1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 29 /* 30 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 31 * MSB and LSB are reversed in a byte by f2fs_set_bit. 32 */ 33 static inline unsigned long __reverse_ffs(unsigned long word) 34 { 35 int num = 0; 36 37 #if BITS_PER_LONG == 64 38 if ((word & 0xffffffff) == 0) { 39 num += 32; 40 word >>= 32; 41 } 42 #endif 43 if ((word & 0xffff) == 0) { 44 num += 16; 45 word >>= 16; 46 } 47 if ((word & 0xff) == 0) { 48 num += 8; 49 word >>= 8; 50 } 51 if ((word & 0xf0) == 0) 52 num += 4; 53 else 54 word >>= 4; 55 if ((word & 0xc) == 0) 56 num += 2; 57 else 58 word >>= 2; 59 if ((word & 0x2) == 0) 60 num += 1; 61 return num; 62 } 63 64 /* 65 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue 66 * f2fs_set_bit makes MSB and LSB reversed in a byte. 67 * Example: 68 * LSB <--> MSB 69 * f2fs_set_bit(0, bitmap) => 0000 0001 70 * f2fs_set_bit(7, bitmap) => 1000 0000 71 */ 72 static unsigned long __find_rev_next_bit(const unsigned long *addr, 73 unsigned long size, unsigned long offset) 74 { 75 const unsigned long *p = addr + BIT_WORD(offset); 76 unsigned long result = offset & ~(BITS_PER_LONG - 1); 77 unsigned long tmp; 78 unsigned long mask, submask; 79 unsigned long quot, rest; 80 81 if (offset >= size) 82 return size; 83 84 size -= result; 85 offset %= BITS_PER_LONG; 86 if (!offset) 87 goto aligned; 88 89 tmp = *(p++); 90 quot = (offset >> 3) << 3; 91 rest = offset & 0x7; 92 mask = ~0UL << quot; 93 submask = (unsigned char)(0xff << rest) >> rest; 94 submask <<= quot; 95 mask &= submask; 96 tmp &= mask; 97 if (size < BITS_PER_LONG) 98 goto found_first; 99 if (tmp) 100 goto found_middle; 101 102 size -= BITS_PER_LONG; 103 result += BITS_PER_LONG; 104 aligned: 105 while (size & ~(BITS_PER_LONG-1)) { 106 tmp = *(p++); 107 if (tmp) 108 goto found_middle; 109 result += BITS_PER_LONG; 110 size -= BITS_PER_LONG; 111 } 112 if (!size) 113 return result; 114 tmp = *p; 115 found_first: 116 tmp &= (~0UL >> (BITS_PER_LONG - size)); 117 if (tmp == 0UL) /* Are any bits set? */ 118 return result + size; /* Nope. */ 119 found_middle: 120 return result + __reverse_ffs(tmp); 121 } 122 123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 124 unsigned long size, unsigned long offset) 125 { 126 const unsigned long *p = addr + BIT_WORD(offset); 127 unsigned long result = offset & ~(BITS_PER_LONG - 1); 128 unsigned long tmp; 129 unsigned long mask, submask; 130 unsigned long quot, rest; 131 132 if (offset >= size) 133 return size; 134 135 size -= result; 136 offset %= BITS_PER_LONG; 137 if (!offset) 138 goto aligned; 139 140 tmp = *(p++); 141 quot = (offset >> 3) << 3; 142 rest = offset & 0x7; 143 mask = ~(~0UL << quot); 144 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 145 submask <<= quot; 146 mask += submask; 147 tmp |= mask; 148 if (size < BITS_PER_LONG) 149 goto found_first; 150 if (~tmp) 151 goto found_middle; 152 153 size -= BITS_PER_LONG; 154 result += BITS_PER_LONG; 155 aligned: 156 while (size & ~(BITS_PER_LONG - 1)) { 157 tmp = *(p++); 158 if (~tmp) 159 goto found_middle; 160 result += BITS_PER_LONG; 161 size -= BITS_PER_LONG; 162 } 163 if (!size) 164 return result; 165 tmp = *p; 166 167 found_first: 168 tmp |= ~0UL << size; 169 if (tmp == ~0UL) /* Are any bits zero? */ 170 return result + size; /* Nope. */ 171 found_middle: 172 return result + __reverse_ffz(tmp); 173 } 174 175 /* 176 * This function balances dirty node and dentry pages. 177 * In addition, it controls garbage collection. 178 */ 179 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 180 { 181 /* 182 * We should do GC or end up with checkpoint, if there are so many dirty 183 * dir/node pages without enough free segments. 184 */ 185 if (has_not_enough_free_secs(sbi, 0)) { 186 mutex_lock(&sbi->gc_mutex); 187 f2fs_gc(sbi); 188 } 189 } 190 191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 192 { 193 /* check the # of cached NAT entries and prefree segments */ 194 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 195 excess_prefree_segs(sbi)) 196 f2fs_sync_fs(sbi->sb, true); 197 } 198 199 static int issue_flush_thread(void *data) 200 { 201 struct f2fs_sb_info *sbi = data; 202 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 203 wait_queue_head_t *q = &fcc->flush_wait_queue; 204 repeat: 205 if (kthread_should_stop()) 206 return 0; 207 208 spin_lock(&fcc->issue_lock); 209 if (fcc->issue_list) { 210 fcc->dispatch_list = fcc->issue_list; 211 fcc->issue_list = fcc->issue_tail = NULL; 212 } 213 spin_unlock(&fcc->issue_lock); 214 215 if (fcc->dispatch_list) { 216 struct bio *bio = bio_alloc(GFP_NOIO, 0); 217 struct flush_cmd *cmd, *next; 218 int ret; 219 220 bio->bi_bdev = sbi->sb->s_bdev; 221 ret = submit_bio_wait(WRITE_FLUSH, bio); 222 223 for (cmd = fcc->dispatch_list; cmd; cmd = next) { 224 cmd->ret = ret; 225 next = cmd->next; 226 complete(&cmd->wait); 227 } 228 bio_put(bio); 229 fcc->dispatch_list = NULL; 230 } 231 232 wait_event_interruptible(*q, 233 kthread_should_stop() || fcc->issue_list); 234 goto repeat; 235 } 236 237 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 238 { 239 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 240 struct flush_cmd cmd; 241 242 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 243 test_opt(sbi, FLUSH_MERGE)); 244 245 if (test_opt(sbi, NOBARRIER)) 246 return 0; 247 248 if (!test_opt(sbi, FLUSH_MERGE)) 249 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 250 251 init_completion(&cmd.wait); 252 cmd.next = NULL; 253 254 spin_lock(&fcc->issue_lock); 255 if (fcc->issue_list) 256 fcc->issue_tail->next = &cmd; 257 else 258 fcc->issue_list = &cmd; 259 fcc->issue_tail = &cmd; 260 spin_unlock(&fcc->issue_lock); 261 262 if (!fcc->dispatch_list) 263 wake_up(&fcc->flush_wait_queue); 264 265 wait_for_completion(&cmd.wait); 266 267 return cmd.ret; 268 } 269 270 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 271 { 272 dev_t dev = sbi->sb->s_bdev->bd_dev; 273 struct flush_cmd_control *fcc; 274 int err = 0; 275 276 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 277 if (!fcc) 278 return -ENOMEM; 279 spin_lock_init(&fcc->issue_lock); 280 init_waitqueue_head(&fcc->flush_wait_queue); 281 SM_I(sbi)->cmd_control_info = fcc; 282 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 283 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 284 if (IS_ERR(fcc->f2fs_issue_flush)) { 285 err = PTR_ERR(fcc->f2fs_issue_flush); 286 kfree(fcc); 287 SM_I(sbi)->cmd_control_info = NULL; 288 return err; 289 } 290 291 return err; 292 } 293 294 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 295 { 296 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 297 298 if (fcc && fcc->f2fs_issue_flush) 299 kthread_stop(fcc->f2fs_issue_flush); 300 kfree(fcc); 301 SM_I(sbi)->cmd_control_info = NULL; 302 } 303 304 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 305 enum dirty_type dirty_type) 306 { 307 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 308 309 /* need not be added */ 310 if (IS_CURSEG(sbi, segno)) 311 return; 312 313 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 314 dirty_i->nr_dirty[dirty_type]++; 315 316 if (dirty_type == DIRTY) { 317 struct seg_entry *sentry = get_seg_entry(sbi, segno); 318 enum dirty_type t = sentry->type; 319 320 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 321 dirty_i->nr_dirty[t]++; 322 } 323 } 324 325 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 326 enum dirty_type dirty_type) 327 { 328 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 329 330 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 331 dirty_i->nr_dirty[dirty_type]--; 332 333 if (dirty_type == DIRTY) { 334 struct seg_entry *sentry = get_seg_entry(sbi, segno); 335 enum dirty_type t = sentry->type; 336 337 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 338 dirty_i->nr_dirty[t]--; 339 340 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 341 clear_bit(GET_SECNO(sbi, segno), 342 dirty_i->victim_secmap); 343 } 344 } 345 346 /* 347 * Should not occur error such as -ENOMEM. 348 * Adding dirty entry into seglist is not critical operation. 349 * If a given segment is one of current working segments, it won't be added. 350 */ 351 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 352 { 353 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 354 unsigned short valid_blocks; 355 356 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 357 return; 358 359 mutex_lock(&dirty_i->seglist_lock); 360 361 valid_blocks = get_valid_blocks(sbi, segno, 0); 362 363 if (valid_blocks == 0) { 364 __locate_dirty_segment(sbi, segno, PRE); 365 __remove_dirty_segment(sbi, segno, DIRTY); 366 } else if (valid_blocks < sbi->blocks_per_seg) { 367 __locate_dirty_segment(sbi, segno, DIRTY); 368 } else { 369 /* Recovery routine with SSR needs this */ 370 __remove_dirty_segment(sbi, segno, DIRTY); 371 } 372 373 mutex_unlock(&dirty_i->seglist_lock); 374 } 375 376 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 377 block_t blkstart, block_t blklen) 378 { 379 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart); 380 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen); 381 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 