struct discard_policy *dpolicy, 3143 unsigned int start, unsigned int end) 3144 { 3145 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3146 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3147 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3148 struct discard_cmd *dc; 3149 struct blk_plug plug; 3150 int issued; 3151 unsigned int trimmed = 0; 3152 3153 next: 3154 issued = 0; 3155 3156 mutex_lock(&dcc->cmd_lock); 3157 if (unlikely(dcc->rbtree_check)) 3158 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3159 3160 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3161 &prev_dc, &next_dc, &insert_p, &insert_parent); 3162 if (!dc) 3163 dc = next_dc; 3164 3165 blk_start_plug(&plug); 3166 3167 while (dc && dc->di.lstart <= end) { 3168 struct rb_node *node; 3169 int err = 0; 3170 3171 if (dc->di.len < dpolicy->granularity) 3172 goto skip; 3173 3174 if (dc->state != D_PREP) { 3175 list_move_tail(&dc->list, &dcc->fstrim_list); 3176 goto skip; 3177 } 3178 3179 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3180 3181 if (issued >= dpolicy->max_requests) { 3182 start = dc->di.lstart + dc->di.len; 3183 3184 if (err) 3185 __remove_discard_cmd(sbi, dc); 3186 3187 blk_finish_plug(&plug); 3188 mutex_unlock(&dcc->cmd_lock); 3189 trimmed += __wait_all_discard_cmd(sbi, NULL); 3190 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3191 goto next; 3192 } 3193 skip: 3194 node = rb_next(&dc->rb_node); 3195 if (err) 3196 __remove_discard_cmd(sbi, dc); 3197 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3198 3199 if (fatal_signal_pending(current)) 3200 break; 3201 } 3202 3203 blk_finish_plug(&plug); 3204 mutex_unlock(&dcc->cmd_lock); 3205 3206 return trimmed; 3207 } 3208 3209 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3210 { 3211 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3212 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3213 unsigned int start_segno, end_segno; 3214 block_t start_block, end_block; 3215 struct cp_control cpc; 3216 struct discard_policy dpolicy; 3217 unsigned long long trimmed = 0; 3218 int err = 0; 3219 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3220 3221 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3222 return -EINVAL; 3223 3224 if (end < MAIN_BLKADDR(sbi)) 3225 goto out; 3226 3227 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3228 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3229 return -EFSCORRUPTED; 3230 } 3231 3232 /* start/end segment number in main_area */ 3233 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3234 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3235 GET_SEGNO(sbi, end); 3236 if (need_align) { 3237 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3238 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3239 } 3240 3241 cpc.reason = CP_DISCARD; 3242 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3243 cpc.trim_start = start_segno; 3244 cpc.trim_end = end_segno; 3245 3246 if (sbi->discard_blks == 0) 3247 goto out; 3248 3249 f2fs_down_write(&sbi->gc_lock); 3250 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3251 err = f2fs_write_checkpoint(sbi, &cpc); 3252 f2fs_up_write(&sbi->gc_lock); 3253 if (err) 3254 goto out; 3255 3256 /* 3257 * We filed discard candidates, but actually we don't need to wait for 3258 * all of them, since they'll be issued in idle time along with runtime 3259 * discard option. User configuration looks like using runtime discard 3260 * or periodic fstrim instead of it. 3261 */ 3262 if (f2fs_realtime_discard_enable(sbi)) 3263 goto out; 3264 3265 start_block = START_BLOCK(sbi, start_segno); 3266 end_block = START_BLOCK(sbi, end_segno + 1); 3267 3268 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3269 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3270 start_block, end_block); 3271 3272 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3273 start_block, end_block); 3274 out: 3275 if (!err) 3276 range->len = F2FS_BLK_TO_BYTES(trimmed); 3277 return err; 3278 } 3279 3280 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3281 { 3282 switch (hint) { 3283 case WRITE_LIFE_SHORT: 3284 return CURSEG_HOT_DATA; 3285 case WRITE_LIFE_EXTREME: 3286 return CURSEG_COLD_DATA; 3287 default: 3288 return CURSEG_WARM_DATA; 3289 } 3290 } 3291 3292 static int __get_segment_type_2(struct f2fs_io_info *fio) 3293 { 3294 if (fio->type == DATA) 3295 return CURSEG_HOT_DATA; 3296 else 3297 return CURSEG_HOT_NODE; 3298 } 3299 3300 static int __get_segment_type_4(struct f2fs_io_info *fio) 3301 { 3302 if (fio->type == DATA) { 3303 struct inode *inode = fio->page->mapping->host; 3304 3305 if (S_ISDIR(inode->i_mode)) 3306 return CURSEG_HOT_DATA; 3307 else 3308 return CURSEG_COLD_DATA; 3309 } else { 3310 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3311 return CURSEG_WARM_NODE; 3312 else 3313 return CURSEG_COLD_NODE; 3314 } 3315 } 3316 3317 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3318 { 3319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3320 struct extent_info ei = {}; 3321 3322 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3323 if (!ei.age) 3324 return NO_CHECK_TYPE; 3325 if (ei.age <= sbi->hot_data_age_threshold) 3326 return CURSEG_HOT_DATA; 3327 if (ei.age <= sbi->warm_data_age_threshold) 3328 return CURSEG_WARM_DATA; 3329 return CURSEG_COLD_DATA; 3330 } 3331 return NO_CHECK_TYPE; 3332 } 3333 3334 static int __get_segment_type_6(struct f2fs_io_info *fio) 3335 { 3336 if (fio->type == DATA) { 3337 struct inode *inode = fio->page->mapping->host; 3338 int type; 3339 3340 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3341 return CURSEG_COLD_DATA_PINNED; 3342 3343 if (page_private_gcing(fio->page)) { 3344 if (fio->sbi->am.atgc_enabled && 3345 (fio->io_type == FS_DATA_IO) && 3346 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3347 return CURSEG_ALL_DATA_ATGC; 3348 else 3349 return CURSEG_COLD_DATA; 3350 } 3351 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3352 return CURSEG_COLD_DATA; 3353 3354 type = __get_age_segment_type(inode, fio->page->index); 3355 if (type != NO_CHECK_TYPE) 3356 return type; 3357 3358 if (file_is_hot(inode) || 3359 is_inode_flag_set(inode, FI_HOT_DATA) || 3360 f2fs_is_cow_file(inode)) 3361 return CURSEG_HOT_DATA; 3362 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3363 } else { 3364 if (IS_DNODE(fio->page)) 3365 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3366 CURSEG_HOT_NODE; 3367 return CURSEG_COLD_NODE; 3368 } 3369 } 3370 3371 static int __get_segment_type(struct f2fs_io_info *fio) 3372 { 3373 int type = 0; 3374 3375 switch (F2FS_OPTION(fio->sbi).active_logs) { 3376 case 2: 3377 type = __get_segment_type_2(fio); 3378 break; 3379 case 4: 3380 type = __get_segment_type_4(fio); 3381 break; 3382 case 6: 3383 type = __get_segment_type_6(fio); 3384 break; 3385 default: 3386 f2fs_bug_on(fio->sbi, true); 3387 } 3388 3389 if (IS_HOT(type)) 3390 fio->temp = HOT; 3391 else if (IS_WARM(type)) 3392 fio->temp = WARM; 3393 else 3394 fio->temp = COLD; 3395 return type; 3396 } 3397 3398 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3399 struct curseg_info *seg) 3400 { 3401 /* To allocate block chunks in different sizes, use random number */ 3402 if (--seg->fragment_remained_chunk > 0) 3403 return; 3404 3405 seg->fragment_remained_chunk = 3406 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3407 seg->next_blkoff += 3408 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3409 } 3410 3411 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3412 block_t old_blkaddr, block_t *new_blkaddr, 3413 struct f2fs_summary *sum, int type, 3414 struct f2fs_io_info *fio) 3415 { 3416 struct sit_info *sit_i = SIT_I(sbi); 3417 struct curseg_info *curseg = CURSEG_I(sbi, type); 3418 unsigned long long old_mtime; 3419 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3420 struct seg_entry *se = NULL; 3421 bool segment_full = false; 3422 3423 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3424 3425 mutex_lock(&curseg->curseg_mutex); 3426 down_write(&sit_i->sentry_lock); 3427 3428 if (from_gc) { 3429 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3430 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3431 sanity_check_seg_type(sbi, se->type); 3432 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3433 } 3434 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3435 3436 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3437 3438 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3439 3440 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3441 if (curseg->alloc_type == SSR) { 3442 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3443 } else { 3444 curseg->next_blkoff++; 3445 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3446 f2fs_randomize_chunk(sbi, curseg); 3447 } 3448 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3449 segment_full = true; 3450 stat_inc_block_count(sbi, curseg); 3451 3452 if (from_gc) { 3453 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3454 } else { 3455 update_segment_mtime(sbi, old_blkaddr, 0); 3456 old_mtime = 0; 3457 } 3458 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3459 3460 /* 3461 * SIT information should be updated before segment allocation, 3462 * since SSR needs latest valid block information. 