1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 void register_inmem_page(struct inode *inode, struct page *page) 169 { 170 struct f2fs_inode_info *fi = F2FS_I(inode); 171 struct inmem_pages *new; 172 173 f2fs_trace_pid(page); 174 175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 176 SetPagePrivate(page); 177 178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 179 180 /* add atomic page indices to the list */ 181 new->page = page; 182 INIT_LIST_HEAD(&new->list); 183 184 /* increase reference count with clean state */ 185 mutex_lock(&fi->inmem_lock); 186 get_page(page); 187 list_add_tail(&new->list, &fi->inmem_pages); 188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 189 mutex_unlock(&fi->inmem_lock); 190 191 trace_f2fs_register_inmem_page(page, INMEM); 192 } 193 194 static int __revoke_inmem_pages(struct inode *inode, 195 struct list_head *head, bool drop, bool recover) 196 { 197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 198 struct inmem_pages *cur, *tmp; 199 int err = 0; 200 201 list_for_each_entry_safe(cur, tmp, head, list) { 202 struct page *page = cur->page; 203 204 if (drop) 205 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 206 207 lock_page(page); 208 209 if (recover) { 210 struct dnode_of_data dn; 211 struct node_info ni; 212 213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 214 215 set_new_dnode(&dn, inode, NULL, NULL, 0); 216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 217 err = -EAGAIN; 218 goto next; 219 } 220 get_node_info(sbi, dn.nid, &ni); 221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 222 cur->old_addr, ni.version, true, true); 223 f2fs_put_dnode(&dn); 224 } 225 next: 226 /* we don't need to invalidate this in the sccessful status */ 227 if (drop || recover) 228 ClearPageUptodate(page); 229 set_page_private(page, 0); 230 ClearPagePrivate(page); 231 f2fs_put_page(page, 1); 232 233 list_del(&cur->list); 234 kmem_cache_free(inmem_entry_slab, cur); 235 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 236 } 237 return err; 238 } 239 240 void drop_inmem_pages(struct inode *inode) 241 { 242 struct f2fs_inode_info *fi = F2FS_I(inode); 243 244 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); 245 246 mutex_lock(&fi->inmem_lock); 247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 248 mutex_unlock(&fi->inmem_lock); 249 } 250 251 static int __commit_inmem_pages(struct inode *inode, 252 struct list_head *revoke_list) 253 { 254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 255 struct f2fs_inode_info *fi = F2FS_I(inode); 256 struct inmem_pages *cur, *tmp; 257 struct f2fs_io_info fio = { 258 .sbi = sbi, 259 .type = DATA, 260 .rw = WRITE_SYNC | REQ_PRIO, 261 .encrypted_page = NULL, 262 }; 263 bool submit_bio = false; 264 int err = 0; 265 266 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 267 struct page *page = cur->page; 268 269 lock_page(page); 270 if (page->mapping == inode->i_mapping) { 271 trace_f2fs_commit_inmem_page(page, INMEM); 272 273 set_page_dirty(page); 274 f2fs_wait_on_page_writeback(page, DATA, true); 275 if (clear_page_dirty_for_io(page)) 276 inode_dec_dirty_pages(inode); 277 278 fio.page = page; 279 err = do_write_data_page(&fio); 280 if (err) { 281 unlock_page(page); 282 break; 283 } 284 285 /* record old blkaddr for revoking */ 286 cur->old_addr = fio.old_blkaddr; 287 288 clear_cold_data(page); 289 submit_bio = true; 290 } 291 unlock_page(page); 292 list_move_tail(&cur->list, revoke_list); 293 } 294 295 if (submit_bio) 296 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 297 298 if (!err) 299 __revoke_inmem_pages(inode, revoke_list, false, false); 300 301 return err; 302 } 303 304 int commit_inmem_pages(struct inode *inode) 305 { 306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 307 struct f2fs_inode_info *fi = F2FS_I(inode); 308 struct list_head revoke_list; 309 int err; 310 311 INIT_LIST_HEAD(&revoke_list); 312 f2fs_balance_fs(sbi, true); 313 f2fs_lock_op(sbi); 314 315 mutex_lock(&fi->inmem_lock); 316 err = __commit_inmem_pages(inode, &revoke_list); 317 if (err) { 318 int ret; 319 /* 320 * try to revoke all committed pages, but still we could fail 321 * due to no memory or other reason, if that happened, EAGAIN 322 * will be returned, which means in such case, transaction is 323 * already not integrity, caller should use journal to do the 324 * recovery or rewrite & commit last transaction. For other 325 * error number, revoking was done by filesystem itself. 326 */ 327 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 328 if (ret) 329 err = ret; 330 331 /* drop all uncommitted pages */ 332 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 333 } 334 mutex_unlock(&fi->inmem_lock); 335 336 f2fs_unlock_op(sbi); 337 return err; 338 } 339 340 /* 341 * This function balances dirty node and dentry pages. 342 * In addition, it controls garbage collection. 343 */ 344 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 345 { 346 if (!need) 347 return; 348 /* 349 * We should do GC or end up with checkpoint, if there are so many dirty 350 * dir/node pages without enough free segments. 351 */ 352 if (has_not_enough_free_secs(sbi, 0)) { 353 mutex_lock(&sbi->gc_mutex); 354 f2fs_gc(sbi, false); 355 } 356 } 357 358 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 359 { 360 /* try to shrink extent cache when there is no enough memory */ 361 if (!available_free_memory(sbi, EXTENT_CACHE)) 362 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 363 364 /* check the # of cached NAT entries */ 365 if (!available_free_memory(sbi, NAT_ENTRIES)) 366 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 367 368 if (!available_free_memory(sbi, FREE_NIDS)) 369 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES); 370 371 /* checkpoint is the only way to shrink partial cached entries */ 372 if (!available_free_memory(sbi, NAT_ENTRIES) || 373 !available_free_memory(sbi, INO_ENTRIES) || 374 excess_prefree_segs(sbi) || 375 excess_dirty_nats(sbi) || 376 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 377 if (test_opt(sbi, DATA_FLUSH)) { 378 struct blk_plug plug; 379 380 blk_start_plug(&plug); 381 sync_dirty_inodes(sbi, FILE_INODE); 382 blk_finish_plug(&plug); 383 } 384 f2fs_sync_fs(sbi->sb, true); 385 stat_inc_bg_cp_count(sbi->stat_info); 386 } 387 } 388 389 static int issue_flush_thread(void *data) 390 { 391 struct f2fs_sb_info *sbi = data; 392 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 393 wait_queue_head_t *q = &fcc->flush_wait_queue; 394 repeat: 395 if (kthread_should_stop()) 396 return 0; 397 398 if (!llist_empty(&fcc->issue_list)) { 399 struct bio *bio; 400 struct flush_cmd *cmd, *next; 401 int ret; 402 403 bio = f2fs_bio_alloc(0); 404 405 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 406 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 407 408 bio->bi_bdev = sbi->sb->s_bdev; 409 ret = submit_bio_wait(WRITE_FLUSH, bio); 410 411 llist_for_each_entry_safe(cmd, next, 412 fcc->dispatch_list, llnode) { 413 cmd->ret = ret; 414 complete(&cmd->wait); 415 } 416 bio_put(bio); 417 fcc->dispatch_list = NULL; 418 } 419 420 wait_event_interruptible(*q, 421 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 422 goto repeat; 423 } 424 425 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 426 { 427 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 428 struct flush_cmd cmd; 429 430 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 431 test_opt(sbi, FLUSH_MERGE)); 432 433 if (test_opt(sbi, NOBARRIER)) 434 return 0; 435 436 if (!test_opt(sbi, FLUSH_MERGE)) { 437 struct bio *bio = f2fs_bio_alloc(0); 438 int ret; 439 440 bio->bi_bdev = sbi->sb->s_bdev; 441 ret = submit_bio_wait(WRITE_FLUSH, bio); 442 bio_put(bio); 443 return ret; 444 } 445 446 init_completion(&cmd.wait); 447 448 llist_add(&cmd.llnode, &fcc->issue_list); 449 450 if (!fcc->dispatch_list) 451 wake_up(&fcc->flush_wait_queue); 452 453 wait_for_completion(&cmd.wait); 454 455 return cmd.ret; 456 } 457 458 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 459 { 460 dev_t dev = sbi->sb->s_bdev->bd_dev; 461 struct flush_cmd_control *fcc; 462 int err = 0; 463 464 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 465 if (!fcc) 466 return -ENOMEM; 467 init_waitqueue_head(&fcc->flush_wait_queue); 468 init_llist_head(&fcc->issue_list); 469 SM_I(sbi)->cmd_control_info = fcc; 470 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 471 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 472 if (IS_ERR(fcc->f2fs_issue_flush)) { 473 err = PTR_ERR(fcc->f2fs_issue_flush); 474 kfree(fcc); 475 SM_I(sbi)->cmd_control_info = NULL; 476 return err; 477 } 478 479 return err; 480 } 481 482 