382 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 383 } 384 385 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 386 { 387 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 388 struct page *page = grab_meta_page(sbi, blkaddr); 389 /* zero-filled page */ 390 set_page_dirty(page); 391 f2fs_put_page(page, 1); 392 } 393 } 394 395 static void add_discard_addrs(struct f2fs_sb_info *sbi, 396 unsigned int segno, struct seg_entry *se) 397 { 398 struct list_head *head = &SM_I(sbi)->discard_list; 399 struct discard_entry *new; 400 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 401 int max_blocks = sbi->blocks_per_seg; 402 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 403 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 404 unsigned long dmap[entries]; 405 unsigned int start = 0, end = -1; 406 int i; 407 408 if (!test_opt(sbi, DISCARD)) 409 return; 410 411 /* zero block will be discarded through the prefree list */ 412 if (!se->valid_blocks || se->valid_blocks == max_blocks) 413 return; 414 415 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 416 for (i = 0; i < entries; i++) 417 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 418 419 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 420 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 421 if (start >= max_blocks) 422 break; 423 424 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 425 426 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 427 INIT_LIST_HEAD(&new->list); 428 new->blkaddr = START_BLOCK(sbi, segno) + start; 429 new->len = end - start; 430 431 list_add_tail(&new->list, head); 432 SM_I(sbi)->nr_discards += end - start; 433 } 434 } 435 436 /* 437 * Should call clear_prefree_segments after checkpoint is done. 438 */ 439 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 440 { 441 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 442 unsigned int segno; 443 unsigned int total_segs = TOTAL_SEGS(sbi); 444 445 mutex_lock(&dirty_i->seglist_lock); 446 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], total_segs) 447 __set_test_and_free(sbi, segno); 448 mutex_unlock(&dirty_i->seglist_lock); 449 } 450 451 void clear_prefree_segments(struct f2fs_sb_info *sbi) 452 { 453 struct list_head *head = &(SM_I(sbi)->discard_list); 454 struct discard_entry *entry, *this; 455 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 456 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 457 unsigned int total_segs = TOTAL_SEGS(sbi); 458 unsigned int start = 0, end = -1; 459 460 mutex_lock(&dirty_i->seglist_lock); 461 462 while (1) { 463 int i; 464 start = find_next_bit(prefree_map, total_segs, end + 1); 465 if (start >= total_segs) 466 break; 467 end = find_next_zero_bit(prefree_map, total_segs, start + 1); 468 469 for (i = start; i < end; i++) 470 clear_bit(i, prefree_map); 471 472 dirty_i->nr_dirty[PRE] -= end - start; 473 474 if (!test_opt(sbi, DISCARD)) 475 continue; 476 477 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 478 (end - start) << sbi->log_blocks_per_seg); 479 } 480 mutex_unlock(&dirty_i->seglist_lock); 481 482 /* send small discards */ 483 list_for_each_entry_safe(entry, this, head, list) { 484 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 485 list_del(&entry->list); 486 SM_I(sbi)->nr_discards -= entry->len; 487 kmem_cache_free(discard_entry_slab, entry); 488 } 489 } 490 491 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 492 { 493 struct sit_info *sit_i = SIT_I(sbi); 494 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) 495 sit_i->dirty_sentries++; 496 } 497 498 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 499 unsigned int segno, int modified) 500 { 501 struct seg_entry *se = get_seg_entry(sbi, segno); 502 se->type = type; 503 if (modified) 504 __mark_sit_entry_dirty(sbi, segno); 505 } 506 507 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 508 { 509 struct seg_entry *se; 510 unsigned int segno, offset; 511 long int new_vblocks; 512 513 segno = GET_SEGNO(sbi, blkaddr); 514 515 se = get_seg_entry(sbi, segno); 516 new_vblocks = se->valid_blocks + del; 517 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 518 519 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) || 520 (new_vblocks > sbi->blocks_per_seg))); 521 522 se->valid_blocks = new_vblocks; 523 se->mtime = get_mtime(sbi); 524 SIT_I(sbi)->max_mtime = se->mtime; 525 526 /* Update valid block bitmap */ 527 if (del > 0) { 528 if (f2fs_set_bit(offset, se->cur_valid_map)) 529 BUG(); 530 } else { 531 if (!f2fs_clear_bit(offset, se->cur_valid_map)) 532 BUG(); 533 } 534 