3463 */ 3464 update_sit_entry(sbi, *new_blkaddr, 1); 3465 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3466 update_sit_entry(sbi, old_blkaddr, -1); 3467 3468 /* 3469 * If the current segment is full, flush it out and replace it with a 3470 * new segment. 3471 */ 3472 if (segment_full) { 3473 if (from_gc) { 3474 get_atssr_segment(sbi, type, se->type, 3475 AT_SSR, se->mtime); 3476 } else { 3477 if (need_new_seg(sbi, type)) 3478 new_curseg(sbi, type, false); 3479 else 3480 change_curseg(sbi, type); 3481 stat_inc_seg_type(sbi, curseg); 3482 } 3483 } 3484 /* 3485 * segment dirty status should be updated after segment allocation, 3486 * so we just need to update status only one time after previous 3487 * segment being closed. 3488 */ 3489 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3490 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3491 3492 if (IS_DATASEG(curseg->seg_type)) 3493 atomic64_inc(&sbi->allocated_data_blocks); 3494 3495 up_write(&sit_i->sentry_lock); 3496 3497 if (page && IS_NODESEG(curseg->seg_type)) { 3498 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3499 3500 f2fs_inode_chksum_set(sbi, page); 3501 } 3502 3503 if (fio) { 3504 struct f2fs_bio_info *io; 3505 3506 if (F2FS_IO_ALIGNED(sbi)) 3507 fio->retry = 0; 3508 3509 INIT_LIST_HEAD(&fio->list); 3510 fio->in_list = 1; 3511 io = sbi->write_io[fio->type] + fio->temp; 3512 spin_lock(&io->io_lock); 3513 list_add_tail(&fio->list, &io->io_list); 3514 spin_unlock(&io->io_lock); 3515 } 3516 3517 mutex_unlock(&curseg->curseg_mutex); 3518 3519 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3520 } 3521 3522 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3523 block_t blkaddr, unsigned int blkcnt) 3524 { 3525 if (!f2fs_is_multi_device(sbi)) 3526 return; 3527 3528 while (1) { 3529 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3530 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3531 3532 /* update device state for fsync */ 3533 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3534 3535 /* update device state for checkpoint */ 3536 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3537 spin_lock(&sbi->dev_lock); 3538 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3539 spin_unlock(&sbi->dev_lock); 3540 } 3541 3542 if (blkcnt <= blks) 3543 break; 3544 blkcnt -= blks; 3545 blkaddr += blks; 3546 } 3547 } 3548 3549 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3550 { 3551 int type = __get_segment_type(fio); 3552 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3553 3554 if (keep_order) 3555 f2fs_down_read(&fio->sbi->io_order_lock); 3556 reallocate: 3557 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3558 &fio->new_blkaddr, sum, type, fio); 3559 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3560 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3561 3562 /* writeout dirty page into bdev */ 3563 f2fs_submit_page_write(fio); 3564 if (fio->retry) { 3565 fio->old_blkaddr = fio->new_blkaddr; 3566 goto reallocate; 3567 } 3568 3569 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3570 3571 if (keep_order) 3572 f2fs_up_read(&fio->sbi->io_order_lock); 3573 } 3574 3575 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3576 enum iostat_type io_type) 3577 { 3578 struct f2fs_io_info fio = { 3579 .sbi = sbi, 3580 .type = META, 3581 .temp = HOT, 3582 .op = REQ_OP_WRITE, 3583 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3584 .old_blkaddr = page->index, 3585 .new_blkaddr = page->index, 3586 .page = page, 3587 .encrypted_page = NULL, 3588 .in_list = 0, 3589 }; 3590 3591 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3592 fio.op_flags &= ~REQ_META; 3593 3594 set_page_writeback(page); 3595 f2fs_submit_page_write(&fio); 3596 3597 stat_inc_meta_count(sbi, page->index); 3598 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3599 } 3600 3601 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3602 { 3603 struct f2fs_summary sum; 3604 3605 set_summary(&sum, nid, 0, 0); 3606 do_write_page(&sum, fio); 3607 3608 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3609 } 3610 3611 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3612 struct f2fs_io_info *fio) 3613 { 3614 struct f2fs_sb_info *sbi = fio->sbi; 3615 struct f2fs_summary sum; 3616 3617 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3618 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3619 f2fs_update_age_extent_cache(dn); 3620 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3621 do_write_page(&sum, fio); 3622 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3623 3624 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3625 } 3626 3627 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3628 { 3629 int err; 3630 struct f2fs_sb_info *sbi = fio->sbi; 3631 unsigned int segno; 3632 3633 fio->new_blkaddr = fio->old_blkaddr; 3634 /* i/o temperature is needed for passing down write hints */ 3635 __get_segment_type(fio); 3636 3637 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3638 3639 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3640 set_sbi_flag(sbi, SBI_NEED_FSCK); 3641 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3642 __func__, segno); 3643 err = -EFSCORRUPTED; 3644 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3645 goto drop_bio; 3646 } 3647 3648 if (f2fs_cp_error(sbi)) { 3649 err = -EIO; 3650 goto drop_bio; 3651 } 3652 3653 if (fio->post_read) 3654 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3655 3656 stat_inc_inplace_blocks(fio->sbi); 3657 3658 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3659 err = f2fs_merge_page_bio(fio); 3660 else 3661 err = f2fs_submit_page_bio(fio); 3662 if (!err) { 3663 f2fs_update_device_state(fio->sbi, fio->ino, 3664 fio->new_blkaddr, 1); 3665 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3666 fio->io_type, F2FS_BLKSIZE); 3667 } 3668 3669 return err; 3670 drop_bio: 3671 if (fio->bio && *(fio->bio)) { 3672 struct bio *bio = *(fio->bio); 3673 3674 bio->bi_status = BLK_STS_IOERR; 3675 bio_endio(bio); 3676 *(fio->bio) = NULL; 3677 } 3678 return err; 3679 } 3680 3681 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3682 unsigned int segno) 3683 { 3684 int i; 3685 3686 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3687 if (CURSEG_I(sbi, i)->segno == segno) 3688 break; 3689 } 3690 return i; 3691 } 3692 3693 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3694 block_t old_blkaddr, block_t new_blkaddr, 3695 bool recover_curseg, bool recover_newaddr, 3696 bool from_gc) 3697 { 3698 struct sit_info *sit_i = SIT_I(sbi); 3699 struct curseg_info *curseg; 3700 unsigned int segno, old_cursegno; 3701 struct seg_entry *se; 3702 int type; 3703 unsigned short old_blkoff; 3704 unsigned char old_alloc_type; 3705 3706 segno = GET_SEGNO(sbi, new_blkaddr); 3707 se = get_seg_entry(sbi, segno); 3708 type = se->type; 3709 3710 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3711 3712 if (!recover_curseg) { 3713 /* for recovery flow */ 3714 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3715 if (old_blkaddr == NULL_ADDR) 3716 type = CURSEG_COLD_DATA; 3717 else 3718 type = CURSEG_WARM_DATA; 3719 } 3720 } else { 3721 if (IS_CURSEG(sbi, segno)) { 3722 /* se->type is volatile as SSR allocation */ 3723 type = __f2fs_get_curseg(sbi, segno); 3724 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3725 } else { 3726 type = CURSEG_WARM_DATA; 3727 } 3728 } 3729 3730 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3731 curseg = CURSEG_I(sbi, type); 3732 3733 mutex_lock(&curseg->curseg_mutex); 3734 