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 483 { 484 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 485 486 if (fcc && fcc->f2fs_issue_flush) 487 kthread_stop(fcc->f2fs_issue_flush); 488 kfree(fcc); 489 SM_I(sbi)->cmd_control_info = NULL; 490 } 491 492 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 493 enum dirty_type dirty_type) 494 { 495 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 496 497 /* need not be added */ 498 if (IS_CURSEG(sbi, segno)) 499 return; 500 501 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 502 dirty_i->nr_dirty[dirty_type]++; 503 504 if (dirty_type == DIRTY) { 505 struct seg_entry *sentry = get_seg_entry(sbi, segno); 506 enum dirty_type t = sentry->type; 507 508 if (unlikely(t >= DIRTY)) { 509 f2fs_bug_on(sbi, 1); 510 return; 511 } 512 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 513 dirty_i->nr_dirty[t]++; 514 } 515 } 516 517 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 518 enum dirty_type dirty_type) 519 { 520 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 521 522 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 523 dirty_i->nr_dirty[dirty_type]--; 524 525 if (dirty_type == DIRTY) { 526 struct seg_entry *sentry = get_seg_entry(sbi, segno); 527 enum dirty_type t = sentry->type; 528 529 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 530 dirty_i->nr_dirty[t]--; 531 532 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 533 clear_bit(GET_SECNO(sbi, segno), 534 dirty_i->victim_secmap); 535 } 536 } 537 538 /* 539 * Should not occur error such as -ENOMEM. 540 * Adding dirty entry into seglist is not critical operation. 541 * If a given segment is one of current working segments, it won't be added. 542 */ 543 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 544 { 545 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 546 unsigned short valid_blocks; 547 548 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 549 return; 550 551 mutex_lock(&dirty_i->seglist_lock); 552 553 valid_blocks = get_valid_blocks(sbi, segno, 0); 554 555 if (valid_blocks == 0) { 556 __locate_dirty_segment(sbi, segno, PRE); 557 __remove_dirty_segment(sbi, segno, DIRTY); 558 } else if (valid_blocks < sbi->blocks_per_seg) { 559 __locate_dirty_segment(sbi, segno, DIRTY); 560 } else { 561 /* Recovery routine with SSR needs this */ 562 __remove_dirty_segment(sbi, segno, DIRTY); 563 } 564 565 mutex_unlock(&dirty_i->seglist_lock); 566 } 567 568 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 569 block_t blkstart, block_t blklen) 570 { 571 sector_t start = SECTOR_FROM_BLOCK(blkstart); 572 sector_t len = SECTOR_FROM_BLOCK(blklen); 573 struct seg_entry *se; 574 unsigned int offset; 575 block_t i; 576 577 for (i = blkstart; i < blkstart + blklen; i++) { 578 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 579 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 580 581 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 582 sbi->discard_blks--; 583 } 584 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 585 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 586 } 587 588 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 589 { 590 int err = -EOPNOTSUPP; 591 592 if (test_opt(sbi, DISCARD)) { 593 struct seg_entry *se = get_seg_entry(sbi, 594 GET_SEGNO(sbi, blkaddr)); 595 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 596 597 if (f2fs_test_bit(offset, se->discard_map)) 598 return false; 599 600 err = f2fs_issue_discard(sbi, blkaddr, 1); 601 } 602 603 if (err) { 604 update_meta_page(sbi, NULL, blkaddr); 605 return true; 606 } 607 return false; 608 } 609 610 static void __add_discard_entry(struct f2fs_sb_info *sbi, 611 struct cp_control *cpc, struct seg_entry *se, 612 unsigned int start, unsigned int end) 613 { 614 struct list_head *head = &SM_I(sbi)->discard_list; 615 struct discard_entry *new, *last; 616 617 if (!list_empty(head)) { 618 last = list_last_entry(head, struct discard_entry, list); 619 if (START_BLOCK(sbi, cpc->trim_start) + start == 620 last->blkaddr + last->len) { 621 last->len += end - start; 622 goto done; 623 } 624 } 625 626 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 627 INIT_LIST_HEAD(&new->list); 628 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 629 new->len = end - start; 630 list_add_tail(&new->list, head); 631 done: 632 SM_I(sbi)->nr_discards += end - start; 633 } 634 635 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 636 { 637 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 638 int max_blocks = sbi->blocks_per_seg; 639 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 640 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 641 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 642 unsigned long *discard_map = (unsigned long *)se->discard_map; 643 unsigned long *dmap = SIT_I(sbi)->tmp_map; 644 unsigned int start = 0, end = -1; 645 bool force = (cpc->reason == CP_DISCARD); 646 int i; 647 648 if (se->valid_blocks == max_blocks) 649 return; 650 651 if (!force) { 652 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 653 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 654 return; 655 } 656 657 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 658 for (i = 0; i < entries; i++) 659 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 660 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 661 662 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 663 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 664 if (start >= max_blocks) 665 break; 666 667 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 668 __add_discard_entry(sbi, cpc, se, start, end); 669 } 670 } 671 672 void release_discard_addrs(struct f2fs_sb_info *sbi) 673 { 674 struct list_head *head = &(SM_I(sbi)->discard_list); 675 struct discard_entry *entry, *this; 676 677 /* drop caches */ 678 list_for_each_entry_safe(entry, this, head, list) { 679 list_del(&entry->list); 680 kmem_cache_free(discard_entry_slab, entry); 681 } 682 } 683 684 /* 685 * Should call clear_prefree_segments after checkpoint is done. 686 */ 687 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 688 { 689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 690 unsigned int segno; 691 692 mutex_lock(&dirty_i->seglist_lock); 693 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 694 __set_test_and_free(sbi, segno); 695 mutex_unlock(&dirty_i->seglist_lock); 696 } 697 698 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 699 { 700 struct list_head *head = &(SM_I(sbi)->discard_list); 701 struct discard_entry *entry, *this; 702 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 703 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 704 unsigned int start = 0, end = -1; 705 706 mutex_lock(&dirty_i->seglist_lock); 707 708 while (1) { 709 int i; 710 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 711 if (start >= MAIN_SEGS(sbi)) 712 break; 713 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 714 start + 1); 715 716 for (i = start; i < end; i++) 717 clear_bit(i, prefree_map); 718 719 dirty_i->nr_dirty[PRE] -= end - start; 720 721 if (!test_opt(sbi, DISCARD)) 722 continue; 723 724 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 725 (end - start) << sbi->log_blocks_per_seg); 726 } 727 mutex_unlock(&dirty_i->seglist_lock); 728 729 /* send small discards */ 730 list_for_each_entry_safe(entry, this, head, list) { 731 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 732 goto skip; 733 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 734 cpc->trimmed += entry->len; 735 skip: 736 list_del(&entry->list); 737 SM_I(sbi)->nr_discards -= entry->len; 738 kmem_cache_free(discard_entry_slab, entry); 739 } 740 } 741 742 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 743 { 744 struct sit_info *sit_i = SIT_I(sbi); 745 746 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 747 sit_i->dirty_sentries++; 748 return false; 749 } 750 751 return true; 752 } 753 754 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 755 unsigned int segno, int modified) 756 { 757 struct seg_entry *se = get_seg_entry(sbi, segno); 758 se->type = type; 759 if (modified) 760 __mark_sit_entry_dirty(sbi, segno); 761 } 762 763 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 764 { 765 struct seg_entry *se; 766 unsigned int segno, offset; 767 long int new_vblocks; 768 769 segno = GET_SEGNO(sbi, blkaddr); 770 771 se = get_seg_entry(sbi, segno); 772 new_vblocks = se->valid_blocks + del; 773 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 774 775 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 776 (new_vblocks > sbi->blocks_per_seg))); 777 778 se->valid_blocks = new_vblocks; 779 se->mtime = get_mtime(sbi); 780 