1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 clear_inode_flag(fi->cow_inode, FI_COW_FILE); 196 iput(fi->cow_inode); 197 fi->cow_inode = NULL; 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 if (clean) { 205 truncate_inode_pages_final(inode->i_mapping); 206 f2fs_i_size_write(inode, fi->original_i_size); 207 } 208 } 209 210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 211 block_t new_addr, block_t *old_addr, bool recover) 212 { 213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 214 struct dnode_of_data dn; 215 struct node_info ni; 216 int err; 217 218 retry: 219 set_new_dnode(&dn, inode, NULL, NULL, 0); 220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA); 221 if (err) { 222 if (err == -ENOMEM) { 223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 224 goto retry; 225 } 226 return err; 227 } 228 229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 230 if (err) { 231 f2fs_put_dnode(&dn); 232 return err; 233 } 234 235 if (recover) { 236 /* dn.data_blkaddr is always valid */ 237 if (!__is_valid_data_blkaddr(new_addr)) { 238 if (new_addr == NULL_ADDR) 239 dec_valid_block_count(sbi, inode, 1); 240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 241 f2fs_update_data_blkaddr(&dn, new_addr); 242 } else { 243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 244 new_addr, ni.version, true, true); 245 } 246 } else { 247 blkcnt_t count = 1; 248 249 *old_addr = dn.data_blkaddr; 250 f2fs_truncate_data_blocks_range(&dn, 1); 251 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 252 inc_valid_block_count(sbi, inode, &count); 253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 254 ni.version, true, false); 255 } 256 257 f2fs_put_dnode(&dn); 258 return 0; 259 } 260 261 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 262 bool revoke) 263 { 264 struct revoke_entry *cur, *tmp; 265 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 266 267 list_for_each_entry_safe(cur, tmp, head, list) { 268 if (revoke) 269 __replace_atomic_write_block(inode, cur->index, 270 cur->old_addr, NULL, true); 271 272 list_del(&cur->list); 273 kmem_cache_free(revoke_entry_slab, cur); 274 } 275 276 if (!revoke && truncate) 277 f2fs_do_truncate_blocks(inode, 0, false); 278 } 279 280 static int __f2fs_commit_atomic_write(struct inode *inode) 281 { 282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 283 struct f2fs_inode_info *fi = F2FS_I(inode); 284 struct inode *cow_inode = fi->cow_inode; 285 struct revoke_entry *new; 286 struct list_head revoke_list; 287 block_t blkaddr; 288 struct dnode_of_data dn; 289 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 290 pgoff_t off = 0, blen, index; 291 int ret = 0, i; 292 293 INIT_LIST_HEAD(&revoke_list); 294 295 while (len) { 296 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 297 298 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 299 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 300 if (ret && ret != -ENOENT) { 301 goto out; 302 } else if (ret == -ENOENT) { 303 ret = 0; 304 if (dn.max_level == 0) 305 goto out; 306 goto next; 307 } 308 309 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 310 len); 311 index = off; 312 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 313 blkaddr = f2fs_data_blkaddr(&dn); 314 315 if (!__is_valid_data_blkaddr(blkaddr)) { 316 continue; 317 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 318 DATA_GENERIC_ENHANCE)) { 319 f2fs_put_dnode(&dn); 320 ret = -EFSCORRUPTED; 321 f2fs_handle_error(sbi, 322 ERROR_INVALID_BLKADDR); 323 goto out; 324 } 325 326 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 327 true, NULL); 328 329 ret = __replace_atomic_write_block(inode, index, blkaddr, 330 &new->old_addr, false); 331 if (ret) { 332 f2fs_put_dnode(&dn); 333 kmem_cache_free(revoke_entry_slab, new); 334 goto out; 335 } 336 337 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 338 new->index = index; 339 list_add_tail(&new->list, &revoke_list); 340 } 341 f2fs_put_dnode(&dn); 342 next: 343 off += blen; 344 len -= blen; 345 } 346 347 out: 348 if (ret) { 349 sbi->revoked_atomic_block += fi->atomic_write_cnt; 350 } else { 351 sbi->committed_atomic_block += fi->atomic_write_cnt; 352 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 353 } 354 355 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 356 357 return ret; 358 } 359 360 int f2fs_commit_atomic_write(struct inode *inode) 361 { 362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 363 struct f2fs_inode_info *fi = F2FS_I(inode); 364 int err; 365 366 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 367 if (err) 368 return err; 369 370 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 371 f2fs_lock_op(sbi); 372 373 err = __f2fs_commit_atomic_write(inode); 374 375 f2fs_unlock_op(sbi); 376 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 377 378 return err; 379 } 380 381 /* 382 * This function balances dirty node and dentry pages. 383 * In addition, it controls garbage collection. 384 */ 385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 386 { 387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 388 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 389 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 390 } 391 392 /* balance_fs_bg is able to be pending */ 393 if (need && excess_cached_nats(sbi)) 394 f2fs_balance_fs_bg(sbi, false); 395 396 if (!f2fs_is_checkpoint_ready(sbi)) 397 return; 398 399 /* 400 * We should do GC or end up with checkpoint, if there are so many dirty 401 * dir/node pages without enough free segments. 402 */ 403 if (has_not_enough_free_secs(sbi, 0, 0)) { 404 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 405 sbi->gc_thread->f2fs_gc_task) { 406 DEFINE_WAIT(wait); 407 408 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 409 TASK_UNINTERRUPTIBLE); 410 wake_up(&sbi->gc_thread->gc_wait_queue_head); 411 io_schedule(); 412 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 413 } else { 414 struct f2fs_gc_control gc_control = { 415 .victim_segno = NULL_SEGNO, 416 .init_gc_type = BG_GC, 417 .no_bg_gc = true, 418 .should_migrate_blocks = false, 419 .err_gc_skipped = false, 420 .nr_free_secs = 1 }; 421 f2fs_down_write(&sbi->gc_lock); 422 f2fs_gc(sbi, &gc_control); 423 } 424 } 425 } 426 427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 428 { 429 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 430 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 431 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 432 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 433 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 434 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 435 unsigned int threshold = sbi->blocks_per_seg * factor * 436 DEFAULT_DIRTY_THRESHOLD; 437 unsigned int global_threshold = threshold * 3 / 2; 438 439 if (dents >= threshold || qdata >= threshold || 440 nodes >= threshold || meta >= threshold || 441 imeta >= threshold) 442 return true; 443 return dents + qdata + nodes + meta + imeta > global_threshold; 444 } 445 446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 447 { 448 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 449 return; 450 451 /* try to shrink extent cache when there is no enough memory */ 452 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 453 f2fs_shrink_read_extent_tree(sbi, 454 READ_EXTENT_CACHE_SHRINK_NUMBER); 455 456 /* try to shrink age extent cache when there is no enough memory */ 457 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 458 f2fs_shrink_age_extent_tree(sbi, 459 AGE_EXTENT_CACHE_SHRINK_NUMBER); 460 461 /* check the # of cached NAT entries */ 462 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 463 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 464 465 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 466 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 467 else 468 f2fs_build_free_nids(sbi, false, false); 469 470 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 471 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 472 goto do_sync; 473 474 /* there is background inflight IO or foreground operation recently */ 475 if (is_inflight_io(sbi, REQ_TIME) || 476 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 477 return; 478 479 /* exceed periodical checkpoint timeout threshold */ 480 if (f2fs_time_over(sbi, CP_TIME)) 481 goto do_sync; 482 483 /* checkpoint is the only way to shrink partial cached entries */ 484 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 485 f2fs_available_free_memory(sbi, INO_ENTRIES)) 486 return; 487 488 do_sync: 489 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 490 struct blk_plug plug; 491 492 mutex_lock(&sbi->flush_lock); 493 494 blk_start_plug(&plug); 495 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 496 blk_finish_plug(&plug); 497 498 mutex_unlock(&sbi->flush_lock); 499 } 500 f2fs_sync_fs(sbi->sb, 1); 501 stat_inc_bg_cp_count(sbi->stat_info); 502 } 503 504 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 505 struct block_device *bdev) 506 { 507 int ret = blkdev_issue_flush(bdev); 508 509 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 510 test_opt(sbi, FLUSH_MERGE), ret); 511 return ret; 512 } 513 514 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 515 { 516 int ret = 0; 517 int i; 518 519 if (!f2fs_is_multi_device(sbi)) 520 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 521 522 for (i = 0; i < sbi->s_ndevs; i++) { 523 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 524 continue; 525 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 526 if (ret) 527 break; 528 } 529 return ret; 530 } 531 532 static int issue_flush_thread(void *data) 533 { 534 struct f2fs_sb_info *sbi = data; 535 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 536 wait_queue_head_t *q = &fcc->flush_wait_queue; 537 repeat: 538 if (kthread_should_stop()) 539 return 0; 540 541 if (!llist_empty(&fcc->issue_list)) { 542 struct flush_cmd *cmd, *next; 543 int ret; 544 545 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 546 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 547 548 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 549 550 ret = submit_flush_wait(sbi, cmd->ino); 551 atomic_inc(&fcc->issued_flush); 552 553 llist_for_each_entry_safe(cmd, next, 554 fcc->dispatch_list, llnode) { 555 cmd->ret = ret; 556 complete(&cmd->wait); 557 } 558 fcc->dispatch_list = NULL; 559 } 560 561 wait_event_interruptible(*q, 562 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 563 goto repeat; 564 } 565 566 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 567 { 568 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 569 struct flush_cmd cmd; 570 int ret; 571 572 if (test_opt(sbi, NOBARRIER)) 573 return 0; 574 575 if (!test_opt(sbi, FLUSH_MERGE)) { 576 atomic_inc(&fcc->queued_flush); 577 ret = submit_flush_wait(sbi, ino); 578 atomic_dec(&fcc->queued_flush); 579 atomic_inc(&fcc->issued_flush); 580 return ret; 581 } 582 583 if (atomic_inc_return(&fcc->queued_flush) == 1 || 584 f2fs_is_multi_device(sbi)) { 585 ret = submit_flush_wait(sbi, ino); 586 atomic_dec(&fcc->queued_flush); 587 588 atomic_inc(&fcc->issued_flush); 589 return ret; 590 } 591 592 cmd.ino = ino; 593 init_completion(&cmd.wait); 594 595 llist_add(&cmd.llnode, &fcc->issue_list); 596 597 /* 598 * update issue_list before we wake up issue_flush thread, this 599 * smp_mb() pairs with another barrier in ___wait_event(), see 600 * more details in comments of waitqueue_active(). 601 */ 602 smp_mb(); 603 604 if (waitqueue_active(&fcc->flush_wait_queue)) 605 wake_up(&fcc->flush_wait_queue); 606 607 if (fcc->f2fs_issue_flush) { 608 wait_for_completion(&cmd.wait); 609 atomic_dec(&fcc->queued_flush); 610 } else { 611 struct llist_node *list; 612 613 list = llist_del_all(&fcc->issue_list); 614 if (!list) { 615 wait_for_completion(&cmd.wait); 616 atomic_dec(&fcc->queued_flush); 617 } else { 618 struct flush_cmd *tmp, *next; 619 620 ret = submit_flush_wait(sbi, ino); 621 622 llist_for_each_entry_safe(tmp, next, list, llnode) { 623 if (tmp == &cmd) { 624 cmd.ret = ret; 625 atomic_dec(&fcc->queued_flush); 626 continue; 627 } 628 tmp->ret = ret; 629 complete(&tmp->wait); 630 } 631 } 632 } 633 634 return cmd.ret; 635 } 636 637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 638 { 639 dev_t dev = sbi->sb->s_bdev->bd_dev; 640 struct flush_cmd_control *fcc; 641 642 if (SM_I(sbi)->fcc_info) { 643 fcc = SM_I(sbi)->fcc_info; 644 if (fcc->f2fs_issue_flush) 645 return 0; 646 goto init_thread; 647 } 648 649 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 650 if (!fcc) 651 return -ENOMEM; 652 atomic_set(&fcc->issued_flush, 0); 653 atomic_set(&fcc->queued_flush, 0); 654 init_waitqueue_head(&fcc->flush_wait_queue); 655 init_llist_head(&fcc->issue_list); 656 SM_I(sbi)->fcc_info = fcc; 657 if (!test_opt(sbi, FLUSH_MERGE)) 658 return 0; 659 660 init_thread: 661 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 662 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 663 if (IS_ERR(fcc->f2fs_issue_flush)) { 664 int err = PTR_ERR(fcc->f2fs_issue_flush); 665 666 kfree(fcc); 667 SM_I(sbi)->fcc_info = NULL; 668 return err; 669 } 670 671 return 0; 672 } 673 674 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 675 { 676 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 677 678 if (fcc && fcc->f2fs_issue_flush) { 679 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 680 681 fcc->f2fs_issue_flush = NULL; 682 kthread_stop(flush_thread); 683 } 684 if (free) { 685 kfree(fcc); 686 SM_I(sbi)->fcc_info = NULL; 687 } 688 } 689 690 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 691 { 692 int ret = 0, i; 693 694 if (!f2fs_is_multi_device(sbi)) 695 return 0; 696 697 if (test_opt(sbi, NOBARRIER)) 698 return 0; 699 700 for (i = 1; i < sbi->s_ndevs; i++) { 701 int count = DEFAULT_RETRY_IO_COUNT; 702 703 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 704 continue; 705 706 do { 707 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 708 if (ret) 709 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 710 } while (ret && --count); 711 712 if (ret) { 713 f2fs_stop_checkpoint(sbi, false, 714 STOP_CP_REASON_FLUSH_FAIL); 715 break; 716 } 717 718 spin_lock(&sbi->dev_lock); 719 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 720 spin_unlock(&sbi->dev_lock); 721 } 722 723 return ret; 724 } 725 726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 727 enum dirty_type dirty_type) 728 { 729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 730 731 /* need not be added */ 732 if (IS_CURSEG(sbi, segno)) 733 return; 734 735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 736 dirty_i->nr_dirty[dirty_type]++; 737 738 if (dirty_type == DIRTY) { 739 struct seg_entry *sentry = get_seg_entry(sbi, segno); 740 enum dirty_type t = sentry->type; 741 742 if (unlikely(t >= DIRTY)) { 743 f2fs_bug_on(sbi, 1); 744 return; 745 } 746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 747 dirty_i->nr_dirty[t]++; 748 749 if (__is_large_section(sbi)) { 750 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 751 block_t valid_blocks = 752 get_valid_blocks(sbi, segno, true); 753 754 f2fs_bug_on(sbi, unlikely(!valid_blocks || 755 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 756 757 if (!IS_CURSEC(sbi, secno)) 758 set_bit(secno, dirty_i->dirty_secmap); 759 } 760 } 761 } 762 763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 764 enum dirty_type dirty_type) 765 { 766 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 767 block_t valid_blocks; 768 769 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 770 dirty_i->nr_dirty[dirty_type]--; 771 772 if (dirty_type == DIRTY) { 773 struct seg_entry *sentry = get_seg_entry(sbi, segno); 774 enum dirty_type t = sentry->type; 775 776 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 777 dirty_i->nr_dirty[t]--; 778 779 valid_blocks = get_valid_blocks(sbi, segno, true); 780 if (valid_blocks == 0) { 781 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 782 dirty_i->victim_secmap); 783 #ifdef CONFIG_F2FS_CHECK_FS 784 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 785 #endif 786 } 787 if (__is_large_section(sbi)) { 788 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 789 790 if (!valid_blocks || 791 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 792 clear_bit(secno, dirty_i->dirty_secmap); 793 return; 794 } 795 796 if (!IS_CURSEC(sbi, secno)) 797 set_bit(secno, dirty_i->dirty_secmap); 798 } 799 } 800 } 801 802 /* 803 * Should not occur error such as -ENOMEM. 804 * Adding dirty entry into seglist is not critical operation. 805 * If a given segment is one of current working segments, it won't be added. 