down_write(&sit_i->sentry_lock); 3735 3736 old_cursegno = curseg->segno; 3737 old_blkoff = curseg->next_blkoff; 3738 old_alloc_type = curseg->alloc_type; 3739 3740 /* change the current segment */ 3741 if (segno != curseg->segno) { 3742 curseg->next_segno = segno; 3743 change_curseg(sbi, type); 3744 } 3745 3746 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3747 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3748 3749 if (!recover_curseg || recover_newaddr) { 3750 if (!from_gc) 3751 update_segment_mtime(sbi, new_blkaddr, 0); 3752 update_sit_entry(sbi, new_blkaddr, 1); 3753 } 3754 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3755 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3756 if (!from_gc) 3757 update_segment_mtime(sbi, old_blkaddr, 0); 3758 update_sit_entry(sbi, old_blkaddr, -1); 3759 } 3760 3761 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3762 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3763 3764 locate_dirty_segment(sbi, old_cursegno); 3765 3766 if (recover_curseg) { 3767 if (old_cursegno != curseg->segno) { 3768 curseg->next_segno = old_cursegno; 3769 change_curseg(sbi, type); 3770 } 3771 curseg->next_blkoff = old_blkoff; 3772 curseg->alloc_type = old_alloc_type; 3773 } 3774 3775 up_write(&sit_i->sentry_lock); 3776 mutex_unlock(&curseg->curseg_mutex); 3777 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3778 } 3779 3780 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3781 block_t old_addr, block_t new_addr, 3782 unsigned char version, bool recover_curseg, 3783 bool recover_newaddr) 3784 { 3785 struct f2fs_summary sum; 3786 3787 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3788 3789 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3790 recover_curseg, recover_newaddr, false); 3791 3792 f2fs_update_data_blkaddr(dn, new_addr); 3793 } 3794 3795 void f2fs_wait_on_page_writeback(struct page *page, 3796 enum page_type type, bool ordered, bool locked) 3797 { 3798 if (PageWriteback(page)) { 3799 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3800 3801 /* submit cached LFS IO */ 3802 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3803 /* submit cached IPU IO */ 3804 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3805 if (ordered) { 3806 wait_on_page_writeback(page); 3807 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3808 } else { 3809 wait_for_stable_page(page); 3810 } 3811 } 3812 } 3813 3814 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3815 { 3816 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3817 struct page *cpage; 3818 3819 if (!f2fs_post_read_required(inode)) 3820 return; 3821 3822 if (!__is_valid_data_blkaddr(blkaddr)) 3823 return; 3824 3825 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3826 if (cpage) { 3827 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3828 f2fs_put_page(cpage, 1); 3829 } 3830 } 3831 3832 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3833 block_t len) 3834 { 3835 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3836 block_t i; 3837 3838 if (!f2fs_post_read_required(inode)) 3839 return; 3840 3841 for (i = 0; i < len; i++) 3842 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3843 3844 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 3845 } 3846 3847 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3848 { 3849 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3850 struct curseg_info *seg_i; 3851 unsigned char *kaddr; 3852 struct page *page; 3853 block_t start; 3854 int i, j, offset; 3855 3856 start = start_sum_block(sbi); 3857 3858 page = f2fs_get_meta_page(sbi, start++); 3859 if (IS_ERR(page)) 3860 return PTR_ERR(page); 3861 kaddr = (unsigned char *)page_address(page); 3862 3863 /* Step 1: restore nat cache */ 3864 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3865 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3866 3867 /* Step 2: restore sit cache */ 3868 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3869 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3870 offset = 2 * SUM_JOURNAL_SIZE; 3871 3872 /* Step 3: restore summary entries */ 3873 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3874 unsigned short blk_off; 3875 unsigned int segno; 3876 3877 seg_i = CURSEG_I(sbi, i); 3878 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3879 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3880 seg_i->next_segno = segno; 3881 reset_curseg(sbi, i, 0); 3882 seg_i->alloc_type = ckpt->alloc_type[i]; 3883 seg_i->next_blkoff = blk_off; 3884 3885 if (seg_i->alloc_type == SSR) 3886 blk_off = sbi->blocks_per_seg; 3887 3888 for (j = 0; j < blk_off; j++) { 3889 struct f2fs_summary *s; 3890 3891 s = (struct f2fs_summary *)(kaddr + offset); 3892 seg_i->sum_blk->entries[j] = *s; 3893 offset += SUMMARY_SIZE; 3894 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3895 SUM_FOOTER_SIZE) 3896 continue; 3897 3898 f2fs_put_page(page, 1); 3899 page = NULL; 3900 3901 page = f2fs_get_meta_page(sbi, start++); 3902 if (IS_ERR(page)) 3903 return PTR_ERR(page); 3904 kaddr = (unsigned char *)page_address(page); 3905 offset = 0; 3906 } 3907 } 3908 f2fs_put_page(page, 1); 3909 return 0; 3910 } 3911 3912 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3913 { 3914 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3915 struct f2fs_summary_block *sum; 3916 struct curseg_info *curseg; 3917 struct page *new; 3918 unsigned short blk_off; 3919 unsigned int segno = 0; 3920 block_t blk_addr = 0; 3921 int err = 0; 3922 3923 /* get segment number and block addr */ 3924 if (IS_DATASEG(type)) { 3925 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3926 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3927 CURSEG_HOT_DATA]); 3928 if (__exist_node_summaries(sbi)) 3929 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3930 else 3931 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3932 } else { 3933 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3934 CURSEG_HOT_NODE]); 3935 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3936 CURSEG_HOT_NODE]); 3937 if (__exist_node_summaries(sbi)) 3938 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3939 type - CURSEG_HOT_NODE); 3940 else 3941 blk_addr = GET_SUM_BLOCK(sbi, segno); 3942 } 3943 3944 new = f2fs_get_meta_page(sbi, blk_addr); 3945 if (IS_ERR(new)) 3946 return PTR_ERR(new); 3947 sum = (struct f2fs_summary_block *)page_address(new); 3948 3949 if (IS_NODESEG(type)) { 3950 if (__exist_node_summaries(sbi)) { 3951 struct f2fs_summary *ns = &sum->entries[0]; 3952 int i; 3953 3954 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3955 ns->version = 0; 3956 ns->ofs_in_node = 0; 3957 } 3958 } else { 3959 err = f2fs_restore_node_summary(sbi, segno, sum); 3960 if (err) 3961 goto out; 3962 } 3963 } 3964 3965 /* set uncompleted segment to curseg */ 3966 curseg = CURSEG_I(sbi, type); 3967 mutex_lock(&curseg->curseg_mutex); 3968 3969 /* update journal info */ 3970 down_write(&curseg->journal_rwsem); 3971 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3972 up_write(&curseg->journal_rwsem); 3973 3974 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3975 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3976 curseg->next_segno = segno; 3977 reset_curseg(sbi, type, 0); 3978 curseg->alloc_type = ckpt->alloc_type[type]; 3979 curseg->next_blkoff = blk_off; 3980 mutex_unlock(&curseg->curseg_mutex); 3981 out: 3982 f2fs_put_page(new, 1); 3983 return err; 3984 } 3985 3986 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3987 { 3988 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3989 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3990 int type = CURSEG_HOT_DATA; 3991 int err; 3992 3993 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3994 int npages = f2fs_npages_for_summary_flush(sbi, true); 3995 3996 if (npages >= 2) 3997 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3998 META_CP, true); 3999 4000 /* restore for compacted data summary */ 4001 err = read_compacted_summaries(sbi); 4002 if (err) 4003 return err; 4004 type = CURSEG_HOT_NODE; 4005 } 4006 4007 if (__exist_node_summaries(sbi)) 4008 f2fs_ra_meta_pages(sbi, 4009 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4010 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4011 4012 for (; type <= CURSEG_COLD_NODE; type++) { 4013 err = read_normal_summaries(sbi, type); 4014 if (err) 4015 return err; 4016 } 4017 4018 /* sanity