SIT_I(sbi)->max_mtime = se->mtime; 781 782 /* Update valid block bitmap */ 783 if (del > 0) { 784 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 785 f2fs_bug_on(sbi, 1); 786 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 787 sbi->discard_blks--; 788 } else { 789 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 790 f2fs_bug_on(sbi, 1); 791 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 792 sbi->discard_blks++; 793 } 794 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 795 se->ckpt_valid_blocks += del; 796 797 __mark_sit_entry_dirty(sbi, segno); 798 799 /* update total number of valid blocks to be written in ckpt area */ 800 SIT_I(sbi)->written_valid_blocks += del; 801 802 if (sbi->segs_per_sec > 1) 803 get_sec_entry(sbi, segno)->valid_blocks += del; 804 } 805 806 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 807 { 808 update_sit_entry(sbi, new, 1); 809 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 810 update_sit_entry(sbi, old, -1); 811 812 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 813 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 814 } 815 816 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 817 { 818 unsigned int segno = GET_SEGNO(sbi, addr); 819 struct sit_info *sit_i = SIT_I(sbi); 820 821 f2fs_bug_on(sbi, addr == NULL_ADDR); 822 if (addr == NEW_ADDR) 823 return; 824 825 /* add it into sit main buffer */ 826 mutex_lock(&sit_i->sentry_lock); 827 828 update_sit_entry(sbi, addr, -1); 829 830 /* add it into dirty seglist */ 831 locate_dirty_segment(sbi, segno); 832 833 mutex_unlock(&sit_i->sentry_lock); 834 } 835 836 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 837 { 838 struct sit_info *sit_i = SIT_I(sbi); 839 unsigned int segno, offset; 840 struct seg_entry *se; 841 bool is_cp = false; 842 843 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 844 return true; 845 846 mutex_lock(&sit_i->sentry_lock); 847 848 segno = GET_SEGNO(sbi, blkaddr); 849 se = get_seg_entry(sbi, segno); 850 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 851 852 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 853 is_cp = true; 854 855 mutex_unlock(&sit_i->sentry_lock); 856 857 return is_cp; 858 } 859 860 /* 861 * This function should be resided under the curseg_mutex lock 862 */ 863 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 864 struct f2fs_summary *sum) 865 { 866 struct curseg_info *curseg = CURSEG_I(sbi, type); 867 void *addr = curseg->sum_blk; 868 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 869 memcpy(addr, sum, sizeof(struct f2fs_summary)); 870 } 871 872 /* 873 * Calculate the number of current summary pages for writing 874 */ 875 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 876 { 877 int valid_sum_count = 0; 878 int i, sum_in_page; 879 880 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 881 if (sbi->ckpt->alloc_type[i] == SSR) 882 valid_sum_count += sbi->blocks_per_seg; 883 else { 884 if (for_ra) 885 valid_sum_count += le16_to_cpu( 886 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 887 else 888 valid_sum_count += curseg_blkoff(sbi, i); 889 } 890 } 891 892 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 893 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 894 if (valid_sum_count <= sum_in_page) 895 return 1; 896 else if ((valid_sum_count - sum_in_page) <= 897 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 898 return 2; 899 return 3; 900 } 901 902 /* 903 * Caller should put this summary page 904 */ 905 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 906 { 907 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 908 } 909 910 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 911 { 912 struct page *page = grab_meta_page(sbi, blk_addr); 913 void *dst = page_address(page); 914 915 if (src) 916 memcpy(dst, src, PAGE_SIZE); 917 else 918 memset(dst, 0, PAGE_SIZE); 919 set_page_dirty(page); 920 f2fs_put_page(page, 1); 921 } 922 923 static void write_sum_page(struct f2fs_sb_info *sbi, 924 struct f2fs_summary_block *sum_blk, block_t blk_addr) 925 { 926 update_meta_page(sbi, (void *)sum_blk, blk_addr); 927 } 928 929 static void write_current_sum_page(struct f2fs_sb_info *sbi, 930 int type, block_t blk_addr) 931 { 932 struct curseg_info *curseg = CURSEG_I(sbi, type); 933 struct page *page = grab_meta_page(sbi, blk_addr); 934 struct f2fs_summary_block *src = curseg->sum_blk; 935 struct f2fs_summary_block *dst; 936 937 dst = (struct f2fs_summary_block *)page_address(page); 938 939 mutex_lock(&curseg->curseg_mutex); 940 941 down_read(&curseg->journal_rwsem); 942 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 943 up_read(&curseg->journal_rwsem); 944 945 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 946 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 947 948 mutex_unlock(&curseg->curseg_mutex); 949 950 set_page_dirty(page); 951 f2fs_put_page(page, 1); 952 } 953 954 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 955 { 956 struct curseg_info *curseg = CURSEG_I(sbi, type); 957 unsigned int segno = curseg->segno + 1; 958 struct free_segmap_info *free_i = FREE_I(sbi); 959 960 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 961 return !test_bit(segno, free_i->free_segmap); 962 return 0; 963 } 964 965 /* 966 * Find a new segment from the free segments bitmap to right order 967 * This function should be returned with success, otherwise BUG 968 */ 969 static void get_new_segment(struct f2fs_sb_info *sbi, 970 unsigned int *newseg, bool new_sec, int dir) 971 { 972 struct free_segmap_info *free_i = FREE_I(sbi); 973 unsigned int segno, secno, zoneno; 974 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 975 unsigned int hint = *newseg / sbi->segs_per_sec; 976 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 977 unsigned int left_start = hint; 978 bool init = true; 979 int go_left = 0; 980 int i; 981 982 spin_lock(&free_i->segmap_lock); 983 984 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 985 segno = find_next_zero_bit(free_i->free_segmap, 986 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 987 if (segno < (hint + 1) * sbi->segs_per_sec) 988 goto got_it; 989 } 990 find_other_zone: 991 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 992 if (secno >= MAIN_SECS(sbi)) { 993 if (dir == ALLOC_RIGHT) { 994 secno = find_next_zero_bit(free_i->free_secmap, 995 MAIN_SECS(sbi), 0); 996 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 997 } else { 998 go_left = 1; 999 left_start = hint - 1; 1000 } 1001 } 1002 if (go_left == 0) 1003 goto skip_left; 1004 1005 while (test_bit(left_start, free_i->free_secmap)) { 1006 if (left_start > 0) { 1007 left_start--; 1008 continue; 1009 } 1010 left_start = find_next_zero_bit(free_i->free_secmap, 1011 MAIN_SECS(sbi), 0); 1012 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1013 break; 1014 } 1015 secno = left_start; 1016 skip_left: 1017 hint = secno; 1018 segno = secno * sbi->segs_per_sec; 1019 zoneno = secno / sbi->secs_per_zone; 1020 1021 /* give up on finding another zone */ 1022 if (!init) 1023 goto got_it; 1024 if (sbi->secs_per_zone == 1) 1025 goto got_it; 1026 if (zoneno == old_zoneno) 1027 goto got_it; 1028 if (dir == ALLOC_LEFT) { 1029 if (!go_left && zoneno + 1 >= total_zones) 1030 goto got_it; 1031 if (go_left && zoneno == 0) 1032 goto got_it; 1033 } 1034 for (i = 0; i < NR_CURSEG_TYPE; i++) 1035 if (CURSEG_I(sbi, i)->zone == zoneno) 1036 break; 1037 1038 if (i < NR_CURSEG_TYPE) { 1039 /* zone is in user, try another */ 1040 if (go_left) 1041 hint = zoneno * sbi->secs_per_zone - 1; 1042 else if (zoneno + 1 >= total_zones) 1043 hint = 0; 1044 else 1045 hint = (zoneno + 1) * sbi->secs_per_zone; 1046 init = false; 1047 goto find_other_zone; 1048 } 1049 got_it: 1050 /* set it as dirty segment in free segmap */ 1051 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1052 __set_inuse(sbi, segno); 1053 *newseg = segno; 1054 spin_unlock(&free_i->segmap_lock); 1055 } 1056 1057 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1058 { 1059 struct curseg_info *curseg = CURSEG_I(sbi, type); 1060 struct summary_footer *sum_footer; 1061 1062 curseg->segno = curseg->next_segno; 1063 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1064 curseg->next_blkoff = 0; 1065 curseg->next_segno = NULL_SEGNO; 1066 1067 sum_footer = &(curseg->sum_blk->footer); 1068 memset(sum_footer, 0, sizeof(struct summary_footer)); 1069 if (IS_DATASEG(type)) 1070 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1071 if (IS_NODESEG(type)) 1072 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1073 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1074 } 1075 1076 /* 1077 * Allocate a current working segment. 