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 535 se->ckpt_valid_blocks += del; 536 537 __mark_sit_entry_dirty(sbi, segno); 538 539 /* update total number of valid blocks to be written in ckpt area */ 540 SIT_I(sbi)->written_valid_blocks += del; 541 542 if (sbi->segs_per_sec > 1) 543 get_sec_entry(sbi, segno)->valid_blocks += del; 544 } 545 546 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 547 { 548 update_sit_entry(sbi, new, 1); 549 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 550 update_sit_entry(sbi, old, -1); 551 552 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 553 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 554 } 555 556 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 557 { 558 unsigned int segno = GET_SEGNO(sbi, addr); 559 struct sit_info *sit_i = SIT_I(sbi); 560 561 f2fs_bug_on(addr == NULL_ADDR); 562 if (addr == NEW_ADDR) 563 return; 564 565 /* add it into sit main buffer */ 566 mutex_lock(&sit_i->sentry_lock); 567 568 update_sit_entry(sbi, addr, -1); 569 570 /* add it into dirty seglist */ 571 locate_dirty_segment(sbi, segno); 572 573 mutex_unlock(&sit_i->sentry_lock); 574 } 575 576 /* 577 * This function should be resided under the curseg_mutex lock 578 */ 579 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 580 struct f2fs_summary *sum) 581 { 582 struct curseg_info *curseg = CURSEG_I(sbi, type); 583 void *addr = curseg->sum_blk; 584 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 585 memcpy(addr, sum, sizeof(struct f2fs_summary)); 586 } 587 588 /* 589 * Calculate the number of current summary pages for writing 590 */ 591 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 592 { 593 int valid_sum_count = 0; 594 int i, sum_in_page; 595 596 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 597 if (sbi->ckpt->alloc_type[i] == SSR) 598 valid_sum_count += sbi->blocks_per_seg; 599 else 600 valid_sum_count += curseg_blkoff(sbi, i); 601 } 602 603 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 604 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 605 if (valid_sum_count <= sum_in_page) 606 return 1; 607 else if ((valid_sum_count - sum_in_page) <= 608 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 609 return 2; 610 return 3; 611 } 612 613 /* 614 * Caller should put this summary page 615 */ 616 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 617 { 618 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 619 } 620 621 static void write_sum_page(struct f2fs_sb_info *sbi, 622 struct f2fs_summary_block *sum_blk, block_t blk_addr) 623 { 624 struct page *page = grab_meta_page(sbi, blk_addr); 625 void *kaddr = page_address(page); 626 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 627 set_page_dirty(page); 628 f2fs_put_page(page, 1); 629 } 630 631 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 632 { 633 struct curseg_info *curseg = CURSEG_I(sbi, type); 634 unsigned int segno = curseg->segno + 1; 635 struct free_segmap_info *free_i = FREE_I(sbi); 636 637 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec) 638 return !test_bit(segno, free_i->free_segmap); 639 return 0; 640 } 641 642 /* 643 * Find a new segment from the free segments bitmap to right order 644 * This function should be returned with success, otherwise BUG 645 */ 646 static void get_new_segment(struct f2fs_sb_info *sbi, 647 unsigned int *newseg, bool new_sec, int dir) 648 { 649 struct free_segmap_info *free_i = FREE_I(sbi); 650 unsigned int segno, secno, zoneno; 651 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone; 652 unsigned int hint = *newseg / sbi->segs_per_sec; 653 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 654 unsigned int left_start = hint; 655 bool init = true; 656 int go_left = 0; 657 int i; 658 659 write_lock(&free_i->segmap_lock); 660 661 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 662 segno = find_next_zero_bit(free_i->free_segmap, 663 TOTAL_SEGS(sbi), *newseg + 1); 664 if (segno - *newseg < sbi->segs_per_sec - 665 (*newseg % sbi->segs_per_sec)) 666 goto got_it; 667 } 668 find_other_zone: 669 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint); 670 if (secno >= TOTAL_SECS(sbi)) { 671 if (dir == ALLOC_RIGHT) { 672 secno = find_next_zero_bit(free_i->free_secmap, 673 TOTAL_SECS(sbi), 0); 674 f2fs_bug_on(secno >= TOTAL_SECS(sbi)); 675 } else { 676 go_left = 1; 677 left_start = hint - 1; 678 } 679 } 680 if (go_left == 0) 681 goto skip_left; 682 683 while (test_bit(left_start, free_i->free_secmap)) { 684 if (left_start > 0) { 685 left_start--; 686 continue; 687 } 688 left_start = find_next_zero_bit(free_i->free_secmap, 