check for summary blocks */ 4019 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4020 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4021 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4022 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4023 return -EINVAL; 4024 } 4025 4026 return 0; 4027 } 4028 4029 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4030 { 4031 struct page *page; 4032 unsigned char *kaddr; 4033 struct f2fs_summary *summary; 4034 struct curseg_info *seg_i; 4035 int written_size = 0; 4036 int i, j; 4037 4038 page = f2fs_grab_meta_page(sbi, blkaddr++); 4039 kaddr = (unsigned char *)page_address(page); 4040 memset(kaddr, 0, PAGE_SIZE); 4041 4042 /* Step 1: write nat cache */ 4043 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4044 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4045 written_size += SUM_JOURNAL_SIZE; 4046 4047 /* Step 2: write sit cache */ 4048 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4049 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4050 written_size += SUM_JOURNAL_SIZE; 4051 4052 /* Step 3: write summary entries */ 4053 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4054 seg_i = CURSEG_I(sbi, i); 4055 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4056 if (!page) { 4057 page = f2fs_grab_meta_page(sbi, blkaddr++); 4058 kaddr = (unsigned char *)page_address(page); 4059 memset(kaddr, 0, PAGE_SIZE); 4060 written_size = 0; 4061 } 4062 summary = (struct f2fs_summary *)(kaddr + written_size); 4063 *summary = seg_i->sum_blk->entries[j]; 4064 written_size += SUMMARY_SIZE; 4065 4066 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4067 SUM_FOOTER_SIZE) 4068 continue; 4069 4070 set_page_dirty(page); 4071 f2fs_put_page(page, 1); 4072 page = NULL; 4073 } 4074 } 4075 if (page) { 4076 set_page_dirty(page); 4077 f2fs_put_page(page, 1); 4078 } 4079 } 4080 4081 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4082 block_t blkaddr, int type) 4083 { 4084 int i, end; 4085 4086 if (IS_DATASEG(type)) 4087 end = type + NR_CURSEG_DATA_TYPE; 4088 else 4089 end = type + NR_CURSEG_NODE_TYPE; 4090 4091 for (i = type; i < end; i++) 4092 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4093 } 4094 4095 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4096 { 4097 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4098 write_compacted_summaries(sbi, start_blk); 4099 else 4100 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4101 } 4102 4103 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4104 { 4105 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4106 } 4107 4108 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4109 unsigned int val, int alloc) 4110 { 4111 int i; 4112 4113 if (type == NAT_JOURNAL) { 4114 for (i = 0; i < nats_in_cursum(journal); i++) { 4115 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4116 return i; 4117 } 4118 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4119 return update_nats_in_cursum(journal, 1); 4120 } else if (type == SIT_JOURNAL) { 4121 for (i = 0; i < sits_in_cursum(journal); i++) 4122 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4123 return i; 4124 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4125 return update_sits_in_cursum(journal, 1); 4126 } 4127 return -1; 4128 } 4129 4130 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4131 unsigned int segno) 4132 { 4133 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4134 } 4135 4136 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4137 unsigned int start) 4138 { 4139 struct sit_info *sit_i = SIT_I(sbi); 4140 struct page *page; 4141 pgoff_t src_off, dst_off; 4142 4143 src_off = current_sit_addr(sbi, start); 4144 dst_off = next_sit_addr(sbi, src_off); 4145 4146 page = f2fs_grab_meta_page(sbi, dst_off); 4147 seg_info_to_sit_page(sbi, page, start); 4148 4149 set_page_dirty(page); 4150 set_to_next_sit(sit_i, start); 4151 4152 return page; 4153 } 4154 4155 static struct sit_entry_set *grab_sit_entry_set(void) 4156 { 4157 struct sit_entry_set *ses = 4158 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4159 GFP_NOFS, true, NULL); 4160 4161 ses->entry_cnt = 0; 4162 INIT_LIST_HEAD(&ses->set_list); 4163 return ses; 4164 } 4165 4166 static void release_sit_entry_set(struct sit_entry_set *ses) 4167 { 4168 list_del(&ses->set_list); 4169 kmem_cache_free(sit_entry_set_slab, ses); 4170 } 4171 4172 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4173 struct list_head *head) 4174 { 4175 struct sit_entry_set *next = ses; 4176 4177 if (list_is_last(&ses->set_list, head)) 4178 return; 4179 4180 list_for_each_entry_continue(next, head, set_list) 4181 if (ses->entry_cnt <= next->entry_cnt) { 4182 list_move_tail(&ses->set_list, &next->set_list); 4183 return; 4184 } 4185 4186 list_move_tail(&ses->set_list, head); 4187 } 4188 4189 static void add_sit_entry(unsigned int segno, struct list_head *head) 4190 { 4191 struct sit_entry_set *ses; 4192 unsigned int start_segno = START_SEGNO(segno); 4193 4194 list_for_each_entry(ses, head, set_list) { 4195 if (ses->start_segno == start_segno) { 4196 ses->entry_cnt++; 4197 adjust_sit_entry_set(ses, head); 4198 return; 4199 } 4200 } 4201 4202 ses = grab_sit_entry_set(); 4203 4204 ses->start_segno = start_segno; 4205 ses->entry_cnt++; 4206 list_add(&ses->set_list, head); 4207 } 4208 4209 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4210 { 4211 struct f2fs_sm_info *sm_info = SM_I(sbi); 4212 struct list_head *set_list = &sm_info->sit_entry_set; 4213 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4214 unsigned int segno; 4215 4216 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4217 add_sit_entry(segno, set_list); 4218 } 4219 4220 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4221 { 4222 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4223 struct f2fs_journal *journal = curseg->journal; 4224 int i; 4225 4226 down_write(&curseg->journal_rwsem); 4227 for (i = 0; i < sits_in_cursum(journal); i++) { 4228 unsigned int segno; 4229 bool dirtied; 4230 4231 segno = le32_to_cpu(segno_in_journal(journal, i)); 4232 dirtied = __mark_sit_entry_dirty(sbi, segno); 4233 4234 if (!dirtied) 4235 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4236 } 4237 update_sits_in_cursum(journal, -i); 4238 up_write(&curseg->journal_rwsem); 4239 } 4240 4241 /* 4242 * CP calls this function, which flushes SIT entries including sit_journal, 4243 * and moves prefree segs to free segs. 4244 */ 4245 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4246 { 4247 struct sit_info *sit_i = SIT_I(sbi); 4248 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4249 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4250 struct f2fs_journal *journal = curseg->journal; 4251 struct sit_entry_set *ses, *tmp; 4252 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4253 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4254 struct seg_entry *se; 4255 4256 down_write(&sit_i->sentry_lock); 4257 4258 if (!sit_i->dirty_sentries) 4259 goto out; 4260 4261 /* 4262 * add and account sit entries of dirty bitmap in sit entry 4263 * set temporarily 4264 */ 4265 add_sits_in_set(sbi); 4266 4267 /* 4268 * if there are no enough space in journal to store dirty sit 4269 * entries, remove all entries from journal and add and account 4270 * them in sit entry set. 4271 */ 4272 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4273 !to_journal) 4274 remove_sits_in_journal(sbi); 4275 4276 /* 4277 * there are two steps to flush sit entries: 4278 * #1, flush sit entries to journal in current cold data summary block. 4279 * #2, flush sit entries to sit page. 4280 */ 4281 list_for_each_entry_safe(ses, tmp, head, set_list) { 4282 struct page *page = NULL; 4283 struct f2fs_sit_block *raw_sit = NULL; 4284 unsigned int start_segno = ses->start_segno; 4285 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4286 (unsigned long)MAIN_SEGS(sbi)); 4287 unsigned int segno = start_segno; 4288 4289 if (to_journal && 4290 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4291 to_journal = false; 4292 4293 if (to_journal) { 4294 down_write(&curseg->journal_rwsem); 4295 } else { 4296 page = get_next_sit_page(sbi, start_segno); 4297 raw_sit = page_address(page); 4298 } 4299 4300 /* flush dirty sit entries in region of current sit set */ 4301 for_each_set_bit_from(segno, bitmap, end) { 4302 int offset, sit_offset; 4303 4304 se = get_seg_entry(sbi, segno); 4305 #ifdef CONFIG_F2FS_CHECK_FS 4306 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4307 SIT_VBLOCK_MAP_SIZE)) 4308 f2fs_bug_on(sbi, 1); 4309 #endif 4310 4311 /* add discard candidates */ 4312 if (!