1078 * This function always allocates a free segment in LFS manner. 1079 */ 1080 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1081 { 1082 struct curseg_info *curseg = CURSEG_I(sbi, type); 1083 unsigned int segno = curseg->segno; 1084 int dir = ALLOC_LEFT; 1085 1086 write_sum_page(sbi, curseg->sum_blk, 1087 GET_SUM_BLOCK(sbi, segno)); 1088 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1089 dir = ALLOC_RIGHT; 1090 1091 if (test_opt(sbi, NOHEAP)) 1092 dir = ALLOC_RIGHT; 1093 1094 get_new_segment(sbi, &segno, new_sec, dir); 1095 curseg->next_segno = segno; 1096 reset_curseg(sbi, type, 1); 1097 curseg->alloc_type = LFS; 1098 } 1099 1100 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1101 struct curseg_info *seg, block_t start) 1102 { 1103 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1104 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1105 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1106 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1107 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1108 int i, pos; 1109 1110 for (i = 0; i < entries; i++) 1111 target_map[i] = ckpt_map[i] | cur_map[i]; 1112 1113 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1114 1115 seg->next_blkoff = pos; 1116 } 1117 1118 /* 1119 * If a segment is written by LFS manner, next block offset is just obtained 1120 * by increasing the current block offset. However, if a segment is written by 1121 * SSR manner, next block offset obtained by calling __next_free_blkoff 1122 */ 1123 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1124 struct curseg_info *seg) 1125 { 1126 if (seg->alloc_type == SSR) 1127 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1128 else 1129 seg->next_blkoff++; 1130 } 1131 1132 /* 1133 * This function always allocates a used segment(from dirty seglist) by SSR 1134 * manner, so it should recover the existing segment information of valid blocks 1135 */ 1136 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1137 { 1138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1139 struct curseg_info *curseg = CURSEG_I(sbi, type); 1140 unsigned int new_segno = curseg->next_segno; 1141 struct f2fs_summary_block *sum_node; 1142 struct page *sum_page; 1143 1144 write_sum_page(sbi, curseg->sum_blk, 1145 GET_SUM_BLOCK(sbi, curseg->segno)); 1146 __set_test_and_inuse(sbi, new_segno); 1147 1148 mutex_lock(&dirty_i->seglist_lock); 1149 __remove_dirty_segment(sbi, new_segno, PRE); 1150 __remove_dirty_segment(sbi, new_segno, DIRTY); 1151 mutex_unlock(&dirty_i->seglist_lock); 1152 1153 reset_curseg(sbi, type, 1); 1154 curseg->alloc_type = SSR; 1155 __next_free_blkoff(sbi, curseg, 0); 1156 1157 if (reuse) { 1158 sum_page = get_sum_page(sbi, new_segno); 1159 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1160 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1161 f2fs_put_page(sum_page, 1); 1162 } 1163 } 1164 1165 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1166 { 1167 struct curseg_info *curseg = CURSEG_I(sbi, type); 1168 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1169 1170 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1171 return v_ops->get_victim(sbi, 1172 &(curseg)->next_segno, BG_GC, type, SSR); 1173 1174 /* For data segments, let's do SSR more intensively */ 1175 for (; type >= CURSEG_HOT_DATA; type--) 1176 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1177 BG_GC, type, SSR)) 1178 return 1; 1179 return 0; 1180 } 1181 1182 /* 1183 * flush out current segment and replace it with new segment 1184 * This function should be returned with success, otherwise BUG 1185 */ 1186 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1187 int type, bool force) 1188 { 1189 struct curseg_info *curseg = CURSEG_I(sbi, type); 1190 1191 if (force) 1192 new_curseg(sbi, type, true); 1193 else if (type == CURSEG_WARM_NODE) 1194 new_curseg(sbi, type, false); 1195 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1196 new_curseg(sbi, type, false); 1197 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1198 change_curseg(sbi, type, true); 1199 else 1200 new_curseg(sbi, type, false); 1201 1202 stat_inc_seg_type(sbi, curseg); 1203 } 1204 1205 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1206 { 1207 struct curseg_info *curseg = CURSEG_I(sbi, type); 1208 unsigned int old_segno; 1209 1210 old_segno = curseg->segno; 1211 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1212 locate_dirty_segment(sbi, old_segno); 1213 } 1214 1215 void allocate_new_segments(struct f2fs_sb_info *sbi) 1216 { 1217 int i; 1218 1219 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1220 __allocate_new_segments(sbi, i); 1221 } 1222 1223 static const struct segment_allocation default_salloc_ops = { 1224 .allocate_segment = allocate_segment_by_default, 1225 }; 1226 1227 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1228 { 1229 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1230 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1231 unsigned int start_segno, end_segno; 1232 struct cp_control cpc; 1233 int err = 0; 1234 1235 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1236 return -EINVAL; 1237 1238 cpc.trimmed = 0; 1239 if (end <= MAIN_BLKADDR(sbi)) 1240 goto out; 1241 1242 /* start/end segment number in main_area */ 1243 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1244 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1245 GET_SEGNO(sbi, end); 1246 cpc.reason = CP_DISCARD; 1247 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1248 1249 /* do checkpoint to issue discard commands safely */ 1250 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1251 cpc.trim_start = start_segno; 1252 1253 if (sbi->discard_blks == 0) 1254 break; 1255 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1256 cpc.trim_end = end_segno; 1257 else 1258 cpc.trim_end = min_t(unsigned int, 1259 rounddown(start_segno + 1260 BATCHED_TRIM_SEGMENTS(sbi), 1261 sbi->segs_per_sec) - 1, end_segno); 1262 1263 mutex_lock(&sbi->gc_mutex); 1264 err = write_checkpoint(sbi, &cpc); 1265 mutex_unlock(&sbi->gc_mutex); 1266 } 1267 out: 1268 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1269 return err; 1270 } 1271 1272 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1273 { 1274 struct curseg_info *curseg = CURSEG_I(sbi, type); 1275 if (curseg->next_blkoff < sbi->blocks_per_seg) 1276 return true; 1277 return false; 1278 } 1279 1280 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1281 { 1282 if (p_type == DATA) 1283 return CURSEG_HOT_DATA; 1284 else 1285 return CURSEG_HOT_NODE; 1286 } 1287 1288 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1289 { 1290 if (p_type == DATA) { 1291 struct inode *inode = page->mapping->host; 1292 1293 if (S_ISDIR(inode->i_mode)) 1294 return CURSEG_HOT_DATA; 1295 else 1296 return CURSEG_COLD_DATA; 1297 } else { 1298 if (IS_DNODE(page) && is_cold_node(page)) 1299 return CURSEG_WARM_NODE; 1300 else 1301 return CURSEG_COLD_NODE; 1302 } 1303 } 1304 1305 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1306 { 1307 if (p_type == DATA) { 1308 struct inode *inode = page->mapping->host; 1309 1310 if (S_ISDIR(inode->i_mode)) 1311 return CURSEG_HOT_DATA; 1312 else if (is_cold_data(page) || file_is_cold(inode)) 1313 return CURSEG_COLD_DATA; 1314 else 1315 return CURSEG_WARM_DATA; 1316 } else { 1317 if (IS_DNODE(page)) 1318 return is_cold_node(page) ? CURSEG_WARM_NODE : 1319 CURSEG_HOT_NODE; 1320 else 1321 return CURSEG_COLD_NODE; 1322 } 1323 } 1324 1325 static int __get_segment_type(struct page *page, enum page_type p_type) 1326 { 1327 switch (F2FS_P_SB(page)->active_logs) { 1328 case 2: 1329 return __get_segment_type_2(page, p_type); 1330 case 4: 1331 return __get_segment_type_4(page, p_type); 1332 } 1333 /* NR_CURSEG_TYPE(6) logs by default */ 1334 f2fs_bug_on(F2FS_P_SB(page), 1335 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1336 return __get_segment_type_6(page, p_type); 1337 } 1338 1339 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1340 block_t old_blkaddr, block_t *new_blkaddr, 1341 struct f2fs_summary *sum, int type) 1342 { 1343 struct sit_info *sit_i = SIT_I(sbi); 1344 struct curseg_info *curseg; 1345 bool direct_io = (type == CURSEG_DIRECT_IO); 1346 1347 type = direct_io ? CURSEG_WARM_DATA : type; 1348 1349 curseg = CURSEG_I(sbi, type); 1350 1351 mutex_lock(&curseg->curseg_mutex); 1352 mutex_lock(&sit_i->sentry_lock); 1353 1354 /* direct_io'ed data is aligned to the segment for better performance */ 1355 if (direct_io && curseg->next_blkoff && 1356 !has_not_enough_free_secs(sbi, 0)) 1357 __allocate_new_segments(sbi, type); 1358 1359 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1360 1361 /* 1362 * __add_sum_entry should be resided under the curseg_mutex 1363 * because, this function updates a summary entry in the 1364 * current summary block. 