689 TOTAL_SECS(sbi), 0); 690 f2fs_bug_on(left_start >= TOTAL_SECS(sbi)); 691 break; 692 } 693 secno = left_start; 694 skip_left: 695 hint = secno; 696 segno = secno * sbi->segs_per_sec; 697 zoneno = secno / sbi->secs_per_zone; 698 699 /* give up on finding another zone */ 700 if (!init) 701 goto got_it; 702 if (sbi->secs_per_zone == 1) 703 goto got_it; 704 if (zoneno == old_zoneno) 705 goto got_it; 706 if (dir == ALLOC_LEFT) { 707 if (!go_left && zoneno + 1 >= total_zones) 708 goto got_it; 709 if (go_left && zoneno == 0) 710 goto got_it; 711 } 712 for (i = 0; i < NR_CURSEG_TYPE; i++) 713 if (CURSEG_I(sbi, i)->zone == zoneno) 714 break; 715 716 if (i < NR_CURSEG_TYPE) { 717 /* zone is in user, try another */ 718 if (go_left) 719 hint = zoneno * sbi->secs_per_zone - 1; 720 else if (zoneno + 1 >= total_zones) 721 hint = 0; 722 else 723 hint = (zoneno + 1) * sbi->secs_per_zone; 724 init = false; 725 goto find_other_zone; 726 } 727 got_it: 728 /* set it as dirty segment in free segmap */ 729 f2fs_bug_on(test_bit(segno, free_i->free_segmap)); 730 __set_inuse(sbi, segno); 731 *newseg = segno; 732 write_unlock(&free_i->segmap_lock); 733 } 734 735 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 736 { 737 struct curseg_info *curseg = CURSEG_I(sbi, type); 738 struct summary_footer *sum_footer; 739 740 curseg->segno = curseg->next_segno; 741 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 742 curseg->next_blkoff = 0; 743 curseg->next_segno = NULL_SEGNO; 744 745 sum_footer = &(curseg->sum_blk->footer); 746 memset(sum_footer, 0, sizeof(struct summary_footer)); 747 if (IS_DATASEG(type)) 748 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 749 if (IS_NODESEG(type)) 750 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 751 __set_sit_entry_type(sbi, type, curseg->segno, modified); 752 } 753 754 /* 755 * Allocate a current working segment. 756 * This function always allocates a free segment in LFS manner. 757 */ 758 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 759 { 760 struct curseg_info *curseg = CURSEG_I(sbi, type); 761 unsigned int segno = curseg->segno; 762 int dir = ALLOC_LEFT; 763 764 write_sum_page(sbi, curseg->sum_blk, 765 GET_SUM_BLOCK(sbi, segno)); 766 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 767 dir = ALLOC_RIGHT; 768 769 if (test_opt(sbi, NOHEAP)) 770 dir = ALLOC_RIGHT; 771 772 get_new_segment(sbi, &segno, new_sec, dir); 773 curseg->next_segno = segno; 774 reset_curseg(sbi, type, 1); 775 curseg->alloc_type = LFS; 776 } 777 778 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 779 struct curseg_info *seg, block_t start) 780 { 781 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 782 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 783 unsigned long target_map[entries]; 784 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 785 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 786 int i, pos; 787 788 for (i = 0; i < entries; i++) 789 target_map[i] = ckpt_map[i] | cur_map[i]; 790 791 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 792 793 seg->next_blkoff = pos; 794 } 795 796 /* 797 * If a segment is written by LFS manner, next block offset is just obtained 798 * by increasing the current block offset. However, if a segment is written by 799 * SSR manner, next block offset obtained by calling __next_free_blkoff 800 */ 801 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 802 struct curseg_info *seg) 803 { 804 if (seg->alloc_type == SSR) 805 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 806 else 807 seg->next_blkoff++; 808 } 809 810 /* 811 * This function always allocates a used segment (from dirty seglist) by SSR 812 * manner, so it should recover the existing segment information of valid blocks 813 */ 814 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 815 { 816 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 817 struct curseg_info *curseg = CURSEG_I(sbi, type); 818 unsigned int new_segno = curseg->next_segno; 819 struct f2fs_summary_block *sum_node; 820 struct page *sum_page; 821 822 write_sum_page(sbi, curseg->sum_blk, 823 GET_SUM_BLOCK(sbi, curseg->segno)); 824 __set_test_and_inuse(sbi, new_segno); 825 826 mutex_lock(&dirty_i->seglist_lock); 827 __remove_dirty_segment(sbi, new_segno, PRE); 828 __remove_dirty_segment(sbi, new_segno, DIRTY); 829 mutex_unlock(&dirty_i->seglist_lock); 830 831 reset_curseg(sbi, type, 1); 832 curseg->alloc_type = SSR; 833 __next_free_blkoff(sbi, curseg, 0); 834 835 if (reuse) { 836 sum_page = get_sum_page(sbi, new_segno); 837 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 