(cpc->reason & CP_DISCARD)) { 4313 cpc->trim_start = segno; 4314 add_discard_addrs(sbi, cpc, false); 4315 } 4316 4317 if (to_journal) { 4318 offset = f2fs_lookup_journal_in_cursum(journal, 4319 SIT_JOURNAL, segno, 1); 4320 f2fs_bug_on(sbi, offset < 0); 4321 segno_in_journal(journal, offset) = 4322 cpu_to_le32(segno); 4323 seg_info_to_raw_sit(se, 4324 &sit_in_journal(journal, offset)); 4325 check_block_count(sbi, segno, 4326 &sit_in_journal(journal, offset)); 4327 } else { 4328 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4329 seg_info_to_raw_sit(se, 4330 &raw_sit->entries[sit_offset]); 4331 check_block_count(sbi, segno, 4332 &raw_sit->entries[sit_offset]); 4333 } 4334 4335 __clear_bit(segno, bitmap); 4336 sit_i->dirty_sentries--; 4337 ses->entry_cnt--; 4338 } 4339 4340 if (to_journal) 4341 up_write(&curseg->journal_rwsem); 4342 else 4343 f2fs_put_page(page, 1); 4344 4345 f2fs_bug_on(sbi, ses->entry_cnt); 4346 release_sit_entry_set(ses); 4347 } 4348 4349 f2fs_bug_on(sbi, !list_empty(head)); 4350 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4351 out: 4352 if (cpc->reason & CP_DISCARD) { 4353 __u64 trim_start = cpc->trim_start; 4354 4355 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4356 add_discard_addrs(sbi, cpc, false); 4357 4358 cpc->trim_start = trim_start; 4359 } 4360 up_write(&sit_i->sentry_lock); 4361 4362 set_prefree_as_free_segments(sbi); 4363 } 4364 4365 static int build_sit_info(struct f2fs_sb_info *sbi) 4366 { 4367 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4368 struct sit_info *sit_i; 4369 unsigned int sit_segs, start; 4370 char *src_bitmap, *bitmap; 4371 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4372 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4373 4374 /* allocate memory for SIT information */ 4375 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4376 if (!sit_i) 4377 return -ENOMEM; 4378 4379 SM_I(sbi)->sit_info = sit_i; 4380 4381 sit_i->sentries = 4382 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4383 MAIN_SEGS(sbi)), 4384 GFP_KERNEL); 4385 if (!sit_i->sentries) 4386 return -ENOMEM; 4387 4388 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4389 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4390 GFP_KERNEL); 4391 if (!sit_i->dirty_sentries_bitmap) 4392 return -ENOMEM; 4393 4394 #ifdef CONFIG_F2FS_CHECK_FS 4395 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4396 #else 4397 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4398 #endif 4399 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4400 if (!sit_i->bitmap) 4401 return -ENOMEM; 4402 4403 bitmap = sit_i->bitmap; 4404 4405 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4406 sit_i->sentries[start].cur_valid_map = bitmap; 4407 bitmap += SIT_VBLOCK_MAP_SIZE; 4408 4409 sit_i->sentries[start].ckpt_valid_map = bitmap; 4410 bitmap += SIT_VBLOCK_MAP_SIZE; 4411 4412 #ifdef CONFIG_F2FS_CHECK_FS 4413 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4414 bitmap += SIT_VBLOCK_MAP_SIZE; 4415 #endif 4416 4417 if (discard_map) { 4418 sit_i->sentries[start].discard_map = bitmap; 4419 bitmap += SIT_VBLOCK_MAP_SIZE; 4420 } 4421 } 4422 4423 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4424 if (!sit_i->tmp_map) 4425 return -ENOMEM; 4426 4427 if (__is_large_section(sbi)) { 4428 sit_i->sec_entries = 4429 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4430 MAIN_SECS(sbi)), 4431 GFP_KERNEL); 4432 if (!sit_i->sec_entries) 4433 return -ENOMEM; 4434 } 4435 4436 /* get information related with SIT */ 4437 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4438 4439 /* setup SIT bitmap from ckeckpoint pack */ 4440 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4441 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4442 4443 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4444 if (!sit_i->sit_bitmap) 4445 return -ENOMEM; 4446 4447 #ifdef CONFIG_F2FS_CHECK_FS 4448 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4449 sit_bitmap_size, GFP_KERNEL); 4450 if (!sit_i->sit_bitmap_mir) 4451 return -ENOMEM; 4452 4453 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4454 main_bitmap_size, GFP_KERNEL); 4455 if (!sit_i->invalid_segmap) 4456 return -ENOMEM; 4457 #endif 4458 4459 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4460 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4461 sit_i->written_valid_blocks = 0; 4462 sit_i->bitmap_size = sit_bitmap_size; 4463 sit_i->dirty_sentries = 0; 4464 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4465 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4466 sit_i->mounted_time = ktime_get_boottime_seconds(); 4467 init_rwsem(&sit_i->sentry_lock); 4468 return 0; 4469 } 4470 4471 static int build_free_segmap(struct f2fs_sb_info *sbi) 4472 { 4473 struct free_segmap_info *free_i; 4474 unsigned int bitmap_size, sec_bitmap_size; 4475 4476 /* allocate memory for free segmap information */ 4477 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4478 if (!free_i) 4479 return -ENOMEM; 4480 4481 SM_I(sbi)->free_info = free_i; 4482 4483 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4484 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4485 if (!free_i->free_segmap) 4486 return -ENOMEM; 4487 4488 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4489 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4490 if (!free_i->free_secmap) 4491 return -ENOMEM; 4492 4493 /* set all segments as dirty temporarily */ 4494 memset(free_i->free_segmap, 0xff, bitmap_size); 4495 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4496 4497 /* init free segmap information */ 4498 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4499 free_i->free_segments = 0; 4500 free_i->free_sections = 0; 4501 spin_lock_init(&free_i->segmap_lock); 4502 return 0; 4503 } 4504 4505 static int build_curseg(struct f2fs_sb_info *sbi) 4506 { 4507 struct curseg_info *array; 4508 int i; 4509 4510 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4511 sizeof(*array)), GFP_KERNEL); 4512 if (!array) 4513 return -ENOMEM; 4514 4515 SM_I(sbi)->curseg_array = array; 4516 4517 for (i = 0; i < NO_CHECK_TYPE; i++) { 4518 mutex_init(&array[i].curseg_mutex); 4519 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4520 if (!array[i].sum_blk) 4521 return -ENOMEM; 4522 init_rwsem(&array[i].journal_rwsem); 4523 array[i].journal = f2fs_kzalloc(sbi, 4524 sizeof(struct f2fs_journal), GFP_KERNEL); 4525 if (!array[i].journal) 4526 return -ENOMEM; 4527 if (i < NR_PERSISTENT_LOG) 4528 array[i].seg_type = CURSEG_HOT_DATA + i; 4529 else if (i == CURSEG_COLD_DATA_PINNED) 4530 array[i].seg_type = CURSEG_COLD_DATA; 4531 else if (i == CURSEG_ALL_DATA_ATGC) 4532 array[i].seg_type = CURSEG_COLD_DATA; 4533 array[i].segno = NULL_SEGNO; 4534 array[i].next_blkoff = 0; 4535 array[i].inited = false; 4536 } 4537 return restore_curseg_summaries(sbi); 4538 } 4539 4540 static int build_sit_entries(struct f2fs_sb_info *sbi) 4541 { 4542 struct sit_info *sit_i = SIT_I(sbi); 4543 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4544 struct f2fs_journal *journal = curseg->journal; 4545 struct seg_entry *se; 4546 struct f2fs_sit_entry sit; 4547 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4548 unsigned int i, start, end; 4549 unsigned int readed, start_blk = 0; 4550 int err = 0; 4551 block_t sit_valid_blocks[2] = {0, 0}; 4552 4553 do { 4554 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4555 META_SIT, true); 4556 4557 start = start_blk * sit_i->sents_per_block; 4558 end = (start_blk + readed) * sit_i->sents_per_block; 4559 4560 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4561 struct f2fs_sit_block *sit_blk; 4562 struct page *page; 4563 4564 se = &sit_i->sentries[start]; 4565 page = get_current_sit_page(sbi, start); 4566 if (IS_ERR(page)) 4567 return PTR_ERR(page); 4568 sit_blk = (struct f2fs_sit_block *)page_address(page); 4569 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4570 f2fs_put_page(page, 1); 4571 4572 err = check_block_count(sbi, start, &sit); 4573 if (err) 4574 return err; 4575 seg_info_from_raw_sit(se, &sit); 4576 4577 if (se->type >= NR_PERSISTENT_LOG) { 4578 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4579 se->type, start); 