1365 */ 1366 __add_sum_entry(sbi, type, sum); 1367 1368 __refresh_next_blkoff(sbi, curseg); 1369 1370 stat_inc_block_count(sbi, curseg); 1371 1372 if (!__has_curseg_space(sbi, type)) 1373 sit_i->s_ops->allocate_segment(sbi, type, false); 1374 /* 1375 * SIT information should be updated before segment allocation, 1376 * since SSR needs latest valid block information. 1377 */ 1378 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1379 1380 mutex_unlock(&sit_i->sentry_lock); 1381 1382 if (page && IS_NODESEG(type)) 1383 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1384 1385 mutex_unlock(&curseg->curseg_mutex); 1386 } 1387 1388 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1389 { 1390 int type = __get_segment_type(fio->page, fio->type); 1391 1392 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1393 &fio->new_blkaddr, sum, type); 1394 1395 /* writeout dirty page into bdev */ 1396 f2fs_submit_page_mbio(fio); 1397 } 1398 1399 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1400 { 1401 struct f2fs_io_info fio = { 1402 .sbi = sbi, 1403 .type = META, 1404 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1405 .old_blkaddr = page->index, 1406 .new_blkaddr = page->index, 1407 .page = page, 1408 .encrypted_page = NULL, 1409 }; 1410 1411 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1412 fio.rw &= ~REQ_META; 1413 1414 set_page_writeback(page); 1415 f2fs_submit_page_mbio(&fio); 1416 } 1417 1418 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1419 { 1420 struct f2fs_summary sum; 1421 1422 set_summary(&sum, nid, 0, 0); 1423 do_write_page(&sum, fio); 1424 } 1425 1426 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1427 { 1428 struct f2fs_sb_info *sbi = fio->sbi; 1429 struct f2fs_summary sum; 1430 struct node_info ni; 1431 1432 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1433 get_node_info(sbi, dn->nid, &ni); 1434 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1435 do_write_page(&sum, fio); 1436 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1437 } 1438 1439 void rewrite_data_page(struct f2fs_io_info *fio) 1440 { 1441 fio->new_blkaddr = fio->old_blkaddr; 1442 stat_inc_inplace_blocks(fio->sbi); 1443 f2fs_submit_page_mbio(fio); 1444 } 1445 1446 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1447 block_t old_blkaddr, block_t new_blkaddr, 1448 bool recover_curseg, bool recover_newaddr) 1449 { 1450 struct sit_info *sit_i = SIT_I(sbi); 1451 struct curseg_info *curseg; 1452 unsigned int segno, old_cursegno; 1453 struct seg_entry *se; 1454 int type; 1455 unsigned short old_blkoff; 1456 1457 segno = GET_SEGNO(sbi, new_blkaddr); 1458 se = get_seg_entry(sbi, segno); 1459 type = se->type; 1460 1461 if (!recover_curseg) { 1462 /* for recovery flow */ 1463 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1464 if (old_blkaddr == NULL_ADDR) 1465 type = CURSEG_COLD_DATA; 1466 else 1467 type = CURSEG_WARM_DATA; 1468 } 1469 } else { 1470 if (!IS_CURSEG(sbi, segno)) 1471 type = CURSEG_WARM_DATA; 1472 } 1473 1474 curseg = CURSEG_I(sbi, type); 1475 1476 mutex_lock(&curseg->curseg_mutex); 1477 mutex_lock(&sit_i->sentry_lock); 1478 1479 old_cursegno = curseg->segno; 1480 old_blkoff = curseg->next_blkoff; 1481 1482 /* change the current segment */ 1483 if (segno != curseg->segno) { 1484 curseg->next_segno = segno; 1485 change_curseg(sbi, type, true); 1486 } 1487 1488 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1489 __add_sum_entry(sbi, type, sum); 1490 1491 if (!recover_curseg || recover_newaddr) 1492 update_sit_entry(sbi, new_blkaddr, 1); 1493 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1494 update_sit_entry(sbi, old_blkaddr, -1); 1495 1496 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1497 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1498 1499 locate_dirty_segment(sbi, old_cursegno); 1500 1501 if (recover_curseg) { 1502 if (old_cursegno != curseg->segno) { 1503 curseg->next_segno = old_cursegno; 1504 change_curseg(sbi, type, true); 1505 } 1506 curseg->next_blkoff = old_blkoff; 1507 } 1508 1509 mutex_unlock(&sit_i->sentry_lock); 1510 mutex_unlock(&curseg->curseg_mutex); 1511 } 1512 1513 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1514 block_t old_addr, block_t new_addr, 1515 unsigned char version, bool recover_curseg, 1516 bool recover_newaddr) 1517 { 1518 struct f2fs_summary sum; 1519 1520 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1521 1522 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1523 recover_curseg, recover_newaddr); 1524 1525 f2fs_update_data_blkaddr(dn, new_addr); 1526 } 1527 1528 void f2fs_wait_on_page_writeback(struct page *page, 1529 enum page_type type, bool ordered) 1530 { 1531 if (PageWriteback(page)) { 1532 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1533 1534 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1535 if (ordered) 1536 wait_on_page_writeback(page); 1537 else 1538 wait_for_stable_page(page); 1539 } 1540 } 1541 1542 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1543 block_t blkaddr) 1544 { 1545 struct page *cpage; 1546 1547 if (blkaddr == NEW_ADDR) 1548 return; 1549 1550 f2fs_bug_on(sbi, blkaddr == NULL_ADDR); 1551 1552 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1553 if (cpage) { 1554 f2fs_wait_on_page_writeback(cpage, DATA, true); 1555 f2fs_put_page(cpage, 1); 1556 } 1557 } 1558 1559 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1560 { 1561 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1562 struct curseg_info *seg_i; 1563 unsigned char *kaddr; 1564 struct page *page; 1565 block_t start; 1566 int i, j, offset; 1567 1568 start = start_sum_block(sbi); 1569 1570 page = get_meta_page(sbi, start++); 1571 kaddr = (unsigned char *)page_address(page); 1572 1573 /* Step 1: restore nat cache */ 1574 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1575 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1576 1577 /* Step 2: restore sit cache */ 1578 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1579 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1580 offset = 2 * SUM_JOURNAL_SIZE; 1581 1582 /* Step 3: restore summary entries */ 1583 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1584 unsigned short blk_off; 1585 unsigned int segno; 1586 1587 seg_i = CURSEG_I(sbi, i); 1588 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1589 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1590 seg_i->next_segno = segno; 1591 reset_curseg(sbi, i, 0); 1592 seg_i->alloc_type = ckpt->alloc_type[i]; 1593 seg_i->next_blkoff = blk_off; 1594 1595 if (seg_i->alloc_type == SSR) 1596 blk_off = sbi->blocks_per_seg; 1597 1598 for (j = 0; j < blk_off; j++) { 1599 struct f2fs_summary *s; 1600 s = (struct f2fs_summary *)(kaddr + offset); 1601 seg_i->sum_blk->entries[j] = *s; 1602 offset += SUMMARY_SIZE; 1603 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1604 SUM_FOOTER_SIZE) 1605 continue; 1606 1607 f2fs_put_page(page, 1); 1608 page = NULL; 1609 1610 page = get_meta_page(sbi, start++); 1611 kaddr = (unsigned char *)page_address(page); 1612 offset = 0; 1613 } 1614 } 1615 f2fs_put_page(page, 1); 1616 return 0; 1617 } 1618 1619 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1620 { 1621 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1622 struct f2fs_summary_block *sum; 1623 struct curseg_info *curseg; 1624 struct page *new; 1625 unsigned short blk_off; 1626 unsigned int segno = 0; 1627 block_t blk_addr = 0; 1628 1629 /* get segment number and block addr */ 1630 if (IS_DATASEG(type)) { 1631 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1632 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1633 CURSEG_HOT_DATA]); 1634 if (__exist_node_summaries(sbi)) 1635 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1636 else 1637 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1638 } else { 1639 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1640 CURSEG_HOT_NODE]); 1641 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1642 CURSEG_HOT_NODE]); 1643 if (__exist_node_summaries(sbi)) 1644 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1645 type - CURSEG_HOT_NODE); 1646 else 1647 blk_addr = GET_SUM_BLOCK(sbi, segno); 1648 } 1649 1650 new = get_meta_page(sbi, blk_addr); 1651 sum = (struct f2fs_summary_block *)page_address(new); 1652 1653 if (IS_NODESEG(type)) { 1654 if (__exist_node_summaries(sbi)) { 1655 struct f2fs_summary *ns = &sum->entries[0]; 1656 int i; 1657 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1658 ns->version = 0; 1659 ns->ofs_in_node = 0; 1660 } 1661 } else { 1662 int err; 