838 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 839 f2fs_put_page(sum_page, 1); 840 } 841 } 842 843 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 844 { 845 struct curseg_info *curseg = CURSEG_I(sbi, type); 846 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 847 848 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 849 return v_ops->get_victim(sbi, 850 &(curseg)->next_segno, BG_GC, type, SSR); 851 852 /* For data segments, let's do SSR more intensively */ 853 for (; type >= CURSEG_HOT_DATA; type--) 854 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 855 BG_GC, type, SSR)) 856 return 1; 857 return 0; 858 } 859 860 /* 861 * flush out current segment and replace it with new segment 862 * This function should be returned with success, otherwise BUG 863 */ 864 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 865 int type, bool force) 866 { 867 struct curseg_info *curseg = CURSEG_I(sbi, type); 868 869 if (force) 870 new_curseg(sbi, type, true); 871 else if (type == CURSEG_WARM_NODE) 872 new_curseg(sbi, type, false); 873 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 874 new_curseg(sbi, type, false); 875 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 876 change_curseg(sbi, type, true); 877 else 878 new_curseg(sbi, type, false); 879 880 stat_inc_seg_type(sbi, curseg); 881 } 882 883 void allocate_new_segments(struct f2fs_sb_info *sbi) 884 { 885 struct curseg_info *curseg; 886 unsigned int old_curseg; 887 int i; 888 889 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 890 curseg = CURSEG_I(sbi, i); 891 old_curseg = curseg->segno; 892 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 893 locate_dirty_segment(sbi, old_curseg); 894 } 895 } 896 897 static const struct segment_allocation default_salloc_ops = { 898 .allocate_segment = allocate_segment_by_default, 899 }; 900 901 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 902 { 903 struct curseg_info *curseg = CURSEG_I(sbi, type); 904 if (curseg->next_blkoff < sbi->blocks_per_seg) 905 return true; 906 return false; 907 } 908 909 static int __get_segment_type_2(struct page *page, enum page_type p_type) 910 { 911 if (p_type == DATA) 912 return CURSEG_HOT_DATA; 913 else 914 return CURSEG_HOT_NODE; 915 } 916 917 static int __get_segment_type_4(struct page *page, enum page_type p_type) 918 { 919 if (p_type == DATA) { 920 struct inode *inode = page->mapping->host; 921 922 if (S_ISDIR(inode->i_mode)) 923 return CURSEG_HOT_DATA; 924 else 925 return CURSEG_COLD_DATA; 926 } else { 927 if (IS_DNODE(page) && !is_cold_node(page)) 928 return CURSEG_HOT_NODE; 929 else 930 return CURSEG_COLD_NODE; 931 } 932 } 933 934 static int __get_segment_type_6(struct page *page, enum page_type p_type) 935 { 936 if (p_type == DATA) { 937 struct inode *inode = page->mapping->host; 938 939 if (S_ISDIR(inode->i_mode)) 940 return CURSEG_HOT_DATA; 941 else if (is_cold_data(page) || file_is_cold(inode)) 942 return CURSEG_COLD_DATA; 943 else 944 return CURSEG_WARM_DATA; 945 } else { 946 if (IS_DNODE(page)) 947 return is_cold_node(page) ? CURSEG_WARM_NODE : 948 CURSEG_HOT_NODE; 949 else 950 return CURSEG_COLD_NODE; 951 } 952 } 953 954 static int __get_segment_type(struct page *page, enum page_type p_type) 955 { 956 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 957 switch (sbi->active_logs) { 958 case 2: 959 return __get_segment_type_2(page, p_type); 960 case 4: 961 return __get_segment_type_4(page, p_type); 962 } 963 /* NR_CURSEG_TYPE(6) logs by default */ 964 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE); 965 return __get_segment_type_6(page, p_type); 966 } 967 968 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 969 block_t old_blkaddr, block_t *new_blkaddr, 970 struct f2fs_summary *sum, int type) 971 { 972 struct sit_info *sit_i = SIT_I(sbi); 973 struct curseg_info *curseg; 974 975 curseg = CURSEG_I(sbi, type); 976 977 mutex_lock(&curseg->curseg_mutex); 978 979 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 980 981 /* 982 * __add_sum_entry should be resided under the curseg_mutex 983 * because, this function updates a summary entry in the 984 * current summary block. 985 */ 986 __add_sum_entry(sbi, type, sum); 987 988 mutex_lock(&sit_i->sentry_lock); 989 __refresh_next_blkoff(sbi, curseg); 990 991 stat_inc_block_count(sbi, curseg); 992 993 if (!__has_curseg_space(sbi, type)) 994 sit_i->s_ops->allocate_segment(sbi, type, false); 995 /* 996 * SIT information should be updated before segment allocation, 997 * since SSR needs latest valid block information. 