4580 f2fs_handle_error(sbi, 4581 ERROR_INCONSISTENT_SUM_TYPE); 4582 return -EFSCORRUPTED; 4583 } 4584 4585 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4586 4587 if (f2fs_block_unit_discard(sbi)) { 4588 /* build discard map only one time */ 4589 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4590 memset(se->discard_map, 0xff, 4591 SIT_VBLOCK_MAP_SIZE); 4592 } else { 4593 memcpy(se->discard_map, 4594 se->cur_valid_map, 4595 SIT_VBLOCK_MAP_SIZE); 4596 sbi->discard_blks += 4597 sbi->blocks_per_seg - 4598 se->valid_blocks; 4599 } 4600 } 4601 4602 if (__is_large_section(sbi)) 4603 get_sec_entry(sbi, start)->valid_blocks += 4604 se->valid_blocks; 4605 } 4606 start_blk += readed; 4607 } while (start_blk < sit_blk_cnt); 4608 4609 down_read(&curseg->journal_rwsem); 4610 for (i = 0; i < sits_in_cursum(journal); i++) { 4611 unsigned int old_valid_blocks; 4612 4613 start = le32_to_cpu(segno_in_journal(journal, i)); 4614 if (start >= MAIN_SEGS(sbi)) { 4615 f2fs_err(sbi, "Wrong journal entry on segno %u", 4616 start); 4617 err = -EFSCORRUPTED; 4618 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4619 break; 4620 } 4621 4622 se = &sit_i->sentries[start]; 4623 sit = sit_in_journal(journal, i); 4624 4625 old_valid_blocks = se->valid_blocks; 4626 4627 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4628 4629 err = check_block_count(sbi, start, &sit); 4630 if (err) 4631 break; 4632 seg_info_from_raw_sit(se, &sit); 4633 4634 if (se->type >= NR_PERSISTENT_LOG) { 4635 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4636 se->type, start); 4637 err = -EFSCORRUPTED; 4638 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4639 break; 4640 } 4641 4642 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4643 4644 if (f2fs_block_unit_discard(sbi)) { 4645 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4646 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4647 } else { 4648 memcpy(se->discard_map, se->cur_valid_map, 4649 SIT_VBLOCK_MAP_SIZE); 4650 sbi->discard_blks += old_valid_blocks; 4651 sbi->discard_blks -= se->valid_blocks; 4652 } 4653 } 4654 4655 if (__is_large_section(sbi)) { 4656 get_sec_entry(sbi, start)->valid_blocks += 4657 se->valid_blocks; 4658 get_sec_entry(sbi, start)->valid_blocks -= 4659 old_valid_blocks; 4660 } 4661 } 4662 up_read(&curseg->journal_rwsem); 4663 4664 if (err) 4665 return err; 4666 4667 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4668 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4669 sit_valid_blocks[NODE], valid_node_count(sbi)); 4670 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4671 return -EFSCORRUPTED; 4672 } 4673 4674 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4675 valid_user_blocks(sbi)) { 4676 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4677 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4678 valid_user_blocks(sbi)); 4679 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4680 return -EFSCORRUPTED; 4681 } 4682 4683 return 0; 4684 } 4685 4686 static void init_free_segmap(struct f2fs_sb_info *sbi) 4687 { 4688 unsigned int start; 4689 int type; 4690 struct seg_entry *sentry; 4691 4692 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4693 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4694 continue; 4695 sentry = get_seg_entry(sbi, start); 4696 if (!sentry->valid_blocks) 4697 __set_free(sbi, start); 4698 else 4699 SIT_I(sbi)->written_valid_blocks += 4700 sentry->valid_blocks; 4701 } 4702 4703 /* set use the current segments */ 4704 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4705 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4706 4707 __set_test_and_inuse(sbi, curseg_t->segno); 4708 } 4709 } 4710 4711 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4712 { 4713 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4714 struct free_segmap_info *free_i = FREE_I(sbi); 4715 unsigned int segno = 0, offset = 0, secno; 4716 block_t valid_blocks, usable_blks_in_seg; 4717 4718 while (1) { 4719 /* find dirty segment based on free segmap */ 4720 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4721 if (segno >= MAIN_SEGS(sbi)) 4722 break; 4723 offset = segno + 1; 4724 valid_blocks = get_valid_blocks(sbi, segno, false); 4725 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4726 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4727 continue; 4728 if (valid_blocks > usable_blks_in_seg) { 4729 f2fs_bug_on(sbi, 1); 4730 continue; 4731 } 4732 mutex_lock(&dirty_i->seglist_lock); 4733 __locate_dirty_segment(sbi, segno, DIRTY); 4734 mutex_unlock(&dirty_i->seglist_lock); 4735 } 4736 4737 if (!__is_large_section(sbi)) 4738 return; 4739 4740 mutex_lock(&dirty_i->seglist_lock); 4741 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4742 valid_blocks = get_valid_blocks(sbi, segno, true); 4743 secno = GET_SEC_FROM_SEG(sbi, segno); 4744 4745 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4746 continue; 4747 if (IS_CURSEC(sbi, secno)) 4748 continue; 4749 set_bit(secno, dirty_i->dirty_secmap); 4750 } 4751 mutex_unlock(&dirty_i->seglist_lock); 4752 } 4753 4754 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4755 { 4756 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4757 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4758 4759 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4760 if (!dirty_i->victim_secmap) 4761 return -ENOMEM; 4762 4763 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4764 if (!dirty_i->pinned_secmap) 4765 return -ENOMEM; 4766 4767 dirty_i->pinned_secmap_cnt = 0; 4768 dirty_i->enable_pin_section = true; 4769 return 0; 4770 } 4771 4772 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4773 { 4774 struct dirty_seglist_info *dirty_i; 4775 unsigned int bitmap_size, i; 4776 4777 /* allocate memory for dirty segments list information */ 4778 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4779 GFP_KERNEL); 4780 if (!dirty_i) 4781 return -ENOMEM; 4782 4783 SM_I(sbi)->dirty_info = dirty_i; 4784 mutex_init(&dirty_i->seglist_lock); 4785 4786 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4787 4788 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4789 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4790 GFP_KERNEL); 4791 if (!dirty_i->dirty_segmap[i]) 4792 return -ENOMEM; 4793 } 4794 4795 if (__is_large_section(sbi)) { 4796 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4797 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4798 bitmap_size, GFP_KERNEL); 4799 if (!dirty_i->dirty_secmap) 4800 return -ENOMEM; 4801 } 4802 4803 init_dirty_segmap(sbi); 4804 return init_victim_secmap(sbi); 4805 } 4806 4807 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4808 { 4809 int i; 4810 4811 /* 4812 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4813 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4814 */ 4815 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4816 struct curseg_info *curseg = CURSEG_I(sbi, i); 4817 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4818 unsigned int blkofs = curseg->next_blkoff; 4819 4820 if (f2fs_sb_has_readonly(sbi) && 4821 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4822 continue; 4823 4824 sanity_check_seg_type(sbi, curseg->seg_type); 4825 4826 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4827 f2fs_err(sbi, 4828 "Current segment has invalid alloc_type:%d", 4829 curseg->alloc_type); 4830 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4831 return -EFSCORRUPTED; 4832 } 4833 4834 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4835 goto out; 4836 4837 if (curseg->alloc_type == SSR) 4838 continue; 4839 4840 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4841 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4842 continue; 4843 out: 4844 f2fs_err(sbi, 4845 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4846 i, curseg->segno, curseg->alloc_type, 4847 curseg->next_blkoff, blkofs); 4848 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4849 return -EFSCORRUPTED; 4850 } 4851 } 4852 return 0; 4853 } 4854 4855 #ifdef CONFIG_BLK_DEV_ZONED 4856 4857 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4858 struct f2fs_dev_info *fdev, 4859 struct blk_zone *zone) 4860 { 4861 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4862 block_t zone_block, wp_block, last_valid_block; 4863 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4864 int i, s, b, ret; 4865 struct seg_entry *se; 4866 4867 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4868 return 0; 4869 4870 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4871 wp_segno = GET_SEGNO(sbi, wp_block); 4872 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4873 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4874 zone_segno = GET_SEGNO(sbi, zone_block); 4875 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4876 4877 if (zone_segno >= MAIN_SEGS(sbi)) 4878 return 0; 4879 4880 /* 4881 * Skip check of zones cursegs point to, since 4882 * fix_curseg_write_pointer() checks them. 4883 */ 4884 for (i = 0; i < NO_CHECK_TYPE; i++) 4885 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4886 CURSEG_I(sbi, i)->segno)) 4887 return 0; 4888 4889 /* 4890 * Get last valid block of the zone. 4891 */ 4892 last_valid_block = zone_block - 1; 4893 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4894 segno = zone_segno + s; 4895 se = get_seg_entry(sbi, segno); 4896 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4897 if (f2fs_test_bit(b, se->cur_valid_map)) { 4898 last_valid_block = START_BLOCK(sbi, segno) + b; 4899 break; 4900 } 4901 if (last_valid_block >= zone_block) 4902 break; 4903 } 4904 4905 /* 4906 * The write pointer matches with the valid blocks or 4907 * already points to the end of the zone. 4908 */ 4909 if ((last_valid_block + 1 == wp_block) || 4910 (zone->wp == zone->start + zone->len)) 4911 return 0; 4912 4913 if (last_valid_block + 1 == zone_block) { 4914 /* 4915 * If there is no valid block in the zone and if write pointer 4916 * is not at zone start, reset the write pointer. 4917 */ 4918 f2fs_notice(sbi, 4919 "Zone without valid block has non-zero write " 4920 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4921 wp_segno, wp_blkoff); 4922 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4923 zone->len >> log_sectors_per_block); 4924 if (ret) 4925 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4926 fdev->path, ret); 4927 4928 return ret; 4929 } 4930 4931 /* 4932 * If there are valid blocks and the write pointer doesn't 4933 * match with them, we need to report the inconsistency and 4934 * fill the zone till the end to close the zone. This inconsistency 4935 * does not cause write error because the zone will not be selected 4936 * for write operation until it get discarded. 4937 */ 4938 f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: " 4939 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4940 GET_SEGNO(sbi, last_valid_block), 4941 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4942 wp_segno, wp_blkoff); 4943 4944 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 4945 zone->start, zone->len, GFP_NOFS); 4946 if (ret == -EOPNOTSUPP) { 4947 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 4948 zone->len - (zone->wp - zone->start), 4949 GFP_NOFS, 0); 4950 if (ret) 4951 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 4952 fdev->path, ret); 4953 } else if (ret) { 4954 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 4955 fdev->path, ret); 4956 } 4957 4958 return ret; 4959 } 4960 4961 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4962 block_t zone_blkaddr) 4963 { 4964 int i; 4965 4966 for (i = 0; i < sbi->s_ndevs; i++) { 4967 if (!bdev_is_zoned(FDEV(i).bdev)) 4968 continue; 4969 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4970 zone_blkaddr <= FDEV(i).end_blk)) 4971 return &FDEV(i); 4972 } 4973 4974 return NULL; 4975 } 4976 4977 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4978 void *data) 4979 { 4980 memcpy(data, zone, sizeof(struct blk_zone)); 4981 return 0; 4982 } 4983 4984 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4985 { 4986 struct curseg_info *cs = CURSEG_I(sbi, type); 4987 struct f2fs_dev_info *zbd; 4988 struct blk_zone zone; 4989 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4990 block_t cs_zone_block, wp_block; 4991 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4992 sector_t zone_sector; 4993 int err; 4994 4995 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4996 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4997 4998 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4999 if (!zbd) 5000 return 0; 5001 5002 /* report zone for the sector the curseg points to */ 5003 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5004 << log_sectors_per_block; 5005 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5006 report_one_zone_cb, &zone); 5007 if (err != 1) { 5008 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5009 zbd->path, err); 5010 return err; 5011 } 5012 5013 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5014 return 0; 5015 5016 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5017 wp_segno = GET_SEGNO(sbi, wp_block); 5018 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5019 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5020 5021 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5022 wp_sector_off == 0) 5023 return 0; 5024 5025 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5026 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 5027 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 5028 5029 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5030 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 5031 5032 f2fs_allocate_new_section(sbi, type, true); 5033 5034 /* check consistency of the zone curseg pointed to */ 5035 if (check_zone_write_pointer(sbi, zbd, &zone)) 5036 return -EIO; 5037 5038 /* check newly assigned zone */ 5039 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5040 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5041 5042 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5043 if (!zbd) 5044 return 0; 5045 5046 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5047 << log_sectors_per_block; 5048 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5049 report_one_zone_cb, &zone); 5050 if (err != 1) { 5051 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5052 zbd->path, err); 5053 return err; 5054 } 5055 5056 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5057 return 0; 5058 5059 if (zone.wp != zone.start) { 5060 f2fs_notice(sbi, 5061 "New zone for curseg[%d] is not yet discarded. " 5062 "Reset the zone: curseg[0x%x,0x%x]", 5063 type, cs->segno, cs->next_blkoff); 5064 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5065 zone.len >> log_sectors_per_block); 5066 if (err) { 5067 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5068 zbd->path, err); 5069 return err; 5070 } 5071 } 5072 5073 return 0; 5074 } 5075 5076 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5077 { 5078 int i, ret; 5079 5080 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5081 ret = fix_curseg_write_pointer(sbi, i); 5082 if (ret) 5083 return ret; 5084 } 5085 5086 return 0; 5087 } 5088 5089 struct check_zone_write_pointer_args { 5090 struct f2fs_sb_info *sbi; 5091 struct f2fs_dev_info *fdev; 5092 }; 5093 5094 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5095 void *data) 5096 { 5097 struct check_zone_write_pointer_args *args; 5098 5099 args = (struct check_zone_write_pointer_args *)data; 5100 5101 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5102 } 5103 5104 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5105 { 5106 int i, ret; 5107 struct check_zone_write_pointer_args args; 5108 5109 for (i = 0; i < sbi->s_ndevs; i++) { 5110 if (!bdev_is_zoned(FDEV(i).bdev)) 5111 continue; 5112 5113 args.sbi = sbi; 5114 args.fdev = &FDEV(i); 5115 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5116 check_zone_write_pointer_cb, &args); 5117 if (ret < 0) 5118 return ret; 5119 } 5120 5121 return 0; 5122 } 5123 5124 /* 5125 * Return the number of usable blocks in a segment. The number of blocks 5126 * returned is always equal to the number of blocks in a segment for 5127 * segments fully contained within a sequential zone capacity or a 5128 * conventional zone. For segments partially contained in a sequential 5129 * zone capacity, the number of usable blocks up to the zone capacity 5130 * is returned. 0 is returned in all other cases. 