1663 1664 err = restore_node_summary(sbi, segno, sum); 1665 if (err) { 1666 f2fs_put_page(new, 1); 1667 return err; 1668 } 1669 } 1670 } 1671 1672 /* set uncompleted segment to curseg */ 1673 curseg = CURSEG_I(sbi, type); 1674 mutex_lock(&curseg->curseg_mutex); 1675 1676 /* update journal info */ 1677 down_write(&curseg->journal_rwsem); 1678 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1679 up_write(&curseg->journal_rwsem); 1680 1681 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1682 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1683 curseg->next_segno = segno; 1684 reset_curseg(sbi, type, 0); 1685 curseg->alloc_type = ckpt->alloc_type[type]; 1686 curseg->next_blkoff = blk_off; 1687 mutex_unlock(&curseg->curseg_mutex); 1688 f2fs_put_page(new, 1); 1689 return 0; 1690 } 1691 1692 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1693 { 1694 int type = CURSEG_HOT_DATA; 1695 int err; 1696 1697 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1698 int npages = npages_for_summary_flush(sbi, true); 1699 1700 if (npages >= 2) 1701 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1702 META_CP, true); 1703 1704 /* restore for compacted data summary */ 1705 if (read_compacted_summaries(sbi)) 1706 return -EINVAL; 1707 type = CURSEG_HOT_NODE; 1708 } 1709 1710 if (__exist_node_summaries(sbi)) 1711 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1712 NR_CURSEG_TYPE - type, META_CP, true); 1713 1714 for (; type <= CURSEG_COLD_NODE; type++) { 1715 err = read_normal_summaries(sbi, type); 1716 if (err) 1717 return err; 1718 } 1719 1720 return 0; 1721 } 1722 1723 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1724 { 1725 struct page *page; 1726 unsigned char *kaddr; 1727 struct f2fs_summary *summary; 1728 struct curseg_info *seg_i; 1729 int written_size = 0; 1730 int i, j; 1731 1732 page = grab_meta_page(sbi, blkaddr++); 1733 kaddr = (unsigned char *)page_address(page); 1734 1735 /* Step 1: write nat cache */ 1736 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1737 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1738 written_size += SUM_JOURNAL_SIZE; 1739 1740 /* Step 2: write sit cache */ 1741 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1742 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1743 written_size += SUM_JOURNAL_SIZE; 1744 1745 /* Step 3: write summary entries */ 1746 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1747 unsigned short blkoff; 1748 seg_i = CURSEG_I(sbi, i); 1749 if (sbi->ckpt->alloc_type[i] == SSR) 1750 blkoff = sbi->blocks_per_seg; 1751 else 1752 blkoff = curseg_blkoff(sbi, i); 1753 1754 for (j = 0; j < blkoff; j++) { 1755 if (!page) { 1756 page = grab_meta_page(sbi, blkaddr++); 1757 kaddr = (unsigned char *)page_address(page); 1758 written_size = 0; 1759 } 1760 summary = (struct f2fs_summary *)(kaddr + written_size); 1761 *summary = seg_i->sum_blk->entries[j]; 1762 written_size += SUMMARY_SIZE; 1763 1764 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1765 SUM_FOOTER_SIZE) 1766 continue; 1767 1768 set_page_dirty(page); 1769 f2fs_put_page(page, 1); 1770 page = NULL; 1771 } 1772 } 1773 if (page) { 1774 set_page_dirty(page); 1775 f2fs_put_page(page, 1); 1776 } 1777 } 1778 1779 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1780 block_t blkaddr, int type) 1781 { 1782 int i, end; 1783 if (IS_DATASEG(type)) 1784 end = type + NR_CURSEG_DATA_TYPE; 1785 else 1786 end = type + NR_CURSEG_NODE_TYPE; 1787 1788 for (i = type; i < end; i++) 1789 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1790 } 1791 1792 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1793 { 1794 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1795 write_compacted_summaries(sbi, start_blk); 1796 else 1797 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1798 } 1799 1800 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1801 { 1802 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1803 } 1804 1805 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1806 unsigned int val, int alloc) 1807 { 1808 int i; 1809 1810 if (type == NAT_JOURNAL) { 1811 for (i = 0; i < nats_in_cursum(journal); i++) { 1812 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1813 return i; 1814 } 1815 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1816 return update_nats_in_cursum(journal, 1); 1817 } else if (type == SIT_JOURNAL) { 1818 for (i = 0; i < sits_in_cursum(journal); i++) 1819 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1820 return i; 1821 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1822 return update_sits_in_cursum(journal, 1); 1823 } 1824 return -1; 1825 } 1826 1827 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1828 unsigned int segno) 1829 { 1830 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1831 } 1832 1833 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1834 unsigned int start) 1835 { 1836 struct sit_info *sit_i = SIT_I(sbi); 1837 struct page *src_page, *dst_page; 1838 pgoff_t src_off, dst_off; 1839 void *src_addr, *dst_addr; 1840 1841 src_off = current_sit_addr(sbi, start); 1842 dst_off = next_sit_addr(sbi, src_off); 1843 1844 /* get current sit block page without lock */ 1845 src_page = get_meta_page(sbi, src_off); 1846 dst_page = grab_meta_page(sbi, dst_off); 1847 f2fs_bug_on(sbi, PageDirty(src_page)); 1848 1849 src_addr = page_address(src_page); 1850 dst_addr = page_address(dst_page); 1851 memcpy(dst_addr, src_addr, PAGE_SIZE); 1852 1853 set_page_dirty(dst_page); 1854 f2fs_put_page(src_page, 1); 1855 1856 set_to_next_sit(sit_i, start); 1857 1858 return dst_page; 1859 } 1860 1861 static struct sit_entry_set *grab_sit_entry_set(void) 1862 { 1863 struct sit_entry_set *ses = 1864 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1865 1866 ses->entry_cnt = 0; 1867 INIT_LIST_HEAD(&ses->set_list); 1868 return ses; 1869 } 1870 1871 static void release_sit_entry_set(struct sit_entry_set *ses) 1872 { 1873 list_del(&ses->set_list); 1874 kmem_cache_free(sit_entry_set_slab, ses); 1875 } 1876 1877 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1878 struct list_head *head) 1879 { 1880 struct sit_entry_set *next = ses; 1881 1882 if (list_is_last(&ses->set_list, head)) 1883 return; 1884 1885 list_for_each_entry_continue(next, head, set_list) 1886 if (ses->entry_cnt <= next->entry_cnt) 1887 break; 1888 1889 list_move_tail(&ses->set_list, &next->set_list); 1890 } 1891 1892 static void add_sit_entry(unsigned int segno, struct list_head *head) 1893 { 1894 struct sit_entry_set *ses; 1895 unsigned int start_segno = START_SEGNO(segno); 1896 1897 list_for_each_entry(ses, head, set_list) { 1898 if (ses->start_segno == start_segno) { 1899 ses->entry_cnt++; 1900 adjust_sit_entry_set(ses, head); 1901 return; 1902 } 1903 } 1904 1905 ses = grab_sit_entry_set(); 1906 1907 ses->start_segno = start_segno; 1908 ses->entry_cnt++; 1909 list_add(&ses->set_list, head); 1910 } 1911 1912 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1913 { 1914 struct f2fs_sm_info *sm_info = SM_I(sbi); 1915 struct list_head *set_list = &sm_info->sit_entry_set; 1916 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1917 unsigned int segno; 1918 1919 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1920 add_sit_entry(segno, set_list); 1921 } 1922 1923 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1924 { 1925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1926 struct f2fs_journal *journal = curseg->journal; 1927 int i; 1928 1929 down_write(&curseg->journal_rwsem); 1930 for (i = 0; i < sits_in_cursum(journal); i++) { 1931 unsigned int segno; 1932 bool dirtied; 1933 1934 segno = le32_to_cpu(segno_in_journal(journal, i)); 1935 dirtied = __mark_sit_entry_dirty(sbi, segno); 1936 1937 if (!dirtied) 1938 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1939 } 1940 update_sits_in_cursum(journal, -i); 1941 up_write(&curseg->journal_rwsem); 1942 } 1943 1944 /* 1945 * CP calls this function, which flushes SIT entries including sit_journal, 1946 * and moves prefree segs to free segs. 1947 */ 1948 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1949 { 1950 struct sit_info *sit_i = SIT_I(sbi); 1951 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1952 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1953 struct f2fs_journal *journal = curseg->journal; 1954 struct sit_entry_set *ses, *tmp; 1955 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1956 bool to_journal = true; 1957 struct seg_entry *se; 1958 1959 mutex_lock(&sit_i->sentry_lock); 1960 1961 if (!sit_i->dirty_sentries) 1962 goto out; 1963 1964 /* 1965 * add and account sit entries of dirty bitmap in sit entry 1966 * set temporarily 1967 */ 1968 add_sits_in_set(sbi); 1969 1970 /* 1971 * if there are no enough space in journal to store dirty sit 1972 * entries, remove all entries from journal and add and account 1973 * them in sit entry set. 1974 */ 1975 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 1976 remove_sits_in_journal(sbi); 1977 1978 /* 1979 * there are two steps to flush sit entries: 1980 * #1, flush sit entries to journal in current cold data summary block. 