806 */ 807 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 808 { 809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 810 unsigned short valid_blocks, ckpt_valid_blocks; 811 unsigned int usable_blocks; 812 813 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 814 return; 815 816 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 817 mutex_lock(&dirty_i->seglist_lock); 818 819 valid_blocks = get_valid_blocks(sbi, segno, false); 820 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 821 822 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 823 ckpt_valid_blocks == usable_blocks)) { 824 __locate_dirty_segment(sbi, segno, PRE); 825 __remove_dirty_segment(sbi, segno, DIRTY); 826 } else if (valid_blocks < usable_blocks) { 827 __locate_dirty_segment(sbi, segno, DIRTY); 828 } else { 829 /* Recovery routine with SSR needs this */ 830 __remove_dirty_segment(sbi, segno, DIRTY); 831 } 832 833 mutex_unlock(&dirty_i->seglist_lock); 834 } 835 836 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 837 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 838 { 839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 840 unsigned int segno; 841 842 mutex_lock(&dirty_i->seglist_lock); 843 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 844 if (get_valid_blocks(sbi, segno, false)) 845 continue; 846 if (IS_CURSEG(sbi, segno)) 847 continue; 848 __locate_dirty_segment(sbi, segno, PRE); 849 __remove_dirty_segment(sbi, segno, DIRTY); 850 } 851 mutex_unlock(&dirty_i->seglist_lock); 852 } 853 854 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 855 { 856 int ovp_hole_segs = 857 (overprovision_segments(sbi) - reserved_segments(sbi)); 858 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 859 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 860 block_t holes[2] = {0, 0}; /* DATA and NODE */ 861 block_t unusable; 862 struct seg_entry *se; 863 unsigned int segno; 864 865 mutex_lock(&dirty_i->seglist_lock); 866 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 867 se = get_seg_entry(sbi, segno); 868 if (IS_NODESEG(se->type)) 869 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 870 se->valid_blocks; 871 else 872 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 873 se->valid_blocks; 874 } 875 mutex_unlock(&dirty_i->seglist_lock); 876 877 unusable = max(holes[DATA], holes[NODE]); 878 if (unusable > ovp_holes) 879 return unusable - ovp_holes; 880 return 0; 881 } 882 883 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 884 { 885 int ovp_hole_segs = 886 (overprovision_segments(sbi) - reserved_segments(sbi)); 887 if (unusable > F2FS_OPTION(sbi).unusable_cap) 888 return -EAGAIN; 889 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 890 dirty_segments(sbi) > ovp_hole_segs) 891 return -EAGAIN; 892 return 0; 893 } 894 895 /* This is only used by SBI_CP_DISABLED */ 896 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 897 { 898 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 899 unsigned int segno = 0; 900 901 mutex_lock(&dirty_i->seglist_lock); 902 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 903 if (get_valid_blocks(sbi, segno, false)) 904 continue; 905 if (get_ckpt_valid_blocks(sbi, segno, false)) 906 continue; 907 mutex_unlock(&dirty_i->seglist_lock); 908 return segno; 909 } 910 mutex_unlock(&dirty_i->seglist_lock); 911 return NULL_SEGNO; 912 } 913 914 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 915 struct block_device *bdev, block_t lstart, 916 block_t start, block_t len) 917 { 918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 919 struct list_head *pend_list; 920 struct discard_cmd *dc; 921 922 f2fs_bug_on(sbi, !len); 923 924 pend_list = &dcc->pend_list[plist_idx(len)]; 925 926 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 927 INIT_LIST_HEAD(&dc->list); 928 dc->bdev = bdev; 929 dc->lstart = lstart; 930 dc->start = start; 931 dc->len = len; 932 dc->ref = 0; 933 dc->state = D_PREP; 934 dc->queued = 0; 935 dc->error = 0; 936 init_completion(&dc->wait); 937 list_add_tail(&dc->list, pend_list); 938 spin_lock_init(&dc->lock); 939 dc->bio_ref = 0; 940 atomic_inc(&dcc->discard_cmd_cnt); 941 dcc->undiscard_blks += len; 942 943 return dc; 944 } 945 946 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 947 struct block_device *bdev, block_t lstart, 948 block_t start, block_t len, 949 struct rb_node *parent, struct rb_node **p, 950 bool leftmost) 951 { 952 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 953 struct discard_cmd *dc; 954 955 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 956 957 rb_link_node(&dc->rb_node, parent, p); 958 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 959 960 return dc; 961 } 962 963 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 964 struct discard_cmd *dc) 965 { 966 if (dc->state == D_DONE) 967 atomic_sub(dc->queued, &dcc->queued_discard); 968 969 list_del(&dc->list); 970 rb_erase_cached(&dc->rb_node, &dcc->root); 971 dcc->undiscard_blks -= dc->len; 972 973 kmem_cache_free(discard_cmd_slab, dc); 974 975 atomic_dec(&dcc->discard_cmd_cnt); 976 } 977 978 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 979 struct discard_cmd *dc) 980 { 981 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 982 unsigned long flags; 983 984 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 985 986 spin_lock_irqsave(&dc->lock, flags); 987 if (dc->bio_ref) { 988 spin_unlock_irqrestore(&dc->lock, flags); 989 return; 990 } 991 spin_unlock_irqrestore(&dc->lock, flags); 992 993 f2fs_bug_on(sbi, dc->ref); 994 995 if (dc->error == -EOPNOTSUPP) 996 dc->error = 0; 997 998 if (dc->error) 999 printk_ratelimited( 1000 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1001 KERN_INFO, sbi->sb->s_id, 1002 dc->lstart, dc->start, dc->len, dc->error); 1003 __detach_discard_cmd(dcc, dc); 1004 } 1005 1006 static void f2fs_submit_discard_endio(struct bio *bio) 1007 { 1008 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1009 unsigned long flags; 1010 1011 spin_lock_irqsave(&dc->lock, flags); 1012 if (!dc->error) 1013 dc->error = blk_status_to_errno(bio->bi_status); 1014 dc->bio_ref--; 1015 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1016 dc->state = D_DONE; 1017 complete_all(&dc->wait); 1018 } 1019 spin_unlock_irqrestore(&dc->lock, flags); 1020 bio_put(bio); 1021 } 1022 1023 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1024 block_t start, block_t end) 1025 { 1026 #ifdef CONFIG_F2FS_CHECK_FS 1027 struct seg_entry *sentry; 1028 unsigned int segno; 1029 block_t blk = start; 1030 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1031 unsigned long *map; 1032 1033 while (blk < end) { 1034 segno = GET_SEGNO(sbi, blk); 1035 sentry = get_seg_entry(sbi, segno); 1036 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1037 1038 if (end < START_BLOCK(sbi, segno + 1)) 1039 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1040 else 1041 size = max_blocks; 1042 map = (unsigned long *)(sentry->cur_valid_map); 1043 offset = __find_rev_next_bit(map, size, offset); 1044 f2fs_bug_on(sbi, offset != size); 1045 blk = START_BLOCK(sbi, segno + 1); 1046 } 1047 #endif 1048 } 1049 1050 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1051 struct discard_policy *dpolicy, 1052 int discard_type, unsigned int granularity) 1053 { 1054 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1055 1056 /* common policy */ 1057 dpolicy->type = discard_type; 1058 dpolicy->sync = true; 1059 dpolicy->ordered = false; 1060 dpolicy->granularity = granularity; 1061 1062 dpolicy->max_requests = dcc->max_discard_request; 1063 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1064 dpolicy->timeout = false; 1065 1066 if (discard_type == DPOLICY_BG) { 1067 dpolicy->min_interval = dcc->min_discard_issue_time; 1068 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1069 dpolicy->max_interval = dcc->max_discard_issue_time; 1070 dpolicy->io_aware = true; 1071 dpolicy->sync = false; 1072 dpolicy->ordered = true; 1073 if (utilization(sbi) > dcc->discard_urgent_util) { 1074 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1075 if (atomic_read(&dcc->discard_cmd_cnt)) 1076 dpolicy->max_interval = 1077 dcc->min_discard_issue_time; 1078 } 1079 } else if (discard_type == DPOLICY_FORCE) { 1080 dpolicy->min_interval = dcc->min_discard_issue_time; 1081 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1082 dpolicy->max_interval = dcc->max_discard_issue_time; 1083 dpolicy->io_aware = false; 1084 } else if (discard_type == DPOLICY_FSTRIM) { 1085 dpolicy->io_aware = false; 1086 } else if (discard_type == DPOLICY_UMOUNT) { 1087 dpolicy->io_aware = false; 1088 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1089 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1090 dpolicy->timeout = true; 1091 } 1092 } 1093 1094 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1095 struct block_device *bdev, block_t lstart, 1096 block_t start, block_t len); 1097 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1098 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1099 struct discard_policy *dpolicy, 1100 struct discard_cmd *dc, 1101 unsigned int *issued) 1102 { 1103 struct block_device *bdev = dc->bdev; 1104 unsigned int max_discard_blocks = 1105 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1106 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1107 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1108 &(dcc->fstrim_list) : &(dcc->wait_list); 1109 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1110 block_t lstart, start, len, total_len; 1111 int err = 0; 1112 1113 if (dc->state != D_PREP) 1114 return 0; 1115 1116 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1117 return 0; 1118 1119 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1120 1121 lstart = dc->lstart; 1122 start = dc->start; 1123 len = dc->len; 1124 total_len = len; 1125 1126 dc->len = 0; 1127 1128 while (total_len && *issued < dpolicy->max_requests && !err) { 1129 struct bio *bio = NULL; 1130 unsigned long flags; 1131 bool last = true; 1132 1133 if (len > max_discard_blocks) { 1134 len = max_discard_blocks; 1135 last = false; 1136 } 1137 1138 (*issued)++; 1139 if (*issued == dpolicy->max_requests) 1140 last = true; 1141 1142 dc->len += len; 1143 1144 if (time_to_inject(sbi, FAULT_DISCARD)) { 1145 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1146 err = -EIO; 1147 } else { 1148 err = __blkdev_issue_discard(bdev, 1149 SECTOR_FROM_BLOCK(start), 1150 SECTOR_FROM_BLOCK(len), 1151 GFP_NOFS, &bio); 1152 } 1153 if (err) { 1154 spin_lock_irqsave(&dc->lock, flags); 1155 if (dc->state == D_PARTIAL) 1156 dc->state = D_SUBMIT; 1157 spin_unlock_irqrestore(&dc->lock, flags); 1158 1159 break; 1160 } 1161 1162 f2fs_bug_on(sbi, !bio); 1163 1164 /* 1165 * should keep before submission to avoid D_DONE 1166 * right away 1167 */ 1168 spin_lock_irqsave(&dc->lock, flags); 1169 if (last) 1170 dc->state = D_SUBMIT; 1171 else 1172 dc->state = D_PARTIAL; 1173 dc->bio_ref++; 1174 spin_unlock_irqrestore(&dc->lock, flags); 1175 1176 atomic_inc(&dcc->queued_discard); 1177 dc->queued++; 1178 list_move_tail(&dc->list, wait_list); 1179 1180 /* sanity check on discard range */ 1181 __check_sit_bitmap(sbi, lstart, lstart + len); 1182 1183 bio->bi_private = dc; 1184 bio->bi_end_io = f2fs_submit_discard_endio; 1185 bio->bi_opf |= flag; 1186 submit_bio(bio); 1187 1188 atomic_inc(&dcc->issued_discard); 1189 1190 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE); 1191 1192 lstart += len; 1193 start += len; 1194 total_len -= len; 1195 len = total_len; 1196 } 1197 1198 if (!err && len) { 1199 dcc->undiscard_blks -= len; 1200 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1201 } 1202 return err; 1203 } 1204 1205 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1206 struct block_device *bdev, block_t lstart, 1207 block_t start, block_t len, 1208 struct rb_node **insert_p, 1209 struct rb_node *insert_parent) 1210 { 1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1212 struct rb_node **p; 1213 struct rb_node *parent = NULL; 1214 bool leftmost = true; 1215 1216 if (insert_p && insert_parent) { 1217 parent = insert_parent; 1218 p = insert_p; 1219 goto do_insert; 1220 } 1221 1222 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1223 lstart, &leftmost); 1224 do_insert: 1225 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1226 p, leftmost); 1227 } 1228 1229 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1230 struct discard_cmd *dc) 1231 { 1232 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1233 } 1234 1235 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1236 struct discard_cmd *dc, block_t blkaddr) 1237 { 1238 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1239 struct discard_info di = dc->di; 1240 bool modified = false; 1241 1242 if (dc->state == D_DONE || dc->len == 1) { 1243 __remove_discard_cmd(sbi, dc); 1244 return; 1245 } 1246 1247 dcc->undiscard_blks -= di.len; 1248 1249 if (blkaddr > di.lstart) { 1250 dc->len = blkaddr - dc->lstart; 1251 dcc->undiscard_blks += dc->len; 1252 __relocate_discard_cmd(dcc, dc); 1253 modified = true; 1254 } 1255 1256 if (blkaddr < di.lstart + di.len - 1) { 1257 if (modified) { 1258 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1259 di.start + blkaddr + 1 - di.lstart, 1260 di.lstart + di.len - 1 - blkaddr, 1261 NULL, NULL); 1262 } else { 1263 dc->lstart++; 1264 dc->len--; 1265 dc->start++; 1266 dcc->undiscard_blks += dc->len; 1267 __relocate_discard_cmd(dcc, dc); 1268 } 1269 } 1270 } 1271 1272 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1273 struct block_device *bdev, block_t lstart, 1274 block_t start, block_t len) 1275 { 1276 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1277 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1278 struct discard_cmd *dc; 1279 struct discard_info di = {0}; 1280 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1281 unsigned int max_discard_blocks = 1282 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1283 block_t end = lstart + len; 1284 1285 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1286 NULL, lstart, 1287 (struct rb_entry **)&prev_dc, 1288 (struct rb_entry **)&next_dc, 1289 &insert_p, &insert_parent, true, NULL); 1290 if (dc) 1291 prev_dc = dc; 1292 1293 if (!prev_dc) { 1294 di.lstart = lstart; 1295 di.len = next_dc ? next_dc->lstart - lstart : len; 1296 di.len = min(di.len, len); 1297 di.start = start; 1298 } 1299 1300 while (1) { 1301 struct rb_node *node; 1302 bool merged = false; 1303 struct discard_cmd *tdc = NULL; 1304 1305 if (prev_dc) { 1306 di.lstart = prev_dc->lstart + prev_dc->len; 1307 if (di.lstart < lstart) 1308 di.lstart = lstart; 1309 if (di.lstart >= end) 1310 break; 1311 1312 if (!next_dc || next_dc->lstart > end) 1313 di.len = end - di.lstart; 1314 else 1315 di.len = next_dc->lstart - di.lstart; 1316 di.start = start + di.lstart - lstart; 1317 } 1318 1319 if (!di.len) 1320 goto next; 1321 1322 if (prev_dc && prev_dc->state == D_PREP && 1323 prev_dc->bdev == bdev && 1324 __is_discard_back_mergeable(&di, &prev_dc->di, 1325 max_discard_blocks)) { 1326 prev_dc->di.len += di.len; 1327 dcc->undiscard_blks += di.len; 1328 __relocate_discard_cmd(dcc, prev_dc); 1329 di = prev_dc->di; 1330 tdc = prev_dc; 1331 merged = true; 1332 } 1333 1334 if (next_dc && next_dc->state == D_PREP && 1335 next_dc->bdev == bdev && 1336 __is_discard_front_mergeable(&di, &next_dc->di, 1337 max_discard_blocks)) { 1338 next_dc->di.lstart = di.lstart; 1339 next_dc->di.len += di.len; 1340 next_dc->di.start = di.start; 1341 dcc->undiscard_blks += di.len; 1342 __relocate_discard_cmd(dcc, next_dc); 1343 if (tdc) 1344 __remove_discard_cmd(sbi, tdc); 1345 merged = true; 1346 } 1347 1348 if (!merged) { 1349 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1350 di.len, NULL, NULL); 1351 } 1352 next: 1353 prev_dc = next_dc; 1354 if (!prev_dc) 1355 break; 1356 1357 node = rb_next(&prev_dc->rb_node); 1358 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1359 } 1360 } 1361 1362 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1363 struct block_device *bdev, block_t blkstart, block_t blklen) 1364 { 1365 block_t lblkstart = blkstart; 1366 1367 if (!f2fs_bdev_support_discard(bdev)) 1368 return; 1369 1370 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1371 1372 if (f2fs_is_multi_device(sbi)) { 1373 int devi = f2fs_target_device_index(sbi, blkstart); 1374 1375 blkstart -= FDEV(devi).start_blk; 1376 } 1377 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1378 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1379 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1380 } 1381 1382 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1383 struct discard_policy *dpolicy) 1384 { 1385 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1386 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1387 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1388 struct discard_cmd *dc; 1389 struct blk_plug plug; 1390 unsigned int pos = dcc->next_pos; 1391 unsigned int issued = 0; 1392 bool io_interrupted = false; 1393 1394 mutex_lock(&dcc->cmd_lock); 1395 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1396 NULL, pos, 1397 (struct rb_entry **)&prev_dc, 1398 (struct rb_entry **)&next_dc, 1399 &insert_p, &insert_parent, true, NULL); 1400 if (!dc) 1401 dc = next_dc; 1402 1403 blk_start_plug(&plug); 1404 1405 while (dc) { 1406 struct rb_node *node; 1407 int err = 0; 1408 1409 if (dc->state != D_PREP) 1410 goto next; 1411 1412 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1413 io_interrupted = true; 1414 break; 1415 } 1416 1417 dcc->next_pos = dc->lstart + dc->len; 1418 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1419 1420 if (issued >= dpolicy->max_requests) 1421 break; 1422 next: 1423 node = rb_next(&dc->rb_node); 1424 if (err) 1425 __remove_discard_cmd(sbi, dc); 1426 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1427 } 1428 1429 blk_finish_plug(&plug); 1430 1431 if (!dc) 1432 dcc->next_pos = 0; 1433 1434 mutex_unlock(&dcc->cmd_lock); 1435 1436 if (!issued && io_interrupted) 1437 issued = -1; 1438 1439 return issued; 1440 } 1441 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1442 struct discard_policy *dpolicy); 1443 1444 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1445 struct discard_policy *dpolicy) 1446 { 1447 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1448 struct list_head *pend_list; 1449 struct discard_cmd *dc, *tmp; 1450 struct blk_plug plug; 1451 int i, issued; 1452 bool io_interrupted = false; 1453 1454 if (dpolicy->timeout) 1455 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1456 1457 retry: 1458 issued = 0; 1459 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1460 if (dpolicy->timeout && 1461 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1462 break; 1463 1464 if (i + 1 < dpolicy->granularity) 1465 break; 1466 1467 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) 1468 return __issue_discard_cmd_orderly(sbi, dpolicy); 1469 1470 pend_list = &dcc->pend_list[i]; 1471 1472 mutex_lock(&dcc->cmd_lock); 1473 if (list_empty(pend_list)) 1474 goto next; 1475 if (unlikely(dcc->rbtree_check)) 1476 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1477 &dcc->root, false)); 1478 blk_start_plug(&plug); 1479 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1480 f2fs_bug_on(sbi, dc->state != D_PREP); 1481 1482 if (dpolicy->timeout && 1483 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1484 break; 1485 1486 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1487 !is_idle(sbi, DISCARD_TIME)) { 1488 io_interrupted = true; 1489 break; 1490 } 1491 1492 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1493 1494 if (issued >= dpolicy->max_requests) 1495 break; 1496 } 1497 blk_finish_plug(&plug); 1498 next: 1499 mutex_unlock(&dcc->cmd_lock); 1500 1501 if (issued >= dpolicy->max_requests || io_interrupted) 1502 break; 1503 } 1504 1505 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1506 __wait_all_discard_cmd(sbi, dpolicy); 1507 goto retry; 1508 } 1509 1510 if (!issued && io_interrupted) 1511 issued = -1; 1512 1513 return issued; 1514 } 1515 1516 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1517 { 1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1519 struct list_head *pend_list; 1520 struct discard_cmd *dc, *tmp; 1521 int i; 1522 bool dropped = false; 1523 1524 mutex_lock(&dcc->cmd_lock); 1525 