998 */ 999 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1000 1001 mutex_unlock(&sit_i->sentry_lock); 1002 1003 if (page && IS_NODESEG(type)) 1004 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1005 1006 mutex_unlock(&curseg->curseg_mutex); 1007 } 1008 1009 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 1010 block_t old_blkaddr, block_t *new_blkaddr, 1011 struct f2fs_summary *sum, struct f2fs_io_info *fio) 1012 { 1013 int type = __get_segment_type(page, fio->type); 1014 1015 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type); 1016 1017 /* writeout dirty page into bdev */ 1018 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); 1019 } 1020 1021 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1022 { 1023 struct f2fs_io_info fio = { 1024 .type = META, 1025 .rw = WRITE_SYNC | REQ_META | REQ_PRIO 1026 }; 1027 1028 set_page_writeback(page); 1029 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 1030 } 1031 1032 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 1033 struct f2fs_io_info *fio, 1034 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 1035 { 1036 struct f2fs_summary sum; 1037 set_summary(&sum, nid, 0, 0); 1038 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio); 1039 } 1040 1041 void write_data_page(struct page *page, struct dnode_of_data *dn, 1042 block_t *new_blkaddr, struct f2fs_io_info *fio) 1043 { 1044 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 1045 struct f2fs_summary sum; 1046 struct node_info ni; 1047 1048 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR); 1049 get_node_info(sbi, dn->nid, &ni); 1050 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1051 1052 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); 1053 } 1054 1055 void rewrite_data_page(struct page *page, block_t old_blkaddr, 1056 struct f2fs_io_info *fio) 1057 { 1058 struct inode *inode = page->mapping->host; 1059 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1060 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio); 1061 } 1062 1063 void recover_data_page(struct f2fs_sb_info *sbi, 1064 struct page *page, struct f2fs_summary *sum, 1065 block_t old_blkaddr, block_t new_blkaddr) 1066 { 1067 struct sit_info *sit_i = SIT_I(sbi); 1068 struct curseg_info *curseg; 1069 unsigned int segno, old_cursegno; 1070 struct seg_entry *se; 1071 int type; 1072 1073 segno = GET_SEGNO(sbi, new_blkaddr); 1074 se = get_seg_entry(sbi, segno); 1075 type = se->type; 1076 1077 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1078 if (old_blkaddr == NULL_ADDR) 1079 type = CURSEG_COLD_DATA; 1080 else 1081 type = CURSEG_WARM_DATA; 1082 } 1083 curseg = CURSEG_I(sbi, type); 1084 1085 mutex_lock(&curseg->curseg_mutex); 1086 mutex_lock(&sit_i->sentry_lock); 1087 1088 old_cursegno = curseg->segno; 1089 1090 /* change the current segment */ 1091 if (segno != curseg->segno) { 1092 curseg->next_segno = segno; 1093 change_curseg(sbi, type, true); 1094 } 1095 1096 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1097 __add_sum_entry(sbi, type, sum); 1098 1099 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1100 locate_dirty_segment(sbi, old_cursegno); 1101 1102 mutex_unlock(&sit_i->sentry_lock); 1103 mutex_unlock(&curseg->curseg_mutex); 1104 } 1105 1106 void rewrite_node_page(struct f2fs_sb_info *sbi, 1107 struct page *page, struct f2fs_summary *sum, 1108 block_t old_blkaddr, block_t new_blkaddr) 1109 { 1110 struct sit_info *sit_i = SIT_I(sbi); 1111 int type = CURSEG_WARM_NODE; 1112 struct curseg_info *curseg; 1113 unsigned int segno, old_cursegno; 1114 block_t next_blkaddr = next_blkaddr_of_node(page); 1115 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); 1116 struct f2fs_io_info fio = { 1117 .type = NODE, 1118 .rw = WRITE_SYNC, 1119 }; 1120 1121 curseg = CURSEG_I(sbi, type); 1122 1123 mutex_lock(&curseg->curseg_mutex); 1124 mutex_lock(&sit_i->sentry_lock); 1125 1126 segno = GET_SEGNO(sbi, new_blkaddr); 1127 old_cursegno = curseg->segno; 1128 1129 /* change the current segment */ 1130 if (segno != curseg->segno) { 1131 curseg->next_segno = segno; 1132 change_curseg(sbi, type, true); 1133 } 1134 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1135 __add_sum_entry(sbi, type, sum); 1136 1137 /* change the current log to the next block addr in advance */ 1138 if (next_segno != segno) { 1139 curseg->next_segno = next_segno; 1140 change_curseg(sbi, type, true); 1141 } 1142 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr); 1143 1144 /* rewrite node page */ 1145 set_page_writeback(page); 1146 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio); 1147 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1148 