1981 * #2, flush sit entries to sit page. 1982 */ 1983 list_for_each_entry_safe(ses, tmp, head, set_list) { 1984 struct page *page = NULL; 1985 struct f2fs_sit_block *raw_sit = NULL; 1986 unsigned int start_segno = ses->start_segno; 1987 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1988 (unsigned long)MAIN_SEGS(sbi)); 1989 unsigned int segno = start_segno; 1990 1991 if (to_journal && 1992 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 1993 to_journal = false; 1994 1995 if (to_journal) { 1996 down_write(&curseg->journal_rwsem); 1997 } else { 1998 page = get_next_sit_page(sbi, start_segno); 1999 raw_sit = page_address(page); 2000 } 2001 2002 /* flush dirty sit entries in region of current sit set */ 2003 for_each_set_bit_from(segno, bitmap, end) { 2004 int offset, sit_offset; 2005 2006 se = get_seg_entry(sbi, segno); 2007 2008 /* add discard candidates */ 2009 if (cpc->reason != CP_DISCARD) { 2010 cpc->trim_start = segno; 2011 add_discard_addrs(sbi, cpc); 2012 } 2013 2014 if (to_journal) { 2015 offset = lookup_journal_in_cursum(journal, 2016 SIT_JOURNAL, segno, 1); 2017 f2fs_bug_on(sbi, offset < 0); 2018 segno_in_journal(journal, offset) = 2019 cpu_to_le32(segno); 2020 seg_info_to_raw_sit(se, 2021 &sit_in_journal(journal, offset)); 2022 } else { 2023 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2024 seg_info_to_raw_sit(se, 2025 &raw_sit->entries[sit_offset]); 2026 } 2027 2028 __clear_bit(segno, bitmap); 2029 sit_i->dirty_sentries--; 2030 ses->entry_cnt--; 2031 } 2032 2033 if (to_journal) 2034 up_write(&curseg->journal_rwsem); 2035 else 2036 f2fs_put_page(page, 1); 2037 2038 f2fs_bug_on(sbi, ses->entry_cnt); 2039 release_sit_entry_set(ses); 2040 } 2041 2042 f2fs_bug_on(sbi, !list_empty(head)); 2043 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2044 out: 2045 if (cpc->reason == CP_DISCARD) { 2046 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2047 add_discard_addrs(sbi, cpc); 2048 } 2049 mutex_unlock(&sit_i->sentry_lock); 2050 2051 set_prefree_as_free_segments(sbi); 2052 } 2053 2054 static int build_sit_info(struct f2fs_sb_info *sbi) 2055 { 2056 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2057 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2058 struct sit_info *sit_i; 2059 unsigned int sit_segs, start; 2060 char *src_bitmap, *dst_bitmap; 2061 unsigned int bitmap_size; 2062 2063 /* allocate memory for SIT information */ 2064 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2065 if (!sit_i) 2066 return -ENOMEM; 2067 2068 SM_I(sbi)->sit_info = sit_i; 2069 2070 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2071 sizeof(struct seg_entry), GFP_KERNEL); 2072 if (!sit_i->sentries) 2073 return -ENOMEM; 2074 2075 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2076 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2077 if (!sit_i->dirty_sentries_bitmap) 2078 return -ENOMEM; 2079 2080 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2081 sit_i->sentries[start].cur_valid_map 2082 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2083 sit_i->sentries[start].ckpt_valid_map 2084 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2085 sit_i->sentries[start].discard_map 2086 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2087 if (!sit_i->sentries[start].cur_valid_map || 2088 !sit_i->sentries[start].ckpt_valid_map || 2089 !sit_i->sentries[start].discard_map) 2090 return -ENOMEM; 2091 } 2092 2093 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2094 if (!sit_i->tmp_map) 2095 return -ENOMEM; 2096 2097 if (sbi->segs_per_sec > 1) { 2098 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2099 sizeof(struct sec_entry), GFP_KERNEL); 2100 if (!sit_i->sec_entries) 2101 return -ENOMEM; 2102 } 2103 2104 /* get information related with SIT */ 2105 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2106 2107 /* setup SIT bitmap from ckeckpoint pack */ 2108 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2109 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2110 2111 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2112 if (!dst_bitmap) 2113 return -ENOMEM; 2114 2115 /* init SIT information */ 2116 sit_i->s_ops = &default_salloc_ops; 2117 2118 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2119 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2120 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2121 sit_i->sit_bitmap = dst_bitmap; 2122 sit_i->bitmap_size = bitmap_size; 2123 sit_i->dirty_sentries = 0; 2124 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2125 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2126 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2127 mutex_init(&sit_i->sentry_lock); 2128 return 0; 2129 } 2130 2131 static int build_free_segmap(struct f2fs_sb_info *sbi) 2132 { 2133 struct free_segmap_info *free_i; 2134 unsigned int bitmap_size, sec_bitmap_size; 2135 2136 /* allocate memory for free segmap information */ 2137 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2138 if (!free_i) 2139 return -ENOMEM; 2140 2141 SM_I(sbi)->free_info = free_i; 2142 2143 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2144 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2145 if (!free_i->free_segmap) 2146 return -ENOMEM; 2147 2148 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2149 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2150 if (!free_i->free_secmap) 2151 return -ENOMEM; 2152 2153 /* set all segments as dirty temporarily */ 2154 memset(free_i->free_segmap, 0xff, bitmap_size); 2155 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2156 2157 /* init free segmap information */ 2158 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2159 free_i->free_segments = 0; 2160 free_i->free_sections = 0; 2161 spin_lock_init(&free_i->segmap_lock); 2162 return 0; 2163 } 2164 2165 static int build_curseg(struct f2fs_sb_info *sbi) 2166 { 2167 struct curseg_info *array; 2168 int i; 2169 2170 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2171 if (!array) 2172 return -ENOMEM; 2173 2174 SM_I(sbi)->curseg_array = array; 2175 2176 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2177 mutex_init(&array[i].curseg_mutex); 2178 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2179 if (!array[i].sum_blk) 2180 return -ENOMEM; 2181 init_rwsem(&array[i].journal_rwsem); 2182 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2183 GFP_KERNEL); 2184 if (!array[i].journal) 2185 return -ENOMEM; 2186 array[i].segno = NULL_SEGNO; 2187 array[i].next_blkoff = 0; 2188 } 2189 return restore_curseg_summaries(sbi); 2190 } 2191 2192 static void build_sit_entries(struct f2fs_sb_info *sbi) 2193 { 2194 struct sit_info *sit_i = SIT_I(sbi); 2195 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2196 struct f2fs_journal *journal = curseg->journal; 2197 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2198 unsigned int i, start, end; 2199 unsigned int readed, start_blk = 0; 2200 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2201 2202 do { 2203 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2204 2205 start = start_blk * sit_i->sents_per_block; 2206 end = (start_blk + readed) * sit_i->sents_per_block; 2207 2208 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2209 struct seg_entry *se = &sit_i->sentries[start]; 2210 struct f2fs_sit_block *sit_blk; 2211 struct f2fs_sit_entry sit; 2212 struct page *page; 2213 2214 down_read(&curseg->journal_rwsem); 2215 for (i = 0; i < sits_in_cursum(journal); i++) { 2216 if (le32_to_cpu(segno_in_journal(journal, i)) 2217 == start) { 2218 sit = sit_in_journal(journal, i); 2219 up_read(&curseg->journal_rwsem); 2220 goto got_it; 2221 } 2222 } 2223 up_read(&curseg->journal_rwsem); 2224 2225 page = get_current_sit_page(sbi, start); 2226 sit_blk = (struct f2fs_sit_block *)page_address(page); 2227 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2228 f2fs_put_page(page, 1); 2229 got_it: 2230 check_block_count(sbi, start, &sit); 2231 seg_info_from_raw_sit(se, &sit); 2232 2233 /* build discard map only one time */ 2234 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2235 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2236 2237 if (sbi->segs_per_sec > 1) { 2238 struct sec_entry *e = get_sec_entry(sbi, start); 2239 e->valid_blocks += se->valid_blocks; 2240 } 2241 } 2242 start_blk += readed; 2243 } while (start_blk < sit_blk_cnt); 2244 } 2245 2246 static void init_free_segmap(struct f2fs_sb_info *sbi) 2247 { 2248 unsigned int start; 2249 int type; 2250 2251 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2252 struct seg_entry *sentry = get_seg_entry(sbi, start); 2253 if (!sentry->valid_blocks) 2254 __set_free(sbi, start); 2255 } 2256 2257 /* set use the current segments */ 2258 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2259 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2260 __set_test_and_inuse(sbi, curseg_t->segno); 2261 } 2262 } 2263 2264 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2265 { 2266 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2267 struct free_segmap_info *free_i = FREE_I(sbi); 2268 unsigned int segno = 0, offset = 0; 2269 unsigned short valid_blocks; 2270 2271 while (1) { 2272 /* find dirty segment based on free segmap */ 2273 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2274 if (segno >= MAIN_SEGS(sbi)) 2275 break; 2276 offset = segno + 1; 2277 valid_blocks = get_valid_blocks(sbi, segno, 0); 2278 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2279 continue; 2280 if (valid_blocks > sbi->blocks_per_seg) { 2281 f2fs_bug_on(sbi, 1); 2282 continue; 2283 } 2284 mutex_lock(&dirty_i->seglist_lock); 2285 __locate_dirty_segment(sbi, segno, DIRTY); 2286 mutex_unlock(&dirty_i->seglist_lock); 2287 } 2288 } 2289 2290 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2291 { 2292 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2293 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2294 2295 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2296 if (!dirty_i->victim_secmap) 2297 return -ENOMEM; 2298 return 0; 2299 } 2300 2301 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2302 { 2303 struct dirty_seglist_info *dirty_i; 2304 unsigned int bitmap_size, i; 2305 2306 /* allocate memory for dirty segments list information */ 2307 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2308 if (!dirty_i) 2309 return -ENOMEM; 2310 2311 SM_I(sbi)->dirty_info = dirty_i; 2312 mutex_init(&dirty_i->seglist_lock); 2313 2314 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2315 2316 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2317 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2318 if (!dirty_i->dirty_segmap[i]) 2319 return -ENOMEM; 2320 } 2321 2322 init_dirty_segmap(sbi); 2323 return init_victim_secmap(sbi); 2324 } 2325 2326 /* 2327 * Update min, max modified time for cost-benefit GC algorithm 2328 */ 2329 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2330 { 2331 struct sit_info *sit_i = SIT_I(sbi); 2332 unsigned int segno; 2333 2334 mutex_lock(&sit_i->sentry_lock); 2335 2336 sit_i->min_mtime = LLONG_MAX; 2337 2338 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2339 unsigned int i; 2340 unsigned long long mtime = 0; 2341 2342 for (i = 0; i < sbi->segs_per_sec; i++) 2343 mtime += get_seg_entry(sbi, segno + i)->mtime; 2344 2345 mtime = div_u64(mtime, sbi->segs_per_sec); 2346 2347 if (sit_i->min_mtime > mtime) 2348 sit_i->min_mtime = mtime; 2349 } 2350 sit_i->max_mtime = get_mtime(sbi); 2351 mutex_unlock(&sit_i->sentry_lock); 2352 } 2353 2354 int build_segment_manager(struct f2fs_sb_info *sbi) 2355 { 2356 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2357 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2358 struct f2fs_sm_info *sm_info; 2359 int err; 2360 2361 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2362 if (!sm_info) 2363 return -ENOMEM; 2364 2365 /* init sm info */ 2366 sbi->sm_info = sm_info; 2367 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2368 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2369 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2370 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2371 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2372 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2373 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2374 sm_info->rec_prefree_segments = sm_info->main_segments * 2375 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2376 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2377 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2378 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2379 2380 INIT_LIST_HEAD(&sm_info->discard_list); 2381 sm_info->nr_discards = 0; 2382 sm_info->max_discards = 0; 2383 2384 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2385 2386 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2387 2388 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2389 err = create_flush_cmd_control(sbi); 2390 if (err) 2391 return err; 2392 } 2393 2394 err = build_sit_info(sbi); 2395 if (err) 2396 return err; 2397 err = build_free_segmap(sbi); 2398 if (err) 2399 return err; 2400 err = build_curseg(sbi); 2401 if (err) 2402 return err; 2403 2404 /* reinit free segmap based on SIT */ 2405 build_sit_entries(sbi); 2406 2407 init_free_segmap(sbi); 2408 err = build_dirty_segmap(sbi); 2409 if (err) 2410 return err; 2411 2412 init_min_max_mtime(sbi); 2413 return 0; 2414 } 2415 2416 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2417 enum dirty_type dirty_type) 2418 { 2419 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2420 2421 mutex_lock(&dirty_i->seglist_lock); 2422 kvfree(dirty_i->dirty_segmap[dirty_type]); 2423 dirty_i->nr_dirty[dirty_type] = 0; 2424 mutex_unlock(&dirty_i->seglist_lock); 2425 } 2426 2427 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2428 { 2429 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2430 kvfree(dirty_i->victim_secmap); 2431 } 2432 2433 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2434 { 2435 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2436 int i; 2437 2438 if (!dirty_i) 2439 return; 2440 2441 /* discard pre-free/dirty segments list */ 2442 for (i = 0; i < NR_DIRTY_TYPE; i++) 2443 discard_dirty_segmap(sbi, i); 2444 2445 destroy_victim_secmap(sbi); 2446 SM_I(sbi)->dirty_info = NULL; 2447 kfree(dirty_i); 2448 } 2449 2450 static void destroy_curseg(struct f2fs_sb_info *sbi) 2451 { 2452 struct curseg_info *array = SM_I(sbi)->curseg_array; 2453 int i; 2454 2455 if (!array) 2456 return; 2457 SM_I(sbi)->curseg_array = NULL; 2458 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2459 kfree(array[i].sum_blk); 2460 kfree(array[i].journal); 2461 } 2462 kfree(array); 2463 } 2464 2465 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2466 { 2467 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2468 if (!free_i) 2469 return; 2470 SM_I(sbi)->free_info = NULL; 2471 kvfree(free_i->free_segmap); 2472 kvfree(free_i->free_secmap); 2473 kfree(free_i); 2474 } 2475 2476 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2477 { 2478 struct sit_info *sit_i = SIT_I(sbi); 2479 unsigned int start; 2480 2481 if (!sit_i) 2482 return; 2483 2484 if (sit_i->sentries) { 2485 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2486 kfree(sit_i->sentries[start].cur_valid_map); 2487 kfree(sit_i->sentries[start].ckpt_valid_map); 2488 kfree(sit_i->sentries[start].discard_map); 2489 } 2490 } 2491 kfree(sit_i->tmp_map); 2492 2493 kvfree(sit_i->sentries); 2494 kvfree(sit_i->sec_entries); 2495 kvfree(sit_i->dirty_sentries_bitmap); 2496 2497 SM_I(sbi)->sit_info = NULL; 2498 kfree(sit_i->sit_bitmap); 2499 kfree(sit_i); 2500 } 2501 2502 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2503 { 2504 struct f2fs_sm_info *sm_info = SM_I(sbi); 2505 2506 if (!sm_info) 2507 return; 2508 destroy_flush_cmd_control(sbi); 2509 destroy_dirty_segmap(sbi); 2510 destroy_curseg(sbi); 2511 destroy_free_segmap(sbi); 2512 destroy_sit_info(sbi); 2513 sbi->sm_info = NULL; 2514 kfree(sm_info); 2515 } 2516 2517 int __init create_segment_manager_caches(void) 2518 { 2519 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2520 sizeof(struct discard_entry)); 2521 if (!discard_entry_slab) 2522 goto fail; 2523 2524 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2525 sizeof(struct sit_entry_set)); 2526 if (!sit_entry_set_slab) 2527 goto destory_discard_entry; 2528 2529 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2530 sizeof(struct inmem_pages)); 2531 if (!inmem_entry_slab) 2532 goto destroy_sit_entry_set; 2533 return 0; 2534 2535 destroy_sit_entry_set: 2536 kmem_cache_destroy(sit_entry_set_slab); 2537 destory_discard_entry: 2538 kmem_cache_destroy(discard_entry_slab); 2539 fail: 2540 return -ENOMEM; 2541 } 2542 2543 void destroy_segment_manager_caches(void) 2544 { 2545 kmem_cache_destroy(sit_entry_set_slab); 2546 kmem_cache_destroy(discard_entry_slab); 2547 kmem_cache_destroy(inmem_entry_slab); 2548 } 2549