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1526 pend_list = &dcc->pend_list[i]; 1527 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1528 f2fs_bug_on(sbi, dc->state != D_PREP); 1529 __remove_discard_cmd(sbi, dc); 1530 dropped = true; 1531 } 1532 } 1533 mutex_unlock(&dcc->cmd_lock); 1534 1535 return dropped; 1536 } 1537 1538 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1539 { 1540 __drop_discard_cmd(sbi); 1541 } 1542 1543 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1544 struct discard_cmd *dc) 1545 { 1546 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1547 unsigned int len = 0; 1548 1549 wait_for_completion_io(&dc->wait); 1550 mutex_lock(&dcc->cmd_lock); 1551 f2fs_bug_on(sbi, dc->state != D_DONE); 1552 dc->ref--; 1553 if (!dc->ref) { 1554 if (!dc->error) 1555 len = dc->len; 1556 __remove_discard_cmd(sbi, dc); 1557 } 1558 mutex_unlock(&dcc->cmd_lock); 1559 1560 return len; 1561 } 1562 1563 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1564 struct discard_policy *dpolicy, 1565 block_t start, block_t end) 1566 { 1567 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1568 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1569 &(dcc->fstrim_list) : &(dcc->wait_list); 1570 struct discard_cmd *dc = NULL, *iter, *tmp; 1571 unsigned int trimmed = 0; 1572 1573 next: 1574 dc = NULL; 1575 1576 mutex_lock(&dcc->cmd_lock); 1577 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1578 if (iter->lstart + iter->len <= start || end <= iter->lstart) 1579 continue; 1580 if (iter->len < dpolicy->granularity) 1581 continue; 1582 if (iter->state == D_DONE && !iter->ref) { 1583 wait_for_completion_io(&iter->wait); 1584 if (!iter->error) 1585 trimmed += iter->len; 1586 __remove_discard_cmd(sbi, iter); 1587 } else { 1588 iter->ref++; 1589 dc = iter; 1590 break; 1591 } 1592 } 1593 mutex_unlock(&dcc->cmd_lock); 1594 1595 if (dc) { 1596 trimmed += __wait_one_discard_bio(sbi, dc); 1597 goto next; 1598 } 1599 1600 return trimmed; 1601 } 1602 1603 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1604 struct discard_policy *dpolicy) 1605 { 1606 struct discard_policy dp; 1607 unsigned int discard_blks; 1608 1609 if (dpolicy) 1610 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1611 1612 /* wait all */ 1613 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1614 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1615 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1616 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1617 1618 return discard_blks; 1619 } 1620 1621 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1622 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1623 { 1624 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1625 struct discard_cmd *dc; 1626 bool need_wait = false; 1627 1628 mutex_lock(&dcc->cmd_lock); 1629 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1630 NULL, blkaddr); 1631 if (dc) { 1632 if (dc->state == D_PREP) { 1633 __punch_discard_cmd(sbi, dc, blkaddr); 1634 } else { 1635 dc->ref++; 1636 need_wait = true; 1637 } 1638 } 1639 mutex_unlock(&dcc->cmd_lock); 1640 1641 if (need_wait) 1642 __wait_one_discard_bio(sbi, dc); 1643 } 1644 1645 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1646 { 1647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1648 1649 if (dcc && dcc->f2fs_issue_discard) { 1650 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1651 1652 dcc->f2fs_issue_discard = NULL; 1653 kthread_stop(discard_thread); 1654 } 1655 } 1656 1657 /* This comes from f2fs_put_super */ 1658 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1659 { 1660 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1661 struct discard_policy dpolicy; 1662 bool dropped; 1663 1664 if (!atomic_read(&dcc->discard_cmd_cnt)) 1665 return false; 1666 1667 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1668 dcc->discard_granularity); 1669 __issue_discard_cmd(sbi, &dpolicy); 1670 dropped = __drop_discard_cmd(sbi); 1671 1672 /* just to make sure there is no pending discard commands */ 1673 __wait_all_discard_cmd(sbi, NULL); 1674 1675 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1676 return dropped; 1677 } 1678 1679 static int issue_discard_thread(void *data) 1680 { 1681 struct f2fs_sb_info *sbi = data; 1682 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1683 wait_queue_head_t *q = &dcc->discard_wait_queue; 1684 struct discard_policy dpolicy; 1685 unsigned int wait_ms = dcc->min_discard_issue_time; 1686 int issued; 1687 1688 set_freezable(); 1689 1690 do { 1691 wait_event_interruptible_timeout(*q, 1692 kthread_should_stop() || freezing(current) || 1693 dcc->discard_wake, 1694 msecs_to_jiffies(wait_ms)); 1695 1696 if (sbi->gc_mode == GC_URGENT_HIGH || 1697 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1698 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1699 else 1700 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1701 dcc->discard_granularity); 1702 1703 if (dcc->discard_wake) 1704 dcc->discard_wake = 0; 1705 1706 /* clean up pending candidates before going to sleep */ 1707 if (atomic_read(&dcc->queued_discard)) 1708 __wait_all_discard_cmd(sbi, NULL); 1709 1710 if (try_to_freeze()) 1711 continue; 1712 if (f2fs_readonly(sbi->sb)) 1713 continue; 1714 if (kthread_should_stop()) 1715 return 0; 1716 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1717 !atomic_read(&dcc->discard_cmd_cnt)) { 1718 wait_ms = dpolicy.max_interval; 1719 continue; 1720 } 1721 1722 sb_start_intwrite(sbi->sb); 1723 1724 issued = __issue_discard_cmd(sbi, &dpolicy); 1725 if (issued > 0) { 1726 __wait_all_discard_cmd(sbi, &dpolicy); 1727 wait_ms = dpolicy.min_interval; 1728 } else if (issued == -1) { 1729 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1730 if (!wait_ms) 1731 wait_ms = dpolicy.mid_interval; 1732 } else { 1733 wait_ms = dpolicy.max_interval; 1734 } 1735 if (!atomic_read(&dcc->discard_cmd_cnt)) 1736 wait_ms = dpolicy.max_interval; 1737 1738 sb_end_intwrite(sbi->sb); 1739 1740 } while (!kthread_should_stop()); 1741 return 0; 1742 } 1743 1744 #ifdef CONFIG_BLK_DEV_ZONED 1745 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1746 struct block_device *bdev, block_t blkstart, block_t blklen) 1747 { 1748 sector_t sector, nr_sects; 1749 block_t lblkstart = blkstart; 1750 int devi = 0; 1751 1752 if (f2fs_is_multi_device(sbi)) { 1753 devi = f2fs_target_device_index(sbi, blkstart); 1754 if (blkstart < FDEV(devi).start_blk || 1755 blkstart > FDEV(devi).end_blk) { 1756 f2fs_err(sbi, "Invalid block %x", blkstart); 1757 return -EIO; 1758 } 1759 blkstart -= FDEV(devi).start_blk; 1760 } 1761 1762 /* For sequential zones, reset the zone write pointer */ 1763 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1764 sector = SECTOR_FROM_BLOCK(blkstart); 1765 nr_sects = SECTOR_FROM_BLOCK(blklen); 1766 1767 if (sector & (bdev_zone_sectors(bdev) - 1) || 1768 nr_sects != bdev_zone_sectors(bdev)) { 1769 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1770 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1771 blkstart, blklen); 1772 return -EIO; 1773 } 1774 trace_f2fs_issue_reset_zone(bdev, blkstart); 1775 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1776 sector, nr_sects, GFP_NOFS); 1777 } 1778 1779 /* For conventional zones, use regular discard if supported */ 1780 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1781 return 0; 1782 } 1783 #endif 1784 1785 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1786 struct block_device *bdev, block_t blkstart, block_t blklen) 1787 { 1788 #ifdef CONFIG_BLK_DEV_ZONED 1789 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1790 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1791 #endif 1792 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1793 return 0; 1794 } 1795 1796 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1797 block_t blkstart, block_t blklen) 1798 { 1799 sector_t start = blkstart, len = 0; 1800 struct block_device *bdev; 1801 struct seg_entry *se; 1802 unsigned int offset; 1803 block_t i; 1804 int err = 0; 1805 1806 bdev = f2fs_target_device(sbi, blkstart, NULL); 1807 1808 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1809 if (i != start) { 1810 struct block_device *bdev2 = 1811 f2fs_target_device(sbi, i, NULL); 1812 1813 if (bdev2 != bdev) { 1814 err = __issue_discard_async(sbi, bdev, 1815 start, len); 1816 if (err) 1817 return err; 1818 bdev = bdev2; 1819 start = i; 1820 len = 0; 1821 } 1822 } 1823 1824 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1825 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1826 1827 if (f2fs_block_unit_discard(sbi) && 1828 !f2fs_test_and_set_bit(offset, se->discard_map)) 1829 sbi->discard_blks--; 1830 } 1831 1832 if (len) 1833 err = __issue_discard_async(sbi, bdev, start, len); 1834 return err; 1835 } 1836 1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1838 bool check_only) 1839 { 1840 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1841 int max_blocks = sbi->blocks_per_seg; 1842 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1843 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1844 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1845 unsigned long *discard_map = (unsigned long *)se->discard_map; 1846 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1847 unsigned int start = 0, end = -1; 1848 bool force = (cpc->reason & CP_DISCARD); 1849 struct discard_entry *de = NULL; 1850 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1851 int i; 1852 1853 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1854 !f2fs_block_unit_discard(sbi)) 1855 return false; 1856 1857 if (!force) { 1858 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1859 SM_I(sbi)->dcc_info->nr_discards >= 1860 SM_I(sbi)->dcc_info->max_discards) 1861 return false; 1862 } 1863 1864 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1865 for (i = 0; i < entries; i++) 1866 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1867 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1868 1869 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1870 SM_I(sbi)->dcc_info->max_discards) { 1871 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1872 if (start >= max_blocks) 1873 break; 1874 1875 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1876 if (force && start && end != max_blocks 1877 && (end - start) < cpc->trim_minlen) 1878 continue; 1879 1880 if (check_only) 1881 return true; 1882 1883 if (!de) { 1884 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1885 GFP_F2FS_ZERO, true, NULL); 1886 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1887 list_add_tail(&de->list, head); 1888 } 1889 1890 for (i = start; i < end; i++) 1891 __set_bit_le(i, (void *)de->discard_map); 1892 1893 SM_I(sbi)->dcc_info->nr_discards += end - start; 1894 } 1895 return false; 1896 } 1897 1898 static void release_discard_addr(struct discard_entry *entry) 1899 { 1900 list_del(&entry->list); 1901 kmem_cache_free(discard_entry_slab, entry); 1902 } 1903 1904 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1905 { 1906 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1907 struct discard_entry *entry, *this; 1908 1909 /* drop caches */ 1910 list_for_each_entry_safe(entry, this, head, list) 1911 release_discard_addr(entry); 1912 } 1913 1914 /* 1915 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1916 */ 1917 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1918 { 1919 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1920 unsigned int segno; 1921 1922 mutex_lock(&dirty_i->seglist_lock); 1923 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1924 __set_test_and_free(sbi, segno, false); 1925 mutex_unlock(&dirty_i->seglist_lock); 1926 } 1927 1928 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1929 struct cp_control *cpc) 1930 { 1931 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1932 struct list_head *head = &dcc->entry_list; 1933 struct discard_entry *entry, *this; 1934 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1935 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1936 unsigned int start = 0, end = -1; 1937 unsigned int secno, start_segno; 1938 bool force = (cpc->reason & CP_DISCARD); 1939 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 1940 DISCARD_UNIT_SECTION; 1941 1942 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 1943 section_alignment = true; 1944 1945 mutex_lock(&dirty_i->seglist_lock); 1946 1947 while (1) { 1948 int i; 1949 1950 if (section_alignment && end != -1) 1951 end--; 1952 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1953 if (start >= MAIN_SEGS(sbi)) 1954 break; 1955 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1956 start + 1); 1957 1958 if (section_alignment) { 1959 start = rounddown(start, sbi->segs_per_sec); 1960 end = roundup(end, sbi->segs_per_sec); 1961 } 1962 1963 for (i = start; i < end; i++) { 1964 if (test_and_clear_bit(i, prefree_map)) 1965 dirty_i->nr_dirty[PRE]--; 1966 } 1967 1968 if (!f2fs_realtime_discard_enable(sbi)) 1969 continue; 1970 1971 if (force && start >= cpc->trim_start && 1972 (end - 1) <= cpc->trim_end) 1973 continue; 1974 1975 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1977 (end - start) << sbi->log_blocks_per_seg); 1978 continue; 1979 } 1980 next: 1981 secno = GET_SEC_FROM_SEG(sbi, start); 1982 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1983 if (!IS_CURSEC(sbi, secno) && 1984 !get_valid_blocks(sbi, start, true)) 1985 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1986 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1987 1988 start = start_segno + sbi->segs_per_sec; 1989 if (start < end) 1990 goto next; 1991 else 1992 end = start - 1; 1993 } 1994 mutex_unlock(&dirty_i->seglist_lock); 1995 1996 if (!f2fs_block_unit_discard(sbi)) 1997 goto wakeup; 1998 1999 /* send small discards */ 2000 list_for_each_entry_safe(entry, this, head, list) { 2001 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2002 bool is_valid = test_bit_le(0, entry->discard_map); 2003 2004 find_next: 2005 if (is_valid) { 2006 next_pos = find_next_zero_bit_le(entry->discard_map, 2007 sbi->blocks_per_seg, cur_pos); 2008 len = next_pos - cur_pos; 2009 2010 if (f2fs_sb_has_blkzoned(sbi) || 2011 (force && len < cpc->trim_minlen)) 2012 goto skip; 2013 2014 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2015 len); 2016 total_len += len; 2017 } else { 2018 next_pos = find_next_bit_le(entry->discard_map, 2019 sbi->blocks_per_seg, cur_pos); 2020 } 2021 skip: 2022 cur_pos = next_pos; 2023 is_valid = !is_valid; 2024 2025 if (cur_pos < sbi->blocks_per_seg) 2026 goto find_next; 2027 2028 release_discard_addr(entry); 2029 dcc->nr_discards -= total_len; 2030 } 2031 2032 wakeup: 2033 wake_up_discard_thread(sbi, false); 2034 } 2035 2036 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2037 { 2038 dev_t dev = sbi->sb->s_bdev->bd_dev; 2039 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2040 int err = 0; 2041 2042 if (!f2fs_realtime_discard_enable(sbi)) 2043 return 0; 2044 2045 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2046 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2047 if (IS_ERR(dcc->f2fs_issue_discard)) { 2048 err = PTR_ERR(dcc->f2fs_issue_discard); 2049 dcc->f2fs_issue_discard = NULL; 2050 } 2051 2052 return err; 2053 } 2054 2055 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2056 { 2057 struct discard_cmd_control *dcc; 2058 int err = 0, i; 2059 2060 if (SM_I(sbi)->dcc_info) { 2061 dcc = SM_I(sbi)->dcc_info; 2062 goto init_thread; 2063 } 2064 2065 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2066 if (!dcc) 2067 return -ENOMEM; 2068 2069 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2070 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2071 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2072 dcc->discard_granularity = sbi->blocks_per_seg; 2073 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2074 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2075 2076 INIT_LIST_HEAD(&dcc->entry_list); 2077 for (i = 0; i < MAX_PLIST_NUM; i++) 2078 INIT_LIST_HEAD(&dcc->pend_list[i]); 2079 INIT_LIST_HEAD(&dcc->wait_list); 2080 INIT_LIST_HEAD(&dcc->fstrim_list); 2081 mutex_init(&dcc->cmd_lock); 2082 atomic_set(&dcc->issued_discard, 0); 2083 atomic_set(&dcc->queued_discard, 0); 2084 atomic_set(&dcc->discard_cmd_cnt, 0); 2085 dcc->nr_discards = 0; 2086 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2087 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2088 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2089 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2090 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2091 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2092 dcc->undiscard_blks = 0; 2093 dcc->next_pos = 0; 2094 dcc->root = RB_ROOT_CACHED; 2095 dcc->rbtree_check = false; 2096 2097 init_waitqueue_head(&dcc->discard_wait_queue); 2098 SM_I(sbi)->dcc_info = dcc; 2099 init_thread: 2100 err = f2fs_start_discard_thread(sbi); 2101 if (err) { 2102 kfree(dcc); 2103 SM_I(sbi)->dcc_info = NULL; 2104 } 2105 2106 return err; 2107 } 2108 2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2110 { 2111 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2112 2113 if (!dcc) 2114 return; 2115 2116 f2fs_stop_discard_thread(sbi); 2117 2118 /* 2119 * Recovery can cache discard commands, so in error path of 2120 * fill_super(), it needs to give a chance to handle them. 2121 */ 2122 f2fs_issue_discard_timeout(sbi); 2123 2124 kfree(dcc); 2125 SM_I(sbi)->dcc_info = NULL; 2126 } 2127 2128 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2129 { 2130 struct sit_info *sit_i = SIT_I(sbi); 2131 2132 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2133 sit_i->dirty_sentries++; 2134 return false; 2135 } 2136 2137 return true; 2138 } 2139 2140 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2141 unsigned int segno, int modified) 2142 { 2143 struct seg_entry *se = get_seg_entry(sbi, segno); 2144 2145 se->type = type; 2146 if (modified) 2147 __mark_sit_entry_dirty(sbi, segno); 2148 } 2149 2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2151 block_t blkaddr) 2152 { 2153 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2154 2155 if (segno == NULL_SEGNO) 2156 return 0; 2157 return get_seg_entry(sbi, segno)->mtime; 2158 } 2159 2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2161 unsigned long long old_mtime) 2162 { 2163 struct seg_entry *se; 2164 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2165 unsigned long long ctime = get_mtime(sbi, false); 2166 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2167 2168 if (segno == NULL_SEGNO) 2169 return; 2170 2171 se = get_seg_entry(sbi, segno); 2172 2173 if (!se->mtime) 2174 se->mtime = mtime; 2175 else 2176 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2177 se->valid_blocks + 1); 2178 2179 if (ctime > SIT_I(sbi)->max_mtime) 2180 SIT_I(sbi)->max_mtime = ctime; 2181 } 2182 2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2184 { 2185 struct seg_entry *se; 2186 unsigned int segno, offset; 2187 long int new_vblocks; 2188 bool exist; 2189 #ifdef CONFIG_F2FS_CHECK_FS 2190 bool mir_exist; 2191 #endif 2192 2193 segno = GET_SEGNO(sbi, blkaddr); 2194 2195 se = get_seg_entry(sbi, segno); 2196 new_vblocks = se->valid_blocks + del; 2197 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2198 2199 f2fs_bug_on(sbi, (new_vblocks < 0 || 2200 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2201 2202 se->valid_blocks = new_vblocks; 2203 2204 /* Update valid block bitmap */ 2205 if (del > 0) { 2206 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2207 #ifdef CONFIG_F2FS_CHECK_FS 2208 mir_exist = f2fs_test_and_set_bit(offset, 2209 se->cur_valid_map_mir); 2210 if (unlikely(exist != mir_exist)) { 2211 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2212 blkaddr, exist); 2213 f2fs_bug_on(sbi, 1); 2214 } 2215 #endif 2216 if (unlikely(exist)) { 2217 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2218 blkaddr); 2219 f2fs_bug_on(sbi, 1); 2220 se->valid_blocks--; 2221 del = 0; 2222 } 2223 2224 if (f2fs_block_unit_discard(sbi) && 2225 !f2fs_test_and_set_bit(offset, se->discard_map)) 2226 sbi->discard_blks--; 2227 2228 /* 2229 * SSR should never reuse block which is checkpointed 2230 * or newly invalidated. 