5131 */ 5132 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5133 struct f2fs_sb_info *sbi, unsigned int segno) 5134 { 5135 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5136 unsigned int secno; 5137 5138 if (!sbi->unusable_blocks_per_sec) 5139 return sbi->blocks_per_seg; 5140 5141 secno = GET_SEC_FROM_SEG(sbi, segno); 5142 seg_start = START_BLOCK(sbi, segno); 5143 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5144 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5145 5146 /* 5147 * If segment starts before zone capacity and spans beyond 5148 * zone capacity, then usable blocks are from seg start to 5149 * zone capacity. If the segment starts after the zone capacity, 5150 * then there are no usable blocks. 5151 */ 5152 if (seg_start >= sec_cap_blkaddr) 5153 return 0; 5154 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5155 return sec_cap_blkaddr - seg_start; 5156 5157 return sbi->blocks_per_seg; 5158 } 5159 #else 5160 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5161 { 5162 return 0; 5163 } 5164 5165 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5166 { 5167 return 0; 5168 } 5169 5170 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5171 unsigned int segno) 5172 { 5173 return 0; 5174 } 5175 5176 #endif 5177 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5178 unsigned int segno) 5179 { 5180 if (f2fs_sb_has_blkzoned(sbi)) 5181 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5182 5183 return sbi->blocks_per_seg; 5184 } 5185 5186 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5187 unsigned int segno) 5188 { 5189 if (f2fs_sb_has_blkzoned(sbi)) 5190 return CAP_SEGS_PER_SEC(sbi); 5191 5192 return sbi->segs_per_sec; 5193 } 5194 5195 /* 5196 * Update min, max modified time for cost-benefit GC algorithm 5197 */ 5198 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5199 { 5200 struct sit_info *sit_i = SIT_I(sbi); 5201 unsigned int segno; 5202 5203 down_write(&sit_i->sentry_lock); 5204 5205 sit_i->min_mtime = ULLONG_MAX; 5206 5207 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5208 unsigned int i; 5209 unsigned long long mtime = 0; 5210 5211 for (i = 0; i < sbi->segs_per_sec; i++) 5212 mtime += get_seg_entry(sbi, segno + i)->mtime; 5213 5214 mtime = div_u64(mtime, sbi->segs_per_sec); 5215 5216 if (sit_i->min_mtime > mtime) 5217 sit_i->min_mtime = mtime; 5218 } 5219 sit_i->max_mtime = get_mtime(sbi, false); 5220 sit_i->dirty_max_mtime = 0; 5221 up_write(&sit_i->sentry_lock); 5222 } 5223 5224 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5225 { 5226 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5227 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5228 struct f2fs_sm_info *sm_info; 5229 int err; 5230 5231 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5232 if (!sm_info) 5233 return -ENOMEM; 5234 5235 /* init sm info */ 5236 sbi->sm_info = sm_info; 5237 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5238 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5239 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5240 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5241 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5242 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5243 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5244 sm_info->rec_prefree_segments = sm_info->main_segments * 5245 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5246 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5247 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5248 5249 if (!f2fs_lfs_mode(sbi)) 5250 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5251 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5252 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5253 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5254 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5255 sm_info->min_ssr_sections = reserved_sections(sbi); 5256 5257 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5258 5259 init_f2fs_rwsem(&sm_info->curseg_lock); 5260 5261 err = f2fs_create_flush_cmd_control(sbi); 5262 if (err) 5263 return err; 5264 5265 err = create_discard_cmd_control(sbi); 5266 if (err) 5267 return err; 5268 5269 err = build_sit_info(sbi); 5270 if (err) 5271 return err; 5272 err = build_free_segmap(sbi); 5273 if (err) 5274 return err; 5275 err = build_curseg(sbi); 5276 if (err) 5277 return err; 5278 5279 /* reinit free segmap based on SIT */ 5280 err = build_sit_entries(sbi); 5281 if (err) 5282 return err; 5283 5284 init_free_segmap(sbi); 5285 err = build_dirty_segmap(sbi); 5286 if (err) 5287 return err; 5288 5289 err = sanity_check_curseg(sbi); 5290 if (err) 5291 return err; 5292 5293 init_min_max_mtime(sbi); 5294 return 0; 5295 } 5296 5297 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5298 enum dirty_type dirty_type) 5299 { 5300 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5301 5302 mutex_lock(&dirty_i->seglist_lock); 5303 kvfree(dirty_i->dirty_segmap[dirty_type]); 5304 dirty_i->nr_dirty[dirty_type] = 0; 5305 mutex_unlock(&dirty_i->seglist_lock); 5306 } 5307 5308 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5309 { 5310 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5311 5312 kvfree(dirty_i->pinned_secmap); 5313 kvfree(dirty_i->victim_secmap); 5314 } 5315 5316 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5317 { 5318 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5319 int i; 5320 5321 if (!dirty_i) 5322 return; 5323 5324 /* discard pre-free/dirty segments list */ 5325 for (i = 0; i < NR_DIRTY_TYPE; i++) 5326 discard_dirty_segmap(sbi, i); 5327 5328 if (__is_large_section(sbi)) { 5329 mutex_lock(&dirty_i->seglist_lock); 5330 kvfree(dirty_i->dirty_secmap); 5331 mutex_unlock(&dirty_i->seglist_lock); 5332 } 5333 5334 destroy_victim_secmap(sbi); 5335 SM_I(sbi)->dirty_info = NULL; 5336 kfree(dirty_i); 5337 } 5338 5339 static void destroy_curseg(struct f2fs_sb_info *sbi) 5340 { 5341 struct curseg_info *array = SM_I(sbi)->curseg_array; 5342 int i; 5343 5344 if (!array) 5345 return; 5346 SM_I(sbi)->curseg_array = NULL; 5347 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5348 kfree(array[i].sum_blk); 5349 kfree(array[i].journal); 5350 } 5351 kfree(array); 5352 } 5353 5354 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5355 { 5356 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5357 5358 if (!free_i) 5359 return; 5360 SM_I(sbi)->free_info = NULL; 5361 kvfree(free_i->free_segmap); 5362 kvfree(free_i->free_secmap); 5363 kfree(free_i); 5364 } 5365 5366 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5367 { 5368 struct sit_info *sit_i = SIT_I(sbi); 5369 5370 if (!sit_i) 5371 return; 5372 5373 if (sit_i->sentries) 5374 kvfree(sit_i->bitmap); 5375 kfree(sit_i->tmp_map); 5376 5377 kvfree(sit_i->sentries); 5378 kvfree(sit_i->sec_entries); 5379 kvfree(sit_i->dirty_sentries_bitmap); 5380 5381 SM_I(sbi)->sit_info = NULL; 5382 kvfree(sit_i->sit_bitmap); 5383 #ifdef CONFIG_F2FS_CHECK_FS 5384 kvfree(sit_i->sit_bitmap_mir); 5385 kvfree(sit_i->invalid_segmap); 5386 #endif 5387 kfree(sit_i); 5388 } 5389 5390 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5391 { 5392 struct f2fs_sm_info *sm_info = SM_I(sbi); 5393 5394 if (!sm_info) 5395 return; 5396 f2fs_destroy_flush_cmd_control(sbi, true); 5397 destroy_discard_cmd_control(sbi); 5398 destroy_dirty_segmap(sbi); 5399 destroy_curseg(sbi); 5400 destroy_free_segmap(sbi); 5401 destroy_sit_info(sbi); 5402 sbi->sm_info = NULL; 5403 kfree(sm_info); 5404 } 5405 5406 int __init f2fs_create_segment_manager_caches(void) 5407 { 5408 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5409 sizeof(struct discard_entry)); 5410 if (!discard_entry_slab) 5411 goto fail; 5412 5413 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5414 sizeof(struct discard_cmd)); 5415 if (!discard_cmd_slab) 5416 goto destroy_discard_entry; 5417 5418 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5419 sizeof(struct sit_entry_set)); 5420 if (!sit_entry_set_slab) 5421 goto destroy_discard_cmd; 5422 5423 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5424 sizeof(struct revoke_entry)); 5425 if (!revoke_entry_slab) 5426 goto destroy_sit_entry_set; 5427 return 0; 5428 5429 destroy_sit_entry_set: 5430 kmem_cache_destroy(sit_entry_set_slab); 5431 destroy_discard_cmd: 5432 kmem_cache_destroy(discard_cmd_slab); 5433 destroy_discard_entry: 5434 kmem_cache_destroy(discard_entry_slab); 5435 fail: 5436 return -ENOMEM; 5437 } 5438 5439 void f2fs_destroy_segment_manager_caches(void) 5440 { 5441 kmem_cache_destroy(sit_entry_set_slab); 5442 kmem_cache_destroy(discard_cmd_slab); 5443 kmem_cache_destroy(discard_entry_slab); 5444 kmem_cache_destroy(revoke_entry_slab); 5445 } 5446