2231 */ 2232 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2233 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2234 se->ckpt_valid_blocks++; 2235 } 2236 } else { 2237 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2238 #ifdef CONFIG_F2FS_CHECK_FS 2239 mir_exist = f2fs_test_and_clear_bit(offset, 2240 se->cur_valid_map_mir); 2241 if (unlikely(exist != mir_exist)) { 2242 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2243 blkaddr, exist); 2244 f2fs_bug_on(sbi, 1); 2245 } 2246 #endif 2247 if (unlikely(!exist)) { 2248 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2249 blkaddr); 2250 f2fs_bug_on(sbi, 1); 2251 se->valid_blocks++; 2252 del = 0; 2253 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2254 /* 2255 * If checkpoints are off, we must not reuse data that 2256 * was used in the previous checkpoint. If it was used 2257 * before, we must track that to know how much space we 2258 * really have. 2259 */ 2260 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2261 spin_lock(&sbi->stat_lock); 2262 sbi->unusable_block_count++; 2263 spin_unlock(&sbi->stat_lock); 2264 } 2265 } 2266 2267 if (f2fs_block_unit_discard(sbi) && 2268 f2fs_test_and_clear_bit(offset, se->discard_map)) 2269 sbi->discard_blks++; 2270 } 2271 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2272 se->ckpt_valid_blocks += del; 2273 2274 __mark_sit_entry_dirty(sbi, segno); 2275 2276 /* update total number of valid blocks to be written in ckpt area */ 2277 SIT_I(sbi)->written_valid_blocks += del; 2278 2279 if (__is_large_section(sbi)) 2280 get_sec_entry(sbi, segno)->valid_blocks += del; 2281 } 2282 2283 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2284 { 2285 unsigned int segno = GET_SEGNO(sbi, addr); 2286 struct sit_info *sit_i = SIT_I(sbi); 2287 2288 f2fs_bug_on(sbi, addr == NULL_ADDR); 2289 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2290 return; 2291 2292 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2293 f2fs_invalidate_compress_page(sbi, addr); 2294 2295 /* add it into sit main buffer */ 2296 down_write(&sit_i->sentry_lock); 2297 2298 update_segment_mtime(sbi, addr, 0); 2299 update_sit_entry(sbi, addr, -1); 2300 2301 /* add it into dirty seglist */ 2302 locate_dirty_segment(sbi, segno); 2303 2304 up_write(&sit_i->sentry_lock); 2305 } 2306 2307 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2308 { 2309 struct sit_info *sit_i = SIT_I(sbi); 2310 unsigned int segno, offset; 2311 struct seg_entry *se; 2312 bool is_cp = false; 2313 2314 if (!__is_valid_data_blkaddr(blkaddr)) 2315 return true; 2316 2317 down_read(&sit_i->sentry_lock); 2318 2319 segno = GET_SEGNO(sbi, blkaddr); 2320 se = get_seg_entry(sbi, segno); 2321 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2322 2323 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2324 is_cp = true; 2325 2326 up_read(&sit_i->sentry_lock); 2327 2328 return is_cp; 2329 } 2330 2331 /* 2332 * This function should be resided under the curseg_mutex lock 2333 */ 2334 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2335 struct f2fs_summary *sum) 2336 { 2337 struct curseg_info *curseg = CURSEG_I(sbi, type); 2338 void *addr = curseg->sum_blk; 2339 2340 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2341 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2342 } 2343 2344 /* 2345 * Calculate the number of current summary pages for writing 2346 */ 2347 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2348 { 2349 int valid_sum_count = 0; 2350 int i, sum_in_page; 2351 2352 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2353 if (sbi->ckpt->alloc_type[i] == SSR) 2354 valid_sum_count += sbi->blocks_per_seg; 2355 else { 2356 if (for_ra) 2357 valid_sum_count += le16_to_cpu( 2358 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2359 else 2360 valid_sum_count += curseg_blkoff(sbi, i); 2361 } 2362 } 2363 2364 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2365 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2366 if (valid_sum_count <= sum_in_page) 2367 return 1; 2368 else if ((valid_sum_count - sum_in_page) <= 2369 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2370 return 2; 2371 return 3; 2372 } 2373 2374 /* 2375 * Caller should put this summary page 2376 */ 2377 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2378 { 2379 if (unlikely(f2fs_cp_error(sbi))) 2380 return ERR_PTR(-EIO); 2381 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2382 } 2383 2384 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2385 void *src, block_t blk_addr) 2386 { 2387 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2388 2389 memcpy(page_address(page), src, PAGE_SIZE); 2390 set_page_dirty(page); 2391 f2fs_put_page(page, 1); 2392 } 2393 2394 static void write_sum_page(struct f2fs_sb_info *sbi, 2395 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2396 { 2397 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2398 } 2399 2400 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2401 int type, block_t blk_addr) 2402 { 2403 struct curseg_info *curseg = CURSEG_I(sbi, type); 2404 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2405 struct f2fs_summary_block *src = curseg->sum_blk; 2406 struct f2fs_summary_block *dst; 2407 2408 dst = (struct f2fs_summary_block *)page_address(page); 2409 memset(dst, 0, PAGE_SIZE); 2410 2411 mutex_lock(&curseg->curseg_mutex); 2412 2413 down_read(&curseg->journal_rwsem); 2414 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2415 up_read(&curseg->journal_rwsem); 2416 2417 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2418 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2419 2420 mutex_unlock(&curseg->curseg_mutex); 2421 2422 set_page_dirty(page); 2423 f2fs_put_page(page, 1); 2424 } 2425 2426 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2427 struct curseg_info *curseg, int type) 2428 { 2429 unsigned int segno = curseg->segno + 1; 2430 struct free_segmap_info *free_i = FREE_I(sbi); 2431 2432 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2433 return !test_bit(segno, free_i->free_segmap); 2434 return 0; 2435 } 2436 2437 /* 2438 * Find a new segment from the free segments bitmap to right order 2439 * This function should be returned with success, otherwise BUG 2440 */ 2441 static void get_new_segment(struct f2fs_sb_info *sbi, 2442 unsigned int *newseg, bool new_sec, int dir) 2443 { 2444 struct free_segmap_info *free_i = FREE_I(sbi); 2445 unsigned int segno, secno, zoneno; 2446 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2447 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2448 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2449 unsigned int left_start = hint; 2450 bool init = true; 2451 int go_left = 0; 2452 int i; 2453 2454 spin_lock(&free_i->segmap_lock); 2455 2456 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2457 segno = find_next_zero_bit(free_i->free_segmap, 2458 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2459 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2460 goto got_it; 2461 } 2462 find_other_zone: 2463 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2464 if (secno >= MAIN_SECS(sbi)) { 2465 if (dir == ALLOC_RIGHT) { 2466 secno = find_first_zero_bit(free_i->free_secmap, 2467 MAIN_SECS(sbi)); 2468 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2469 } else { 2470 go_left = 1; 2471 left_start = hint - 1; 2472 } 2473 } 2474 if (go_left == 0) 2475 goto skip_left; 2476 2477 while (test_bit(left_start, free_i->free_secmap)) { 2478 if (left_start > 0) { 2479 left_start--; 2480 continue; 2481 } 2482 left_start = find_first_zero_bit(free_i->free_secmap, 2483 MAIN_SECS(sbi)); 2484 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2485 break; 2486 } 2487 secno = left_start; 2488 skip_left: 2489 segno = GET_SEG_FROM_SEC(sbi, secno); 2490 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2491 2492 /* give up on finding another zone */ 2493 if (!init) 2494 goto got_it; 2495 if (sbi->secs_per_zone == 1) 2496 goto got_it; 2497 if (zoneno == old_zoneno) 2498 goto got_it; 2499 if (dir == ALLOC_LEFT) { 2500 if (!go_left && zoneno + 1 >= total_zones) 2501 goto got_it; 2502 if (go_left && zoneno == 0) 2503 goto got_it; 2504 } 2505 for (i = 0; i < NR_CURSEG_TYPE; i++) 2506 if (CURSEG_I(sbi, i)->zone == zoneno) 2507 break; 2508 2509 if (i < NR_CURSEG_TYPE) { 2510 /* zone is in user, try another */ 2511 if (go_left) 2512 hint = zoneno * sbi->secs_per_zone - 1; 2513 else if (zoneno + 1 >= total_zones) 2514 hint = 0; 2515 else 2516 hint = (zoneno + 1) * sbi->secs_per_zone; 2517 init = false; 2518 goto find_other_zone; 2519 } 2520 got_it: 2521 /* set it as dirty segment in free segmap */ 2522 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2523 __set_inuse(sbi, segno); 2524 *newseg = segno; 2525 spin_unlock(&free_i->segmap_lock); 2526 } 2527 2528 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2529 { 2530 struct curseg_info *curseg = CURSEG_I(sbi, type); 2531 struct summary_footer *sum_footer; 2532 unsigned short seg_type = curseg->seg_type; 2533 2534 curseg->inited = true; 2535 curseg->segno = curseg->next_segno; 2536 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2537 curseg->next_blkoff = 0; 2538 curseg->next_segno = NULL_SEGNO; 2539 2540 sum_footer = &(curseg->sum_blk->footer); 2541 memset(sum_footer, 0, sizeof(struct summary_footer)); 2542 2543 sanity_check_seg_type(sbi, seg_type); 2544 2545 if (IS_DATASEG(seg_type)) 2546 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2547 if (IS_NODESEG(seg_type)) 2548 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2549 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2550 } 2551 2552 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2553 { 2554 struct curseg_info *curseg = CURSEG_I(sbi, type); 2555 unsigned short seg_type = curseg->seg_type; 2556 2557 sanity_check_seg_type(sbi, seg_type); 2558 if (f2fs_need_rand_seg(sbi)) 2559 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2560 2561 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2562 if (__is_large_section(sbi)) 2563 return curseg->segno; 2564 2565 /* inmem log may not locate on any segment after mount */ 2566 if (!curseg->inited) 2567 return 0; 2568 2569 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2570 return 0; 2571 2572 if (test_opt(sbi, NOHEAP) && 2573 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2574 return 0; 2575 2576 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2577 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2578 2579 /* find segments from 0 to reuse freed segments */ 2580 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2581 return 0; 2582 2583 return curseg->segno; 2584 } 2585 2586 /* 2587 * Allocate a current working segment. 2588 * This function always allocates a free segment in LFS manner. 2589 */ 2590 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2591 { 2592 struct curseg_info *curseg = CURSEG_I(sbi, type); 2593 unsigned short seg_type = curseg->seg_type; 2594 unsigned int segno = curseg->segno; 2595 int dir = ALLOC_LEFT; 2596 2597 if (curseg->inited) 2598 write_sum_page(sbi, curseg->sum_blk, 2599 GET_SUM_BLOCK(sbi, segno)); 2600 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2601 dir = ALLOC_RIGHT; 2602 2603 if (test_opt(sbi, NOHEAP)) 2604 dir = ALLOC_RIGHT; 2605 2606 segno = __get_next_segno(sbi, type); 2607 get_new_segment(sbi, &segno, new_sec, dir); 2608 curseg->next_segno = segno; 2609 reset_curseg(sbi, type, 1); 2610 curseg->alloc_type = LFS; 2611 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2612 curseg->fragment_remained_chunk = 2613 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2614 } 2615 2616 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2617 int segno, block_t start) 2618 { 2619 struct seg_entry *se = get_seg_entry(sbi, segno); 2620 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2621 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2622 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2623 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2624 int i; 2625 2626 for (i = 0; i < entries; i++) 2627 target_map[i] = ckpt_map[i] | cur_map[i]; 2628 2629 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2630 } 2631 2632 /* 2633 * If a segment is written by LFS manner, next block offset is just obtained 2634 * by increasing the current block offset. However, if a segment is written by 2635 * SSR manner, next block offset obtained by calling __next_free_blkoff 2636 */ 2637 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2638 struct curseg_info *seg) 2639 { 2640 if (seg->alloc_type == SSR) { 2641 seg->next_blkoff = 2642 __next_free_blkoff(sbi, seg->segno, 2643 seg->next_blkoff + 1); 2644 } else { 2645 seg->next_blkoff++; 2646 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2647 /* To allocate block chunks in different sizes, use random number */ 2648 if (--seg->fragment_remained_chunk <= 0) { 2649 seg->fragment_remained_chunk = 2650 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2651 seg->next_blkoff += 2652 get_random_u32_inclusive(1, sbi->max_fragment_hole); 2653 } 2654 } 2655 } 2656 } 2657 2658 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2659 { 2660 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2661 } 2662 2663 /* 2664 * This function always allocates a used segment(from dirty seglist) by SSR 2665 * manner, so it should recover the existing segment information of valid blocks 2666 */ 2667 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2668 { 2669 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2670 struct curseg_info *curseg = CURSEG_I(sbi, type); 2671 unsigned int new_segno = curseg->next_segno; 2672 struct f2fs_summary_block *sum_node; 2673 struct page *sum_page; 2674 2675 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2676 2677 __set_test_and_inuse(sbi, new_segno); 2678 2679 mutex_lock(&dirty_i->seglist_lock); 2680 __remove_dirty_segment(sbi, new_segno, PRE); 2681 __remove_dirty_segment(sbi, new_segno, DIRTY); 2682 mutex_unlock(&dirty_i->seglist_lock); 2683 2684 reset_curseg(sbi, type, 1); 2685 curseg->alloc_type = SSR; 2686 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2687 2688 sum_page = f2fs_get_sum_page(sbi, new_segno); 2689 if (IS_ERR(sum_page)) { 2690 /* GC won't be able to use stale summary pages by cp_error */ 2691 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2692 return; 2693 } 2694 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2695 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2696 f2fs_put_page(sum_page, 1); 2697 } 2698 2699 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2700 int alloc_mode, unsigned long long age); 2701 2702 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2703 int target_type, int alloc_mode, 2704 unsigned long long age) 2705 { 2706 struct curseg_info *curseg = CURSEG_I(sbi, type); 2707 2708 curseg->seg_type = target_type; 2709 2710 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2711 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2712 2713 curseg->seg_type = se->type; 2714 change_curseg(sbi, type); 2715 } else { 2716 /* allocate cold segment by default */ 2717 curseg->seg_type = CURSEG_COLD_DATA; 2718 new_curseg(sbi, type, true); 2719 } 2720 stat_inc_seg_type(sbi, curseg); 2721 } 2722 2723 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2724 { 2725 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2726 2727 if (!sbi->am.atgc_enabled) 2728 return; 2729 2730 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2731 2732 mutex_lock(&curseg->curseg_mutex); 2733 down_write(&SIT_I(sbi)->sentry_lock); 2734 2735 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2736 2737 up_write(&SIT_I(sbi)->sentry_lock); 2738 mutex_unlock(&curseg->curseg_mutex); 2739 2740 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2741 2742 } 2743 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2744 { 2745 __f2fs_init_atgc_curseg(sbi); 2746 } 2747 2748 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2749 { 2750 struct curseg_info *curseg = CURSEG_I(sbi, type); 2751 2752 mutex_lock(&curseg->curseg_mutex); 2753 if (!curseg->inited) 2754 goto out; 2755 2756 if (get_valid_blocks(sbi, curseg->segno, false)) { 2757 write_sum_page(sbi, curseg->sum_blk, 2758 GET_SUM_BLOCK(sbi, curseg->segno)); 2759 } else { 2760 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2761 __set_test_and_free(sbi, curseg->segno, true); 2762 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2763 } 2764 out: 2765 mutex_unlock(&curseg->curseg_mutex); 2766 } 2767 2768 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2769 { 2770 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2771 2772 if (sbi->am.atgc_enabled) 2773 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2774 } 2775 2776 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2777 { 2778 struct curseg_info *curseg = CURSEG_I(sbi, type); 2779 2780 mutex_lock(&curseg->curseg_mutex); 2781 if (!curseg->inited) 2782 goto out; 2783 if (get_valid_blocks(sbi, curseg->segno, false)) 2784 goto out; 2785 2786 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2787 __set_test_and_inuse(sbi, curseg->segno); 2788 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2789 out: 2790 mutex_unlock(&curseg->curseg_mutex); 2791 } 2792 2793 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2794 { 2795 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2796 2797 if (sbi->am.atgc_enabled) 2798 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2799 } 2800 2801 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2802 int alloc_mode, unsigned long long age) 2803 { 2804 struct curseg_info *curseg = CURSEG_I(sbi, type); 2805 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2806 unsigned segno = NULL_SEGNO; 2807 unsigned short seg_type = curseg->seg_type; 2808 int i, cnt; 2809 bool reversed = false; 2810 2811 sanity_check_seg_type(sbi, seg_type); 2812 2813 /* f2fs_need_SSR() already forces to do this */ 2814 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2815 curseg->next_segno = segno; 2816 return 1; 2817 } 2818 2819 /* For node segments, let's do SSR more intensively */ 2820 if (IS_NODESEG(seg_type)) { 2821 if (seg_type >= CURSEG_WARM_NODE) { 2822 reversed = true; 2823 i = CURSEG_COLD_NODE; 2824 } else { 2825 i = CURSEG_HOT_NODE; 2826 } 2827 cnt = NR_CURSEG_NODE_TYPE; 2828 } else { 2829 if (seg_type >= CURSEG_WARM_DATA) { 2830 reversed = true; 2831 i = CURSEG_COLD_DATA; 2832 } else { 2833 i = CURSEG_HOT_DATA; 2834 } 2835 cnt = NR_CURSEG_DATA_TYPE; 2836 } 2837 2838 for (; cnt-- > 0; reversed ? i-- : i++) { 2839 if (i == seg_type) 2840 continue; 2841 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2842 curseg->next_segno = segno; 2843 return 1; 2844 } 2845 } 2846 2847 /* find valid_blocks=0 in dirty list */ 2848 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2849 segno = get_free_segment(sbi); 2850 if (segno != NULL_SEGNO) { 2851 curseg->next_segno = segno; 2852 return 1; 2853 } 2854 } 2855 return 0; 2856 } 2857 2858 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 2859 { 2860 struct curseg_info *curseg = CURSEG_I(sbi, type); 2861 2862 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2863 curseg->seg_type == CURSEG_WARM_NODE) 2864 return true; 2865 if (curseg->alloc_type == LFS && 2866 is_next_segment_free(sbi, curseg, type) && 2867 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2868 return true; 2869 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 2870 return true; 2871 return false; 2872 } 2873 2874 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2875 unsigned int start, unsigned int end) 2876 { 2877 struct curseg_info *curseg = CURSEG_I(sbi, type); 2878 unsigned int segno; 2879 2880 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2881 mutex_lock(&curseg->curseg_mutex); 2882 down_write(&SIT_I(sbi)->sentry_lock); 2883 2884 segno = CURSEG_I(sbi, type)->segno; 2885 if (segno < start || segno > end) 2886 goto unlock; 2887 2888 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2889 change_curseg(sbi, type); 2890 else 2891 new_curseg(sbi, type, true); 2892 2893 stat_inc_seg_type(sbi, curseg); 2894 2895 locate_dirty_segment(sbi, segno); 2896 unlock: 2897 up_write(&SIT_I(sbi)->sentry_lock); 2898 2899 if (segno != curseg->segno) 2900 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2901 type, segno, curseg->segno); 2902 2903 mutex_unlock(&curseg->curseg_mutex); 2904 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2905 } 2906 2907 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2908 bool new_sec, bool force) 2909 { 2910 struct curseg_info *curseg = CURSEG_I(sbi, type); 2911 unsigned int old_segno; 2912 2913 if (!curseg->inited) 2914 goto alloc; 2915 2916 if (force || curseg->next_blkoff || 2917 get_valid_blocks(sbi, curseg->segno, new_sec)) 2918 goto alloc; 2919 2920 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2921 return; 2922 alloc: 2923 old_segno = curseg->segno; 2924 new_curseg(sbi, type, true); 2925 stat_inc_seg_type(sbi, curseg); 2926 locate_dirty_segment(sbi, old_segno); 2927 } 2928 2929 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2930 int type, bool force) 2931 { 2932 __allocate_new_segment(sbi, type, true, force); 2933 } 2934 2935 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2936 { 2937 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2938 down_write(&SIT_I(sbi)->sentry_lock); 2939 __allocate_new_section(sbi, type, force); 2940 up_write(&SIT_I(sbi)->sentry_lock); 2941 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2942 } 2943 2944 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2945 { 2946 int i; 2947 2948 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2949 down_write(&SIT_I(sbi)->sentry_lock); 2950 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2951 __allocate_new_segment(sbi, i, false, false); 2952 up_write(&SIT_I(sbi)->sentry_lock); 2953 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2954 } 2955 2956 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2957 struct cp_control *cpc) 2958 { 2959 __u64 trim_start = cpc->trim_start; 2960 bool has_candidate = false; 2961 2962 down_write(&SIT_I(sbi)->sentry_lock); 2963 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2964 if (add_discard_addrs(sbi, cpc, true)) { 2965 has_candidate = true; 2966 break; 2967 } 2968 } 2969 up_write(&SIT_I(sbi)->sentry_lock); 2970 2971 cpc->trim_start = trim_start; 2972 return has_candidate; 2973 } 2974 2975 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2976 struct discard_policy *dpolicy, 2977 unsigned int start, unsigned int end) 2978 { 2979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2980 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2981 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2982 struct discard_cmd *dc; 2983 struct blk_plug plug; 2984 int issued; 2985 unsigned int trimmed = 0; 2986 2987 next: 2988 issued = 0; 2989 2990 mutex_lock(&dcc->cmd_lock); 2991 if (unlikely(dcc->rbtree_check)) 2992 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2993 &dcc->root, false)); 2994 2995 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2996 NULL, start, 2997 (struct rb_entry **)&prev_dc, 2998 (struct rb_entry **)&next_dc, 2999 &insert_p, &insert_parent, true, NULL); 3000 if (!dc) 3001 dc = next_dc; 3002 3003 blk_start_plug(&plug); 3004 3005 while (dc && dc->lstart <= end) { 3006 struct rb_node *node; 3007 int err = 0; 3008 3009 if (dc->len < dpolicy->granularity) 3010 goto skip; 3011 3012 if (dc->state != D_PREP) { 3013 list_move_tail(&dc->list, &dcc->fstrim_list); 3014 goto skip; 3015 } 3016 3017 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3018 3019 if (issued >= dpolicy->max_requests) { 3020 start = dc->lstart + dc->len; 3021 3022 if (err) 3023 __remove_discard_cmd(sbi, dc); 3024 3025 blk_finish_plug(&plug); 3026 mutex_unlock(&dcc->cmd_lock); 3027 trimmed += __wait_all_discard_cmd(sbi, NULL); 3028 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3029 goto next; 3030 } 3031 skip: 3032 node = rb_next(&dc->rb_node); 3033 if (err) 3034 __remove_discard_cmd(sbi, dc); 3035 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3036 3037 if (fatal_signal_pending(current)) 3038 break; 3039 } 3040 3041 blk_finish_plug(&plug); 3042 mutex_unlock(&dcc->cmd_lock); 3043 3044 return trimmed; 3045 } 3046 3047 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3048 { 3049 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3050 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3051 unsigned int start_segno, end_segno; 3052 block_t start_block, end_block; 3053 struct cp_control cpc; 3054 struct discard_policy dpolicy; 3055 unsigned long long trimmed = 0; 3056 int err = 0; 3057 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3058 3059 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3060 return -EINVAL; 3061 3062 if (end < MAIN_BLKADDR(sbi)) 3063 goto out; 3064 3065 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3066 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3067 return -EFSCORRUPTED; 3068 } 3069 3070 /* start/end segment number in main_area */ 3071 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3072 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3073 GET_SEGNO(sbi, end); 3074 if (need_align) { 3075 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3076 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3077 } 3078 3079 cpc.reason = CP_DISCARD; 3080 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3081 cpc.trim_start = start_segno; 3082 cpc.trim_end = end_segno; 3083 3084 if (sbi->discard_blks == 0) 3085 goto out; 3086 3087 f2fs_down_write(&sbi->gc_lock); 3088 err = f2fs_write_checkpoint(sbi, &cpc); 3089 f2fs_up_write(&sbi->gc_lock); 3090 if (err) 3091 goto out; 3092 3093 /* 3094 * We filed discard candidates, but actually we don't need to wait for 3095 * all of them, since they'll be issued in idle time along with runtime 3096 * discard option. User configuration looks like using runtime discard 3097 * or periodic fstrim instead of it. 3098 */ 3099 if (f2fs_realtime_discard_enable(sbi)) 3100 goto out; 3101 3102 start_block = START_BLOCK(sbi, start_segno); 3103 end_block = START_BLOCK(sbi, end_segno + 1); 3104 3105 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3106 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3107 start_block, end_block); 3108 3109 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3110 start_block, end_block); 3111 out: 3112 if (!err) 3113 range->len = F2FS_BLK_TO_BYTES(trimmed); 3114 return err; 3115 } 3116 3117 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3118 struct curseg_info *curseg) 3119 { 3120 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3121 curseg->segno); 3122 } 3123 3124 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3125 { 3126 switch (hint) { 3127 case WRITE_LIFE_SHORT: 3128 return CURSEG_HOT_DATA; 3129 case WRITE_LIFE_EXTREME: 3130 return CURSEG_COLD_DATA; 3131 default: 3132 return CURSEG_WARM_DATA; 3133 } 3134 } 3135 3136 static int __get_segment_type_2(struct f2fs_io_info *fio) 3137 { 3138 if (fio->type == DATA) 3139 return CURSEG_HOT_DATA; 3140 else 3141 return CURSEG_HOT_NODE; 3142 } 3143 3144 static int __get_segment_type_4(struct f2fs_io_info *fio) 3145 { 3146 if (fio->type == DATA) { 3147 struct inode *inode = fio->page->mapping->host; 3148 3149 if (S_ISDIR(inode->i_mode)) 3150 return CURSEG_HOT_DATA; 3151 else 3152 return CURSEG_COLD_DATA; 3153 } else { 3154 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3155 return CURSEG_WARM_NODE; 3156 else 3157 return CURSEG_COLD_NODE; 3158 } 3159 } 3160 3161 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3162 { 3163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3164 struct extent_info ei; 3165 3166 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3167 if (!ei.age) 3168 return NO_CHECK_TYPE; 3169 if (ei.age <= sbi->hot_data_age_threshold) 3170 return CURSEG_HOT_DATA; 3171 if (ei.age <= sbi->warm_data_age_threshold) 3172 return CURSEG_WARM_DATA; 3173 return CURSEG_COLD_DATA; 3174 } 3175 return NO_CHECK_TYPE; 3176 } 3177 3178 static int __get_segment_type_6(struct f2fs_io_info *fio) 3179 { 3180 if (fio->type == DATA) { 3181 struct inode *inode = fio->page->mapping->host; 3182 int type; 3183 3184 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3185 return CURSEG_COLD_DATA_PINNED; 3186 3187 if (page_private_gcing(fio->page)) { 3188 if (fio->sbi->am.atgc_enabled && 3189 (fio->io_type == FS_DATA_IO) && 3190 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3191 return CURSEG_ALL_DATA_ATGC; 3192 else 3193 return CURSEG_COLD_DATA; 3194 } 3195 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3196 return CURSEG_COLD_DATA; 3197 3198 type = __get_age_segment_type(inode, fio->page->index); 3199 if (type != NO_CHECK_TYPE) 3200 return type; 3201 3202 if (file_is_hot(inode) || 3203 is_inode_flag_set(inode, FI_HOT_DATA) || 3204 f2fs_is_cow_file(inode)) 3205 return CURSEG_HOT_DATA; 3206 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3207 } else { 3208 if (IS_DNODE(fio->page)) 3209 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3210 CURSEG_HOT_NODE; 3211 return CURSEG_COLD_NODE; 3212 } 3213 } 3214 3215 static int __get_segment_type(struct f2fs_io_info *fio) 3216 { 3217 int type = 0; 3218 3219 switch (F2FS_OPTION(fio->sbi).active_logs) { 3220 case 2: 3221 type = __get_segment_type_2(fio); 3222 break; 3223 case 4: 3224 type = __get_segment_type_4(fio); 3225 break; 3226 case 6: 3227 type = __get_segment_type_6(fio); 3228 break; 3229 default: 3230 f2fs_bug_on(fio->sbi, true); 3231 } 3232 3233 if (IS_HOT(type)) 3234 fio->temp = HOT; 3235 else if (IS_WARM(type)) 3236 fio->temp = WARM; 3237 else 3238 fio->temp = COLD; 3239 return type; 3240 } 3241 3242 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3243 block_t old_blkaddr, block_t *new_blkaddr, 3244 struct f2fs_summary *sum, int type, 3245 struct f2fs_io_info *fio) 3246 { 3247 struct sit_info *sit_i = SIT_I(sbi); 3248 struct curseg_info *curseg = CURSEG_I(sbi, type); 3249 unsigned long long old_mtime; 3250 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3251 struct seg_entry *se = NULL; 3252 3253 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3254 3255 mutex_lock(&curseg->curseg_mutex); 3256 down_write(&sit_i->sentry_lock); 3257 3258 if (from_gc) { 3259 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3260 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3261 sanity_check_seg_type(sbi, se->type); 3262 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3263 } 3264 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3265 3266 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3267 3268 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3269 3270 /* 3271 * __add_sum_entry should be resided under the curseg_mutex 3272 * because, this function updates a summary entry in the 3273 * current summary block. 3274 */ 3275 __add_sum_entry(sbi, type, sum); 3276 3277 __refresh_next_blkoff(sbi, curseg); 3278 3279 stat_inc_block_count(sbi, curseg); 3280 3281 if (from_gc) { 3282 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3283 } else { 3284 update_segment_mtime(sbi, old_blkaddr, 0); 3285 old_mtime = 0; 3286 } 3287 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3288 3289 /* 3290 * SIT information should be updated before segment allocation, 3291 * since SSR needs latest valid block information. 3292 */ 3293 update_sit_entry(sbi, *new_blkaddr, 1); 3294 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3295 update_sit_entry(sbi, old_blkaddr, -1); 3296 3297 if (!__has_curseg_space(sbi, curseg)) { 3298 /* 3299 * Flush out current segment and replace it with new segment. 3300 */ 3301 if (from_gc) { 3302 get_atssr_segment(sbi, type, se->type, 3303 AT_SSR, se->mtime); 3304 } else { 3305 if (need_new_seg(sbi, type)) 3306 new_curseg(sbi, type, false); 3307 else 3308 change_curseg(sbi, type); 3309 stat_inc_seg_type(sbi, curseg); 3310 } 3311 } 3312 /* 3313 * segment dirty status should be updated after segment allocation, 3314 * so we just need to update status only one time after previous 3315 * segment being closed. 3316 */ 3317 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3318 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3319 3320 if (IS_DATASEG(type)) 3321 atomic64_inc(&sbi->allocated_data_blocks); 3322 3323 up_write(&sit_i->sentry_lock); 3324 3325 if (page && IS_NODESEG(type)) { 3326 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3327 3328 f2fs_inode_chksum_set(sbi, page); 3329 } 3330 3331 if (fio) { 3332 struct f2fs_bio_info *io; 3333 3334 if (F2FS_IO_ALIGNED(sbi)) 3335 fio->retry = false; 3336 3337 INIT_LIST_HEAD(&fio->list); 3338 fio->in_list = true; 3339 io = sbi->write_io[fio->type] + fio->temp; 3340 spin_lock(&io->io_lock); 3341 list_add_tail(&fio->list, &io->io_list); 3342 spin_unlock(&io->io_lock); 3343 } 3344 3345 mutex_unlock(&curseg->curseg_mutex); 3346 3347 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3348 } 3349 3350 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3351 block_t blkaddr, unsigned int blkcnt) 3352 { 3353 if (!f2fs_is_multi_device(sbi)) 3354 return; 3355 3356 while (1) { 3357 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3358 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3359 3360 /* update device state for fsync */ 3361 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3362 3363 /* update device state for checkpoint */ 3364 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3365 spin_lock(&sbi->dev_lock); 3366 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3367 spin_unlock(&sbi->dev_lock); 3368 } 3369 3370 if (blkcnt <= blks) 3371 break; 3372 blkcnt -= blks; 3373 blkaddr += blks; 3374 } 3375 } 3376 3377 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3378 { 3379 int type = __get_segment_type(fio); 3380 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3381 3382 if (keep_order) 3383 f2fs_down_read(&fio->sbi->io_order_lock); 3384 reallocate: 3385 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3386 &fio->new_blkaddr, sum, type, fio); 3387 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3388 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3389 fio->old_blkaddr, fio->old_blkaddr); 3390 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3391 } 3392 3393 /* writeout dirty page into bdev */ 3394 f2fs_submit_page_write(fio); 3395 if (fio->retry) { 3396 fio->old_blkaddr = fio->new_blkaddr; 3397 goto reallocate; 3398 } 3399 3400 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3401 3402 if (keep_order) 3403 f2fs_up_read(&fio->sbi->io_order_lock); 3404 } 3405 3406 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3407 enum iostat_type io_type) 3408 { 3409 struct f2fs_io_info fio = { 3410 .sbi = sbi, 3411 .type = META, 3412 .temp = HOT, 3413 .op = REQ_OP_WRITE, 3414 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3415 .old_blkaddr = page->index, 3416 .new_blkaddr = page->index, 3417 .page = page, 3418 .encrypted_page = NULL, 3419 .in_list = false, 3420 }; 3421 3422 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3423 fio.op_flags &= ~REQ_META; 3424 3425 set_page_writeback(page); 3426 ClearPageError(page); 3427 f2fs_submit_page_write(&fio); 3428 3429 stat_inc_meta_count(sbi, page->index); 3430 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3431 } 3432 3433 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3434 { 3435 struct f2fs_summary sum; 3436 3437 set_summary(&sum, nid, 0, 0); 3438 do_write_page(&sum, fio); 3439 3440 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3441 } 3442 3443 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3444 struct f2fs_io_info *fio) 3445 { 3446 struct f2fs_sb_info *sbi = fio->sbi; 3447 struct f2fs_summary sum; 3448 3449 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3450 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3451 f2fs_update_age_extent_cache(dn); 3452 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3453 do_write_page(&sum, fio); 3454 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3455 3456 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3457 } 3458 3459 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3460 { 3461 int err; 3462 struct f2fs_sb_info *sbi = fio->sbi; 3463 unsigned int segno; 3464 3465 fio->new_blkaddr = fio->old_blkaddr; 3466 /* i/o temperature is needed for passing down write hints */ 3467 __get_segment_type(fio); 3468 3469 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3470 3471 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3472 set_sbi_flag(sbi, SBI_NEED_FSCK); 3473 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3474 __func__, segno); 3475 err = -EFSCORRUPTED; 3476 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3477 goto drop_bio; 3478 } 3479 3480 if (f2fs_cp_error(sbi)) { 3481 err = -EIO; 3482 goto drop_bio; 3483 } 3484 3485 if (fio->post_read) 3486 invalidate_mapping_pages(META_MAPPING(sbi), 3487 fio->new_blkaddr, fio->new_blkaddr); 3488 3489 stat_inc_inplace_blocks(fio->sbi); 3490 3491 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3492 err = f2fs_merge_page_bio(fio); 3493 else 3494 err = f2fs_submit_page_bio(fio); 3495 if (!err) { 3496 f2fs_update_device_state(fio->sbi, fio->ino, 3497 fio->new_blkaddr, 1); 3498 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3499 fio->io_type, F2FS_BLKSIZE); 3500 } 3501 3502 return err; 3503 drop_bio: 3504 if (fio->bio && *(fio->bio)) { 3505 struct bio *bio = *(fio->bio); 3506 3507 bio->bi_status = BLK_STS_IOERR; 3508 bio_endio(bio); 3509 *(fio->bio) = NULL; 3510 } 3511 return err; 3512 } 3513 3514 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3515 unsigned int segno) 3516 { 3517 int i; 3518 3519 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3520 if (CURSEG_I(sbi, i)->segno == segno) 3521 break; 3522 } 3523 return i; 3524 } 3525 3526 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3527 block_t old_blkaddr, block_t new_blkaddr, 3528 bool recover_curseg, bool recover_newaddr, 3529 bool from_gc) 3530 { 3531 struct sit_info *sit_i = SIT_I(sbi); 3532 struct curseg_info *curseg; 3533 unsigned int segno, old_cursegno; 3534 struct seg_entry *se; 3535 int type; 3536 unsigned short old_blkoff; 3537 unsigned char old_alloc_type; 3538 3539 segno = GET_SEGNO(sbi, new_blkaddr); 3540 se = get_seg_entry(sbi, segno); 3541 type = se->type; 3542 3543 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3544 3545 if (!recover_curseg) { 3546 /* for recovery flow */ 3547 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3548 if (old_blkaddr == NULL_ADDR) 3549 type = CURSEG_COLD_DATA; 3550 else 3551 type = CURSEG_WARM_DATA; 3552 } 3553 } else { 3554 if (IS_CURSEG(sbi, segno)) { 3555 /* se->type is volatile as SSR allocation */ 3556 type = __f2fs_get_curseg(sbi, segno); 3557 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3558 } else { 3559 type = CURSEG_WARM_DATA; 3560 } 3561 } 3562 3563 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3564 curseg = CURSEG_I(sbi, type); 3565 3566 mutex_lock(&curseg->curseg_mutex); 3567 down_write(&sit_i->sentry_lock); 3568 3569 old_cursegno = curseg->segno; 3570 old_blkoff = curseg->next_blkoff; 3571 old_alloc_type = curseg->alloc_type; 3572 3573 /* change the current segment */ 3574 if (segno != curseg->segno) { 3575 curseg->next_segno = segno; 3576 change_curseg(sbi, type); 3577 } 3578 3579 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3580 __add_sum_entry(sbi, type, sum); 3581 3582 if (!recover_curseg || recover_newaddr) { 3583 if (!from_gc) 3584 update_segment_mtime(sbi, new_blkaddr, 0); 3585 update_sit_entry(sbi, new_blkaddr, 1); 3586 } 3587 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3588 invalidate_mapping_pages(META_MAPPING(sbi), 3589 old_blkaddr, old_blkaddr); 3590 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3591 if (!from_gc) 3592 update_segment_mtime(sbi, old_blkaddr, 0); 3593 update_sit_entry(sbi, old_blkaddr, -1); 3594 } 3595 3596 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3597 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3598 3599 locate_dirty_segment(sbi, old_cursegno); 3600 3601 if (recover_curseg) { 3602 if (old_cursegno != curseg->segno) { 3603 curseg->next_segno = old_cursegno; 3604 change_curseg(sbi, type); 3605 } 3606 curseg->next_blkoff = old_blkoff; 3607 curseg->alloc_type = old_alloc_type; 3608 } 3609 3610 up_write(&sit_i->sentry_lock); 3611 mutex_unlock(&curseg->curseg_mutex); 3612 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3613 } 3614 3615 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3616 block_t old_addr, block_t new_addr, 3617 unsigned char version, bool recover_curseg, 3618 bool recover_newaddr) 3619 { 3620 struct f2fs_summary sum; 3621 3622 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3623 3624 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3625 recover_curseg, recover_newaddr, false); 3626 3627 f2fs_update_data_blkaddr(dn, new_addr); 3628 } 3629 3630 void f2fs_wait_on_page_writeback(struct page *page, 3631 enum page_type type, bool ordered, bool locked) 3632 { 3633 if (PageWriteback(page)) { 3634 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3635 3636 /* submit cached LFS IO */ 3637 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3638 /* sbumit cached IPU IO */ 3639 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3640 if (ordered) { 3641 wait_on_page_writeback(page); 3642 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3643 } else { 3644 wait_for_stable_page(page); 3645 } 3646 } 3647 } 3648 3649 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3650 { 3651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3652 struct page *cpage; 3653 3654 if (!f2fs_post_read_required(inode)) 3655 return; 3656 3657 if (!__is_valid_data_blkaddr(blkaddr)) 3658 return; 3659 3660 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3661 if (cpage) { 3662 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3663 f2fs_put_page(cpage, 1); 3664 } 3665 } 3666 3667 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3668 block_t len) 3669 { 3670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3671 block_t i; 3672 3673 if (!f2fs_post_read_required(inode)) 3674 return; 3675 3676 for (i = 0; i < len; i++) 3677 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3678 3679 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1); 3680 } 3681 3682 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3683 { 3684 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3685 struct curseg_info *seg_i; 3686 unsigned char *kaddr; 3687 struct page *page; 3688 block_t start; 3689 int i, j, offset; 3690 3691 start = start_sum_block(sbi); 3692 3693 page = f2fs_get_meta_page(sbi, start++); 3694 if (IS_ERR(page)) 3695 return PTR_ERR(page); 3696 kaddr = (unsigned char *)page_address(page); 3697 3698 /* Step 1: restore nat cache */ 3699 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3700 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3701 3702 /* Step 2: restore sit cache */ 3703 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3704 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3705 offset = 2 * SUM_JOURNAL_SIZE; 3706 3707 /* Step 3: restore summary entries */ 3708 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3709 unsigned short blk_off; 3710 unsigned int segno; 3711 3712 seg_i = CURSEG_I(sbi, i); 3713 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3714 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3715 seg_i->next_segno = segno; 3716 reset_curseg(sbi, i, 0); 3717 seg_i->alloc_type = ckpt->alloc_type[i]; 3718 seg_i->next_blkoff = blk_off; 3719 3720 if (seg_i->alloc_type == SSR) 3721 blk_off = sbi->blocks_per_seg; 3722 3723 for (j = 0; j < blk_off; j++) { 3724 struct f2fs_summary *s; 3725 3726 s = (struct f2fs_summary *)(kaddr + offset); 3727 seg_i->sum_blk->entries[j] = *s; 3728 offset += SUMMARY_SIZE; 3729 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3730 SUM_FOOTER_SIZE) 3731 continue; 3732 3733 f2fs_put_page(page, 1); 3734 page = NULL; 3735 3736 page = f2fs_get_meta_page(sbi, start++); 3737 if (IS_ERR(page)) 3738 return PTR_ERR(page); 3739 kaddr = (unsigned char *)page_address(page); 3740 offset = 0; 3741 } 3742 } 3743 f2fs_put_page(page, 1); 3744 return 0; 3745 } 3746 3747 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3748 { 3749 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3750 struct f2fs_summary_block *sum; 3751 struct curseg_info *curseg; 3752 struct page *new; 3753 unsigned short blk_off; 3754 unsigned int segno = 0; 3755 block_t blk_addr = 0; 3756 int err = 0; 3757 3758 /* get segment number and block addr */ 3759 if (IS_DATASEG(type)) { 3760 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3761 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3762 CURSEG_HOT_DATA]); 3763 if (__exist_node_summaries(sbi)) 3764 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3765 else 3766 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3767 } else { 3768 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3769 CURSEG_HOT_NODE]); 3770 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3771 CURSEG_HOT_NODE]); 3772 if (__exist_node_summaries(sbi)) 3773 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3774 type - CURSEG_HOT_NODE); 3775 else 3776 blk_addr = GET_SUM_BLOCK(sbi, segno); 3777 } 3778 3779 new = f2fs_get_meta_page(sbi, blk_addr); 3780 if (IS_ERR(new)) 3781 return PTR_ERR(new); 3782 sum = (struct f2fs_summary_block *)page_address(new); 3783 3784 if (IS_NODESEG(type)) { 3785 if (__exist_node_summaries(sbi)) { 3786 struct f2fs_summary *ns = &sum->entries[0]; 3787 int i; 3788 3789 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3790 ns->version = 0; 3791 ns->ofs_in_node = 0; 3792 } 3793 } else { 3794 err = f2fs_restore_node_summary(sbi, segno, sum); 3795 if (err) 3796 goto out; 3797 } 3798 } 3799 3800 /* set uncompleted segment to curseg */ 3801 curseg = CURSEG_I(sbi, type); 3802 mutex_lock(&curseg->curseg_mutex); 3803 3804 /* update journal info */ 3805 down_write(&curseg->journal_rwsem); 3806 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3807 up_write(&curseg->journal_rwsem); 3808 3809 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3810 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3811 curseg->next_segno = segno; 3812 reset_curseg(sbi, type, 0); 3813 curseg->alloc_type = ckpt->alloc_type[type]; 3814 curseg->next_blkoff = blk_off; 3815 mutex_unlock(&curseg->curseg_mutex); 3816 out: 3817 f2fs_put_page(new, 1); 3818 return err; 3819 } 3820 3821 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3822 { 3823 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3824 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3825 int type = CURSEG_HOT_DATA; 3826 int err; 3827 3828 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3829 int npages = f2fs_npages_for_summary_flush(sbi, true); 3830 3831 if (npages >= 2) 3832 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3833 META_CP, true); 3834 3835 /* restore for compacted data summary */ 3836 err = read_compacted_summaries(sbi); 3837 if (err) 3838 return err; 3839 type = CURSEG_HOT_NODE; 3840 } 3841 3842 if (__exist_node_summaries(sbi)) 3843 f2fs_ra_meta_pages(sbi, 3844 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3845 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3846 3847 for (; type <= CURSEG_COLD_NODE; type++) { 3848 err = read_normal_summaries(sbi, type); 3849 if (err) 3850 return err; 3851 } 3852 3853 /* sanity check for summary blocks */ 3854 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3855 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3856 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3857 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3858 return -EINVAL; 3859 } 3860 3861 return 0; 3862 } 3863 3864 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3865 { 3866 struct page *page; 3867 unsigned char *kaddr; 3868 struct f2fs_summary *summary; 3869 struct curseg_info *seg_i; 3870 int written_size = 0; 3871 int i, j; 3872 3873 page = f2fs_grab_meta_page(sbi, blkaddr++); 3874 kaddr = (unsigned char *)page_address(page); 3875 memset(kaddr, 0, PAGE_SIZE); 3876 3877 /* Step 1: write nat cache */ 3878 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3879 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3880 written_size += SUM_JOURNAL_SIZE; 3881 3882 /* Step 2: write sit cache */ 3883 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3884 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3885 written_size += SUM_JOURNAL_SIZE; 3886 3887 /* Step 3: write summary entries */ 3888 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3889 unsigned short blkoff; 3890 3891 seg_i = CURSEG_I(sbi, i); 3892 if (sbi->ckpt->alloc_type[i] == SSR) 3893 blkoff = sbi->blocks_per_seg; 3894 else 3895 blkoff = curseg_blkoff(sbi, i); 3896 3897 for (j = 0; j < blkoff; j++) { 3898 if (!page) { 3899 page = f2fs_grab_meta_page(sbi, blkaddr++); 3900 kaddr = (unsigned char *)page_address(page); 3901 memset(kaddr, 0, PAGE_SIZE); 3902 written_size = 0; 3903 } 3904 summary = (struct f2fs_summary *)(kaddr + written_size); 3905 *summary = seg_i->sum_blk->entries[j]; 3906 written_size += SUMMARY_SIZE; 3907 3908 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3909 SUM_FOOTER_SIZE) 3910 continue; 3911 3912 set_page_dirty(page); 3913 f2fs_put_page(page, 1); 3914 page = NULL; 3915 } 3916 } 3917 if (page) { 3918 set_page_dirty(page); 3919 f2fs_put_page(page, 1); 3920 } 3921 } 3922 3923 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3924 block_t blkaddr, int type) 3925 { 3926 int i, end; 3927 3928 if (IS_DATASEG(type)) 3929 end = type + NR_CURSEG_DATA_TYPE; 3930 else 3931 end = type + NR_CURSEG_NODE_TYPE; 3932 3933 for (i = type; i < end; i++) 3934 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3935 } 3936 3937 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3938 { 3939 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3940 write_compacted_summaries(sbi, start_blk); 3941 else 3942 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3943 } 3944 3945 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3946 { 3947 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3948 } 3949 3950 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3951 unsigned int val, int alloc) 3952 { 3953 int i; 3954 3955 if (type == NAT_JOURNAL) { 3956 for (i = 0; i < nats_in_cursum(journal); i++) { 3957 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3958 return i; 3959 } 3960 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3961 return update_nats_in_cursum(journal, 1); 3962 } else if (type == SIT_JOURNAL) { 3963 for (i = 0; i < sits_in_cursum(journal); i++) 3964 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3965 return i; 3966 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3967 return update_sits_in_cursum(journal, 1); 3968 } 3969 return -1; 3970 } 3971 3972 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3973 unsigned int segno) 3974 { 3975 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3976 } 3977 3978 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3979 unsigned int start) 3980 { 3981 struct sit_info *sit_i = SIT_I(sbi); 3982 struct page *page; 3983 pgoff_t src_off, dst_off; 3984 3985 src_off = current_sit_addr(sbi, start); 3986 dst_off = next_sit_addr(sbi, src_off); 3987 3988 page = f2fs_grab_meta_page(sbi, dst_off); 3989 seg_info_to_sit_page(sbi, page, start); 3990 3991 set_page_dirty(page); 3992 set_to_next_sit(sit_i, start); 3993 3994 return page; 3995 } 3996 3997 static struct sit_entry_set *grab_sit_entry_set(void) 3998 { 3999 struct sit_entry_set *ses = 4000 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4001 GFP_NOFS, true, NULL); 4002 4003 ses->entry_cnt = 0; 4004 INIT_LIST_HEAD(&ses->set_list); 4005 return ses; 4006 } 4007 4008 static void release_sit_entry_set(struct sit_entry_set *ses) 4009 { 4010 list_del(&ses->set_list); 4011 kmem_cache_free(sit_entry_set_slab, ses); 4012 } 4013 4014 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4015 struct list_head *head) 4016 { 4017 struct sit_entry_set *next = ses; 4018 4019 if (list_is_last(&ses->set_list, head)) 4020 return; 4021 4022 list_for_each_entry_continue(next, head, set_list) 4023 if (ses->entry_cnt <= next->entry_cnt) { 4024 list_move_tail(&ses->set_list, &next->set_list); 4025 return; 4026 } 4027 4028 list_move_tail(&ses->set_list, head); 4029 } 4030 4031 static void add_sit_entry(unsigned int segno, struct list_head *head) 4032 { 4033 struct sit_entry_set *ses; 4034 unsigned int start_segno = START_SEGNO(segno); 4035 4036 list_for_each_entry(ses, head, set_list) { 4037 if (ses->start_segno == start_segno) { 4038 ses->entry_cnt++; 4039 adjust_sit_entry_set(ses, head); 4040 return; 4041 } 4042 } 4043 4044 ses = grab_sit_entry_set(); 4045 4046 ses->start_segno = start_segno; 4047 ses->entry_cnt++; 4048 list_add(&ses->set_list, head); 4049 } 4050 4051 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4052 { 4053 struct f2fs_sm_info *sm_info = SM_I(sbi); 4054 struct list_head *set_list = &sm_info->sit_entry_set; 4055 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4056 unsigned int segno; 4057 4058 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4059 add_sit_entry(segno, set_list); 4060 } 4061 4062 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4063 { 4064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4065 struct f2fs_journal *journal = curseg->journal; 4066 int i; 4067 4068 down_write(&curseg->journal_rwsem); 4069 for (i = 0; i < sits_in_cursum(journal); i++) { 4070 unsigned int segno; 4071 bool dirtied; 4072 4073 segno = le32_to_cpu(segno_in_journal(journal, i)); 4074 dirtied = __mark_sit_entry_dirty(sbi, segno); 4075 4076 if (!dirtied) 4077 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4078 } 4079 update_sits_in_cursum(journal, -i); 4080 up_write(&curseg->journal_rwsem); 4081 } 4082 4083 /* 4084 * CP calls this function, which flushes SIT entries including sit_journal, 4085 * and moves prefree segs to free segs. 4086 */ 4087 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4088 { 4089 struct sit_info *sit_i = SIT_I(sbi); 4090 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4092 struct f2fs_journal *journal = curseg->journal; 4093 struct sit_entry_set *ses, *tmp; 4094 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4095 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4096 struct seg_entry *se; 4097 4098 down_write(&sit_i->sentry_lock); 4099 4100 if (!sit_i->dirty_sentries) 4101 goto out; 4102 4103 /* 4104 * add and account sit entries of dirty bitmap in sit entry 4105 * set temporarily 4106 */ 4107 add_sits_in_set(sbi); 4108 4109 /* 4110 * if there are no enough space in journal to store dirty sit 4111 * entries, remove all entries from journal and add and account 4112 * them in sit entry set. 4113 */ 4114 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4115 !to_journal) 4116 remove_sits_in_journal(sbi); 4117 4118 /* 4119 * there are two steps to flush sit entries: 4120 * #1, flush sit entries to journal in current cold data summary block. 4121 * #2, flush sit entries to sit page. 4122 */ 4123 list_for_each_entry_safe(ses, tmp, head, set_list) { 4124 struct page *page = NULL; 4125 struct f2fs_sit_block *raw_sit = NULL; 4126 unsigned int start_segno = ses->start_segno; 4127 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4128 (unsigned long)MAIN_SEGS(sbi)); 4129 unsigned int segno = start_segno; 4130 4131 if (to_journal && 4132 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4133 to_journal = false; 4134 4135 if (to_journal) { 4136 down_write(&curseg->journal_rwsem); 4137 } else { 4138 page = get_next_sit_page(sbi, start_segno); 4139 raw_sit = page_address(page); 4140 } 4141 4142 /* flush dirty sit entries in region of current sit set */ 4143 for_each_set_bit_from(segno, bitmap, end) { 4144 int offset, sit_offset; 4145 4146 se = get_seg_entry(sbi, segno); 4147 #ifdef CONFIG_F2FS_CHECK_FS 4148 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4149 SIT_VBLOCK_MAP_SIZE)) 4150 f2fs_bug_on(sbi, 1); 4151 #endif 4152 4153 /* add discard candidates */ 4154 if (!(cpc->reason & CP_DISCARD)) { 4155 cpc->trim_start = segno; 4156 add_discard_addrs(sbi, cpc, false); 4157 } 4158 4159 if (to_journal) { 4160 offset = f2fs_lookup_journal_in_cursum(journal, 4161 SIT_JOURNAL, segno, 1); 4162 f2fs_bug_on(sbi, offset < 0); 4163 segno_in_journal(journal, offset) = 4164 cpu_to_le32(segno); 4165 seg_info_to_raw_sit(se, 4166 &sit_in_journal(journal, offset)); 4167 check_block_count(sbi, segno, 4168 &sit_in_journal(journal, offset)); 4169 } else { 4170 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4171 seg_info_to_raw_sit(se, 4172 &raw_sit->entries[sit_offset]); 4173 check_block_count(sbi, segno, 4174 &raw_sit->entries[sit_offset]); 4175 } 4176 4177 __clear_bit(segno, bitmap); 4178 sit_i->dirty_sentries--; 4179 ses->entry_cnt--; 4180 } 4181 4182 if (to_journal) 4183 up_write(&curseg->journal_rwsem); 4184 else 4185 f2fs_put_page(page, 1); 4186 4187 f2fs_bug_on(sbi, ses->entry_cnt); 4188 release_sit_entry_set(ses); 4189 } 4190 4191 f2fs_bug_on(sbi, !list_empty(head)); 4192 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4193 out: 4194 if (cpc->reason & CP_DISCARD) { 4195 __u64 trim_start = cpc->trim_start; 4196 4197 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4198 add_discard_addrs(sbi, cpc, false); 4199 4200 cpc->trim_start = trim_start; 4201 } 4202 up_write(&sit_i->sentry_lock); 4203 4204 set_prefree_as_free_segments(sbi); 4205 } 4206 4207 static int build_sit_info(struct f2fs_sb_info *sbi) 4208 { 4209 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4210 struct sit_info *sit_i; 4211 unsigned int sit_segs, start; 4212 char *src_bitmap, *bitmap; 4213 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4214 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4215 4216 /* allocate memory for SIT information */ 4217 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4218 if (!sit_i) 4219 return -ENOMEM; 4220 4221 SM_I(sbi)->sit_info = sit_i; 4222 4223 sit_i->sentries = 4224 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4225 MAIN_SEGS(sbi)), 4226 GFP_KERNEL); 4227 if (!sit_i->sentries) 4228 return -ENOMEM; 4229 4230 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4231 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4232 GFP_KERNEL); 4233 if (!sit_i->dirty_sentries_bitmap) 4234 return -ENOMEM; 4235 4236 #ifdef CONFIG_F2FS_CHECK_FS 4237 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4238 #else 4239 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4240 #endif 4241 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4242 if (!sit_i->bitmap) 4243 return -ENOMEM; 4244 4245 bitmap = sit_i->bitmap; 4246 4247 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4248 sit_i->sentries[start].cur_valid_map = bitmap; 4249 bitmap += SIT_VBLOCK_MAP_SIZE; 4250 4251 sit_i->sentries[start].ckpt_valid_map = bitmap; 4252 bitmap += SIT_VBLOCK_MAP_SIZE; 4253 4254 #ifdef CONFIG_F2FS_CHECK_FS 4255 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4256 bitmap += SIT_VBLOCK_MAP_SIZE; 4257 #endif 4258 4259 if (discard_map) { 4260 sit_i->sentries[start].discard_map = bitmap; 4261 bitmap += SIT_VBLOCK_MAP_SIZE; 4262 } 4263 } 4264 4265 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4266 if (!sit_i->tmp_map) 4267 return -ENOMEM; 4268 4269 if (__is_large_section(sbi)) { 4270 sit_i->sec_entries = 4271 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4272 MAIN_SECS(sbi)), 4273 GFP_KERNEL); 4274 if (!sit_i->sec_entries) 4275 return -ENOMEM; 4276 } 4277 4278 /* get information related with SIT */ 4279 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4280 4281 /* setup SIT bitmap from ckeckpoint pack */ 4282 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4283 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4284 4285 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4286 if (!sit_i->sit_bitmap) 4287 return -ENOMEM; 4288 4289 #ifdef CONFIG_F2FS_CHECK_FS 4290 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4291 sit_bitmap_size, GFP_KERNEL); 4292 if (!sit_i->sit_bitmap_mir) 4293 return -ENOMEM; 4294 4295 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4296 main_bitmap_size, GFP_KERNEL); 4297 if (!sit_i->invalid_segmap) 4298 return -ENOMEM; 4299 #endif 4300 4301 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4302 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4303 sit_i->written_valid_blocks = 0; 4304 sit_i->bitmap_size = sit_bitmap_size; 4305 sit_i->dirty_sentries = 0; 4306 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4307 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4308 sit_i->mounted_time = ktime_get_boottime_seconds(); 4309 init_rwsem(&sit_i->sentry_lock); 4310 return 0; 4311 } 4312 4313 static int build_free_segmap(struct f2fs_sb_info *sbi) 4314 { 4315 struct free_segmap_info *free_i; 4316 unsigned int bitmap_size, sec_bitmap_size; 4317 4318 /* allocate memory for free segmap information */ 4319 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4320 if (!free_i) 4321 return -ENOMEM; 4322 4323 SM_I(sbi)->free_info = free_i; 4324 4325 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4326 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4327 if (!free_i->free_segmap) 4328 return -ENOMEM; 4329 4330 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4331 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4332 if (!free_i->free_secmap) 4333 return -ENOMEM; 4334 4335 /* set all segments as dirty temporarily */ 4336 memset(free_i->free_segmap, 0xff, bitmap_size); 4337 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4338 4339 /* init free segmap information */ 4340 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4341 free_i->free_segments = 0; 4342 free_i->free_sections = 0; 4343 spin_lock_init(&free_i->segmap_lock); 4344 return 0; 4345 } 4346 4347 static int build_curseg(struct f2fs_sb_info *sbi) 4348 { 4349 struct curseg_info *array; 4350 int i; 4351 4352 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4353 sizeof(*array)), GFP_KERNEL); 4354 if (!array) 4355 return -ENOMEM; 4356 4357 SM_I(sbi)->curseg_array = array; 4358 4359 for (i = 0; i < NO_CHECK_TYPE; i++) { 4360 mutex_init(&array[i].curseg_mutex); 4361 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4362 if (!array[i].sum_blk) 4363 return -ENOMEM; 4364 init_rwsem(&array[i].journal_rwsem); 4365 array[i].journal = f2fs_kzalloc(sbi, 4366 sizeof(struct f2fs_journal), GFP_KERNEL); 4367 if (!array[i].journal) 4368 return -ENOMEM; 4369 if (i < NR_PERSISTENT_LOG) 4370 array[i].seg_type = CURSEG_HOT_DATA + i; 4371 else if (i == CURSEG_COLD_DATA_PINNED) 4372 array[i].seg_type = CURSEG_COLD_DATA; 4373 else if (i == CURSEG_ALL_DATA_ATGC) 4374 array[i].seg_type = CURSEG_COLD_DATA; 4375 array[i].segno = NULL_SEGNO; 4376 array[i].next_blkoff = 0; 4377 array[i].inited = false; 4378 } 4379 return restore_curseg_summaries(sbi); 4380 } 4381 4382 static int build_sit_entries(struct f2fs_sb_info *sbi) 4383 { 4384 struct sit_info *sit_i = SIT_I(sbi); 4385 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4386 struct f2fs_journal *journal = curseg->journal; 4387 struct seg_entry *se; 4388 struct f2fs_sit_entry sit; 4389 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4390 unsigned int i, start, end; 4391 unsigned int readed, start_blk = 0; 4392 int err = 0; 4393 block_t sit_valid_blocks[2] = {0, 0}; 4394 4395 do { 4396 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4397 META_SIT, true); 4398 4399 start = start_blk * sit_i->sents_per_block; 4400 end = (start_blk + readed) * sit_i->sents_per_block; 4401 4402 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4403 struct f2fs_sit_block *sit_blk; 4404 struct page *page; 4405 4406 se = &sit_i->sentries[start]; 4407 page = get_current_sit_page(sbi, start); 4408 if (IS_ERR(page)) 4409 return PTR_ERR(page); 4410 sit_blk = (struct f2fs_sit_block *)page_address(page); 4411 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4412 f2fs_put_page(page, 1); 4413 4414 err = check_block_count(sbi, start, &sit); 4415 if (err) 4416 return err; 4417 seg_info_from_raw_sit(se, &sit); 4418 4419 if (se->type >= NR_PERSISTENT_LOG) { 4420 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4421 se->type, start); 4422 f2fs_handle_error(sbi, 4423 ERROR_INCONSISTENT_SUM_TYPE); 4424 return -EFSCORRUPTED; 4425 } 4426 4427 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4428 4429 if (f2fs_block_unit_discard(sbi)) { 4430 /* build discard map only one time */ 4431 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4432 memset(se->discard_map, 0xff, 4433 SIT_VBLOCK_MAP_SIZE); 4434 } else { 4435 memcpy(se->discard_map, 4436 se->cur_valid_map, 4437 SIT_VBLOCK_MAP_SIZE); 4438 sbi->discard_blks += 4439 sbi->blocks_per_seg - 4440 se->valid_blocks; 4441 } 4442 } 4443 4444 if (__is_large_section(sbi)) 4445 get_sec_entry(sbi, start)->valid_blocks += 4446 se->valid_blocks; 4447 } 4448 start_blk += readed; 4449 } while (start_blk < sit_blk_cnt); 4450 4451 down_read(&curseg->journal_rwsem); 4452 for (i = 0; i < sits_in_cursum(journal); i++) { 4453 unsigned int old_valid_blocks; 4454 4455 start = le32_to_cpu(segno_in_journal(journal, i)); 4456 if (start >= MAIN_SEGS(sbi)) { 4457 f2fs_err(sbi, "Wrong journal entry on segno %u", 4458 start); 4459 err = -EFSCORRUPTED; 4460 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4461 break; 4462 } 4463 4464 se = &sit_i->sentries[start]; 4465 sit = sit_in_journal(journal, i); 4466 4467 old_valid_blocks = se->valid_blocks; 4468 4469 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4470 4471 err = check_block_count(sbi, start, &sit); 4472 if (err) 4473 break; 4474 seg_info_from_raw_sit(se, &sit); 4475 4476 if (se->type >= NR_PERSISTENT_LOG) { 4477 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4478 se->type, start); 4479 err = -EFSCORRUPTED; 4480 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4481 break; 4482 } 4483 4484 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4485 4486 if (f2fs_block_unit_discard(sbi)) { 4487 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4488 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4489 } else { 4490 memcpy(se->discard_map, se->cur_valid_map, 4491 SIT_VBLOCK_MAP_SIZE); 4492 sbi->discard_blks += old_valid_blocks; 4493 sbi->discard_blks -= se->valid_blocks; 4494 } 4495 } 4496 4497 if (__is_large_section(sbi)) { 4498 get_sec_entry(sbi, start)->valid_blocks += 4499 se->valid_blocks; 4500 get_sec_entry(sbi, start)->valid_blocks -= 4501 old_valid_blocks; 4502 } 4503 } 4504 up_read(&curseg->journal_rwsem); 4505 4506 if (err) 4507 return err; 4508 4509 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4510 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4511 sit_valid_blocks[NODE], valid_node_count(sbi)); 4512 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4513 return -EFSCORRUPTED; 4514 } 4515 4516 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4517 valid_user_blocks(sbi)) { 4518 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4519 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4520 valid_user_blocks(sbi)); 4521 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4522 return -EFSCORRUPTED; 4523 } 4524 4525 return 0; 4526 } 4527 4528 static void init_free_segmap(struct f2fs_sb_info *sbi) 4529 { 4530 unsigned int start; 4531 int type; 4532 struct seg_entry *sentry; 4533 4534 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4535 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4536 continue; 4537 sentry = get_seg_entry(sbi, start); 4538 if (!sentry->valid_blocks) 4539 __set_free(sbi, start); 4540 else 4541 SIT_I(sbi)->written_valid_blocks += 4542 sentry->valid_blocks; 4543 } 4544 4545 /* set use the current segments */ 4546 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4547 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4548 4549 __set_test_and_inuse(sbi, curseg_t->segno); 4550 } 4551 } 4552 4553 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4554 { 4555 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4556 struct free_segmap_info *free_i = FREE_I(sbi); 4557 unsigned int segno = 0, offset = 0, secno; 4558 block_t valid_blocks, usable_blks_in_seg; 4559 4560 while (1) { 4561 /* find dirty segment based on free segmap */ 4562 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4563 if (segno >= MAIN_SEGS(sbi)) 4564 break; 4565 offset = segno + 1; 4566 valid_blocks = get_valid_blocks(sbi, segno, false); 4567 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4568 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4569 continue; 4570 if (valid_blocks > usable_blks_in_seg) { 4571 f2fs_bug_on(sbi, 1); 4572 continue; 4573 } 4574 mutex_lock(&dirty_i->seglist_lock); 4575 __locate_dirty_segment(sbi, segno, DIRTY); 4576 mutex_unlock(&dirty_i->seglist_lock); 4577 } 4578 4579 if (!__is_large_section(sbi)) 4580 return; 4581 4582 mutex_lock(&dirty_i->seglist_lock); 4583 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4584 valid_blocks = get_valid_blocks(sbi, segno, true); 4585 secno = GET_SEC_FROM_SEG(sbi, segno); 4586 4587 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4588 continue; 4589 if (IS_CURSEC(sbi, secno)) 4590 continue; 4591 set_bit(secno, dirty_i->dirty_secmap); 4592 } 4593 mutex_unlock(&dirty_i->seglist_lock); 4594 } 4595 4596 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4597 { 4598 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4599 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4600 4601 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4602 if (!dirty_i->victim_secmap) 4603 return -ENOMEM; 4604 4605 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4606 if (!dirty_i->pinned_secmap) 4607 return -ENOMEM; 4608 4609 dirty_i->pinned_secmap_cnt = 0; 4610 dirty_i->enable_pin_section = true; 4611 return 0; 4612 } 4613 4614 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4615 { 4616 struct dirty_seglist_info *dirty_i; 4617 unsigned int bitmap_size, i; 4618 4619 /* allocate memory for dirty segments list information */ 4620 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4621 GFP_KERNEL); 4622 if (!dirty_i) 4623 return -ENOMEM; 4624 4625 SM_I(sbi)->dirty_info = dirty_i; 4626 mutex_init(&dirty_i->seglist_lock); 4627 4628 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4629 4630 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4631 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4632 GFP_KERNEL); 4633 if (!dirty_i->dirty_segmap[i]) 4634 return -ENOMEM; 4635 } 4636 4637 if (__is_large_section(sbi)) { 4638 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4639 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4640 bitmap_size, GFP_KERNEL); 4641 if (!dirty_i->dirty_secmap) 4642 return -ENOMEM; 4643 } 4644 4645 init_dirty_segmap(sbi); 4646 return init_victim_secmap(sbi); 4647 } 4648 4649 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4650 { 4651 int i; 4652 4653 /* 4654 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4655 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4656 */ 4657 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4658 struct curseg_info *curseg = CURSEG_I(sbi, i); 4659 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4660 unsigned int blkofs = curseg->next_blkoff; 4661 4662 if (f2fs_sb_has_readonly(sbi) && 4663 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4664 continue; 4665 4666 sanity_check_seg_type(sbi, curseg->seg_type); 4667 4668 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4669 f2fs_err(sbi, 4670 "Current segment has invalid alloc_type:%d", 4671 curseg->alloc_type); 4672 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4673 return -EFSCORRUPTED; 4674 } 4675 4676 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4677 goto out; 4678 4679 if (curseg->alloc_type == SSR) 4680 continue; 4681 4682 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4683 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4684 continue; 4685 out: 4686 f2fs_err(sbi, 4687 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4688 i, curseg->segno, curseg->alloc_type, 4689 curseg->next_blkoff, blkofs); 4690 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4691 return -EFSCORRUPTED; 4692 } 4693 } 4694 return 0; 4695 } 4696 4697 #ifdef CONFIG_BLK_DEV_ZONED 4698 4699 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4700 struct f2fs_dev_info *fdev, 4701 struct blk_zone *zone) 4702 { 4703 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4704 block_t zone_block, wp_block, last_valid_block; 4705 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4706 int i, s, b, ret; 4707 struct seg_entry *se; 4708 4709 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4710 return 0; 4711 4712 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4713 wp_segno = GET_SEGNO(sbi, wp_block); 4714 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4715 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4716 zone_segno = GET_SEGNO(sbi, zone_block); 4717 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4718 4719 if (zone_segno >= MAIN_SEGS(sbi)) 4720 return 0; 4721 4722 /* 4723 * Skip check of zones cursegs point to, since 4724 * fix_curseg_write_pointer() checks them. 4725 */ 4726 for (i = 0; i < NO_CHECK_TYPE; i++) 4727 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4728 CURSEG_I(sbi, i)->segno)) 4729 return 0; 4730 4731 /* 4732 * Get last valid block of the zone. 4733 */ 4734 last_valid_block = zone_block - 1; 4735 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4736 segno = zone_segno + s; 4737 se = get_seg_entry(sbi, segno); 4738 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4739 if (f2fs_test_bit(b, se->cur_valid_map)) { 4740 last_valid_block = START_BLOCK(sbi, segno) + b; 4741 break; 4742 } 4743 if (last_valid_block >= zone_block) 4744 break; 4745 } 4746 4747 /* 4748 * If last valid block is beyond the write pointer, report the 4749 * inconsistency. This inconsistency does not cause write error 4750 * because the zone will not be selected for write operation until 4751 * it get discarded. Just report it. 4752 */ 4753 if (last_valid_block >= wp_block) { 4754 f2fs_notice(sbi, "Valid block beyond write pointer: " 4755 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4756 GET_SEGNO(sbi, last_valid_block), 4757 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4758 wp_segno, wp_blkoff); 4759 return 0; 4760 } 4761 4762 /* 4763 * If there is no valid block in the zone and if write pointer is 4764 * not at zone start, reset the write pointer. 4765 */ 4766 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4767 f2fs_notice(sbi, 4768 "Zone without valid block has non-zero write " 4769 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4770 wp_segno, wp_blkoff); 4771 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4772 zone->len >> log_sectors_per_block); 4773 if (ret) { 4774 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4775 fdev->path, ret); 4776 return ret; 4777 } 4778 } 4779 4780 return 0; 4781 } 4782 4783 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4784 block_t zone_blkaddr) 4785 { 4786 int i; 4787 4788 for (i = 0; i < sbi->s_ndevs; i++) { 4789 if (!bdev_is_zoned(FDEV(i).bdev)) 4790 continue; 4791 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4792 zone_blkaddr <= FDEV(i).end_blk)) 4793 return &FDEV(i); 4794 } 4795 4796 return NULL; 4797 } 4798 4799 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4800 void *data) 4801 { 4802 memcpy(data, zone, sizeof(struct blk_zone)); 4803 return 0; 4804 } 4805 4806 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4807 { 4808 struct curseg_info *cs = CURSEG_I(sbi, type); 4809 struct f2fs_dev_info *zbd; 4810 struct blk_zone zone; 4811 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4812 block_t cs_zone_block, wp_block; 4813 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4814 sector_t zone_sector; 4815 int err; 4816 4817 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4818 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4819 4820 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4821 if (!zbd) 4822 return 0; 4823 4824 /* report zone for the sector the curseg points to */ 4825 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4826 << log_sectors_per_block; 4827 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4828 report_one_zone_cb, &zone); 4829 if (err != 1) { 4830 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4831 zbd->path, err); 4832 return err; 4833 } 4834 4835 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4836 return 0; 4837 4838 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4839 wp_segno = GET_SEGNO(sbi, wp_block); 4840 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4841 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4842 4843 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4844 wp_sector_off == 0) 4845 return 0; 4846 4847 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4848 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4849 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4850 4851 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4852 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4853 4854 f2fs_allocate_new_section(sbi, type, true); 4855 4856 /* check consistency of the zone curseg pointed to */ 4857 if (check_zone_write_pointer(sbi, zbd, &zone)) 4858 return -EIO; 4859 4860 /* check newly assigned zone */ 4861 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4862 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4863 4864 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4865 if (!zbd) 4866 return 0; 4867 4868 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4869 << log_sectors_per_block; 4870 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4871 report_one_zone_cb, &zone); 4872 if (err != 1) { 4873 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4874 zbd->path, err); 4875 return err; 4876 } 4877 4878 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4879 return 0; 4880 4881 if (zone.wp != zone.start) { 4882 f2fs_notice(sbi, 4883 "New zone for curseg[%d] is not yet discarded. " 4884 "Reset the zone: curseg[0x%x,0x%x]", 4885 type, cs->segno, cs->next_blkoff); 4886 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4887 zone_sector >> log_sectors_per_block, 4888 zone.len >> log_sectors_per_block); 4889 if (err) { 4890 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4891 zbd->path, err); 4892 return err; 4893 } 4894 } 4895 4896 return 0; 4897 } 4898 4899 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4900 { 4901 int i, ret; 4902 4903 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4904 ret = fix_curseg_write_pointer(sbi, i); 4905 if (ret) 4906 return ret; 4907 } 4908 4909 return 0; 4910 } 4911 4912 struct check_zone_write_pointer_args { 4913 struct f2fs_sb_info *sbi; 4914 struct f2fs_dev_info *fdev; 4915 }; 4916 4917 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4918 void *data) 4919 { 4920 struct check_zone_write_pointer_args *args; 4921 4922 args = (struct check_zone_write_pointer_args *)data; 4923 4924 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4925 } 4926 4927 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4928 { 4929 int i, ret; 4930 struct check_zone_write_pointer_args args; 4931 4932 for (i = 0; i < sbi->s_ndevs; i++) { 4933 if (!bdev_is_zoned(FDEV(i).bdev)) 4934 continue; 4935 4936 args.sbi = sbi; 4937 args.fdev = &FDEV(i); 4938 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4939 check_zone_write_pointer_cb, &args); 4940 if (ret < 0) 4941 return ret; 4942 } 4943 4944 return 0; 4945 } 4946 4947 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4948 unsigned int dev_idx) 4949 { 4950 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4951 return true; 4952 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4953 } 4954 4955 /* Return the zone index in the given device */ 4956 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4957 int dev_idx) 4958 { 4959 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4960 4961 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4962 sbi->log_blocks_per_blkz; 4963 } 4964 4965 /* 4966 * Return the usable segments in a section based on the zone's 4967 * corresponding zone capacity. Zone is equal to a section. 4968 */ 4969 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4970 struct f2fs_sb_info *sbi, unsigned int segno) 4971 { 4972 unsigned int dev_idx, zone_idx; 4973 4974 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4975 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4976 4977 /* Conventional zone's capacity is always equal to zone size */ 4978 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4979 return sbi->segs_per_sec; 4980 4981 if (!sbi->unusable_blocks_per_sec) 4982 return sbi->segs_per_sec; 4983 4984 /* Get the segment count beyond zone capacity block */ 4985 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >> 4986 sbi->log_blocks_per_seg); 4987 } 4988 4989 /* 4990 * Return the number of usable blocks in a segment. The number of blocks 4991 * returned is always equal to the number of blocks in a segment for 4992 * segments fully contained within a sequential zone capacity or a 4993 * conventional zone. For segments partially contained in a sequential 4994 * zone capacity, the number of usable blocks up to the zone capacity 4995 * is returned. 0 is returned in all other cases. 4996 */ 4997 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4998 struct f2fs_sb_info *sbi, unsigned int segno) 4999 { 5000 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5001 unsigned int zone_idx, dev_idx, secno; 5002 5003 secno = GET_SEC_FROM_SEG(sbi, segno); 5004 seg_start = START_BLOCK(sbi, segno); 5005 dev_idx = f2fs_target_device_index(sbi, seg_start); 5006 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5007 5008 /* 5009 * Conventional zone's capacity is always equal to zone size, 5010 * so, blocks per segment is unchanged. 5011 */ 5012 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5013 return sbi->blocks_per_seg; 5014 5015 if (!sbi->unusable_blocks_per_sec) 5016 return sbi->blocks_per_seg; 5017 5018 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5019 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5020 5021 /* 5022 * If segment starts before zone capacity and spans beyond 5023 * zone capacity, then usable blocks are from seg start to 5024 * zone capacity. If the segment starts after the zone capacity, 5025 * then there are no usable blocks. 5026 */ 5027 if (seg_start >= sec_cap_blkaddr) 5028 return 0; 5029 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5030 return sec_cap_blkaddr - seg_start; 5031 5032 return sbi->blocks_per_seg; 5033 } 5034 #else 5035 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5036 { 5037 return 0; 5038 } 5039 5040 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5041 { 5042 return 0; 5043 } 5044 5045 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5046 unsigned int segno) 5047 { 5048 return 0; 5049 } 5050 5051 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5052 unsigned int segno) 5053 { 5054 return 0; 5055 } 5056 #endif 5057 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5058 unsigned int segno) 5059 { 5060 if (f2fs_sb_has_blkzoned(sbi)) 5061 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5062 5063 return sbi->blocks_per_seg; 5064 } 5065 5066 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5067 unsigned int segno) 5068 { 5069 if (f2fs_sb_has_blkzoned(sbi)) 5070 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5071 5072 return sbi->segs_per_sec; 5073 } 5074 5075 /* 5076 * Update min, max modified time for cost-benefit GC algorithm 5077 */ 5078 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5079 { 5080 struct sit_info *sit_i = SIT_I(sbi); 5081 unsigned int segno; 5082 5083 down_write(&sit_i->sentry_lock); 5084 5085 sit_i->min_mtime = ULLONG_MAX; 5086 5087 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5088 unsigned int i; 5089 unsigned long long mtime = 0; 5090 5091 for (i = 0; i < sbi->segs_per_sec; i++) 5092 mtime += get_seg_entry(sbi, segno + i)->mtime; 5093 5094 mtime = div_u64(mtime, sbi->segs_per_sec); 5095 5096 if (sit_i->min_mtime > mtime) 5097 sit_i->min_mtime = mtime; 5098 } 5099 sit_i->max_mtime = get_mtime(sbi, false); 5100 sit_i->dirty_max_mtime = 0; 5101 up_write(&sit_i->sentry_lock); 5102 } 5103 5104 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5105 { 5106 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5107 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5108 struct f2fs_sm_info *sm_info; 5109 int err; 5110 5111 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5112 if (!sm_info) 5113 return -ENOMEM; 5114 5115 /* init sm info */ 5116 sbi->sm_info = sm_info; 5117 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5118 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5119 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5120 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5121 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5122 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5123 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5124 sm_info->rec_prefree_segments = sm_info->main_segments * 5125 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5126 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5127 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5128 5129 if (!f2fs_lfs_mode(sbi)) 5130 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5131 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5132 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5133 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5134 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5135 sm_info->min_ssr_sections = reserved_sections(sbi); 5136 5137 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5138 5139 init_f2fs_rwsem(&sm_info->curseg_lock); 5140 5141 if (!f2fs_readonly(sbi->sb)) { 5142 err = f2fs_create_flush_cmd_control(sbi); 5143 if (err) 5144 return err; 5145 } 5146 5147 err = create_discard_cmd_control(sbi); 5148 if (err) 5149 return err; 5150 5151 err = build_sit_info(sbi); 5152 if (err) 5153 return err; 5154 err = build_free_segmap(sbi); 5155 if (err) 5156 return err; 5157 err = build_curseg(sbi); 5158 if (err) 5159 return err; 5160 5161 /* reinit free segmap based on SIT */ 5162 err = build_sit_entries(sbi); 5163 if (err) 5164 return err; 5165 5166 init_free_segmap(sbi); 5167 err = build_dirty_segmap(sbi); 5168 if (err) 5169 return err; 5170 5171 err = sanity_check_curseg(sbi); 5172 if (err) 5173 return err; 5174 5175 init_min_max_mtime(sbi); 5176 return 0; 5177 } 5178 5179 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5180 enum dirty_type dirty_type) 5181 { 5182 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5183 5184 mutex_lock(&dirty_i->seglist_lock); 5185 kvfree(dirty_i->dirty_segmap[dirty_type]); 5186 dirty_i->nr_dirty[dirty_type] = 0; 5187 mutex_unlock(&dirty_i->seglist_lock); 5188 } 5189 5190 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5191 { 5192 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5193 5194 kvfree(dirty_i->pinned_secmap); 5195 kvfree(dirty_i->victim_secmap); 5196 } 5197 5198 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5199 { 5200 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5201 int i; 5202 5203 if (!dirty_i) 5204 return; 5205 5206 /* discard pre-free/dirty segments list */ 5207 for (i = 0; i < NR_DIRTY_TYPE; i++) 5208 discard_dirty_segmap(sbi, i); 5209 5210 if (__is_large_section(sbi)) { 5211 mutex_lock(&dirty_i->seglist_lock); 5212 kvfree(dirty_i->dirty_secmap); 5213 mutex_unlock(&dirty_i->seglist_lock); 5214 } 5215 5216 destroy_victim_secmap(sbi); 5217 SM_I(sbi)->dirty_info = NULL; 5218 kfree(dirty_i); 5219 } 5220 5221 static void destroy_curseg(struct f2fs_sb_info *sbi) 5222 { 5223 struct curseg_info *array = SM_I(sbi)->curseg_array; 5224 int i; 5225 5226 if (!array) 5227 return; 5228 SM_I(sbi)->curseg_array = NULL; 5229 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5230 kfree(array[i].sum_blk); 5231 kfree(array[i].journal); 5232 } 5233 kfree(array); 5234 } 5235 5236 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5237 { 5238 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5239 5240 if (!free_i) 5241 return; 5242 SM_I(sbi)->free_info = NULL; 5243 kvfree(free_i->free_segmap); 5244 kvfree(free_i->free_secmap); 5245 kfree(free_i); 5246 } 5247 5248 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5249 { 5250 struct sit_info *sit_i = SIT_I(sbi); 5251 5252 if (!sit_i) 5253 return; 5254 5255 if (sit_i->sentries) 5256 kvfree(sit_i->bitmap); 5257 kfree(sit_i->tmp_map); 5258 5259 kvfree(sit_i->sentries); 5260 kvfree(sit_i->sec_entries); 5261 kvfree(sit_i->dirty_sentries_bitmap); 5262 5263 SM_I(sbi)->sit_info = NULL; 5264 kvfree(sit_i->sit_bitmap); 5265 #ifdef CONFIG_F2FS_CHECK_FS 5266 kvfree(sit_i->sit_bitmap_mir); 5267 kvfree(sit_i->invalid_segmap); 5268 #endif 5269 kfree(sit_i); 5270 } 5271 5272 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5273 { 5274 struct f2fs_sm_info *sm_info = SM_I(sbi); 5275 5276 if (!sm_info) 5277 return; 5278 f2fs_destroy_flush_cmd_control(sbi, true); 5279 destroy_discard_cmd_control(sbi); 5280 destroy_dirty_segmap(sbi); 5281 destroy_curseg(sbi); 5282 destroy_free_segmap(sbi); 5283 destroy_sit_info(sbi); 5284 sbi->sm_info = NULL; 5285 kfree(sm_info); 5286 } 5287 5288 int __init f2fs_create_segment_manager_caches(void) 5289 { 5290 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5291 sizeof(struct discard_entry)); 5292 if (!discard_entry_slab) 5293 goto fail; 5294 5295 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5296 sizeof(struct discard_cmd)); 5297 if (!discard_cmd_slab) 5298 goto destroy_discard_entry; 5299 5300 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5301 sizeof(struct sit_entry_set)); 5302 if (!sit_entry_set_slab) 5303 goto destroy_discard_cmd; 5304 5305 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5306 sizeof(struct revoke_entry)); 5307 if (!revoke_entry_slab) 5308 goto destroy_sit_entry_set; 5309 return 0; 5310 5311 destroy_sit_entry_set: 5312 kmem_cache_destroy(sit_entry_set_slab); 5313 destroy_discard_cmd: 5314 kmem_cache_destroy(discard_cmd_slab); 5315 destroy_discard_entry: 5316 kmem_cache_destroy(discard_entry_slab); 5317 fail: 5318 return -ENOMEM; 5319 } 5320 5321 void f2fs_destroy_segment_manager_caches(void) 5322 { 5323 kmem_cache_destroy(sit_entry_set_slab); 5324 kmem_cache_destroy(discard_cmd_slab); 5325 kmem_cache_destroy(discard_entry_slab); 5326 kmem_cache_destroy(revoke_entry_slab); 5327 } 5328