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1149 locate_dirty_segment(sbi, old_cursegno); 1150 1151 mutex_unlock(&sit_i->sentry_lock); 1152 mutex_unlock(&curseg->curseg_mutex); 1153 } 1154 1155 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1156 struct page *page, enum page_type type) 1157 { 1158 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1159 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1160 struct bio_vec *bvec; 1161 int i; 1162 1163 down_read(&io->io_rwsem); 1164 if (!io->bio) 1165 goto out; 1166 1167 bio_for_each_segment_all(bvec, io->bio, i) { 1168 if (page == bvec->bv_page) { 1169 up_read(&io->io_rwsem); 1170 return true; 1171 } 1172 } 1173 1174 out: 1175 up_read(&io->io_rwsem); 1176 return false; 1177 } 1178 1179 void f2fs_wait_on_page_writeback(struct page *page, 1180 enum page_type type) 1181 { 1182 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1183 if (PageWriteback(page)) { 1184 if (is_merged_page(sbi, page, type)) 1185 f2fs_submit_merged_bio(sbi, type, WRITE); 1186 wait_on_page_writeback(page); 1187 } 1188 } 1189 1190 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1191 { 1192 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1193 struct curseg_info *seg_i; 1194 unsigned char *kaddr; 1195 struct page *page; 1196 block_t start; 1197 int i, j, offset; 1198 1199 start = start_sum_block(sbi); 1200 1201 page = get_meta_page(sbi, start++); 1202 kaddr = (unsigned char *)page_address(page); 1203 1204 /* Step 1: restore nat cache */ 1205 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1206 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1207 1208 /* Step 2: restore sit cache */ 1209 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1210 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1211 SUM_JOURNAL_SIZE); 1212 offset = 2 * SUM_JOURNAL_SIZE; 1213 1214 /* Step 3: restore summary entries */ 1215 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1216 unsigned short blk_off; 1217 unsigned int segno; 1218 1219 seg_i = CURSEG_I(sbi, i); 1220 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1221 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1222 seg_i->next_segno = segno; 1223 reset_curseg(sbi, i, 0); 1224 seg_i->alloc_type = ckpt->alloc_type[i]; 1225 seg_i->next_blkoff = blk_off; 1226 1227 if (seg_i->alloc_type == SSR) 1228 blk_off = sbi->blocks_per_seg; 1229 1230 for (j = 0; j < blk_off; j++) { 1231 struct f2fs_summary *s; 1232 s = (struct f2fs_summary *)(kaddr + offset); 1233 seg_i->sum_blk->entries[j] = *s; 1234 offset += SUMMARY_SIZE; 1235 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1236 SUM_FOOTER_SIZE) 1237 continue; 1238 1239 f2fs_put_page(page, 1); 1240 page = NULL; 1241 1242 page = get_meta_page(sbi, start++); 1243 kaddr = (unsigned char *)page_address(page); 1244 offset = 0; 1245 } 1246 } 1247 f2fs_put_page(page, 1); 1248 return 0; 1249 } 1250 1251 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1252 { 1253 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1254 struct f2fs_summary_block *sum; 1255 struct curseg_info *curseg; 1256 struct page *new; 1257 unsigned short blk_off; 1258 unsigned int segno = 0; 1259 block_t blk_addr = 0; 1260 1261 /* get segment number and block addr */ 1262 if (IS_DATASEG(type)) { 1263 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1264 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1265 CURSEG_HOT_DATA]); 1266 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1267 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1268 else 1269 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1270 } else { 1271 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1272 CURSEG_HOT_NODE]); 1273 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1274 CURSEG_HOT_NODE]); 1275 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1276 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1277 type - CURSEG_HOT_NODE); 1278 else 1279 blk_addr = GET_SUM_BLOCK(sbi, segno); 1280 } 1281 1282 new = get_meta_page(sbi, blk_addr); 1283 sum = (struct f2fs_summary_block *)page_address(new); 1284 1285 if (IS_NODESEG(type)) { 1286 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1287 struct f2fs_summary *ns = &sum->entries[0]; 1288 int i; 1289 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1290 ns->version = 0; 1291 ns->ofs_in_node = 0; 1292 } 1293 } else { 1294 int err; 1295 1296 err = restore_node_summary(sbi, segno, sum); 1297 if (err) { 1298 f2fs_put_page(new, 1); 1299 return err; 1300 } 1301 } 1302 } 1303 1304 /* set uncompleted segment to curseg */ 1305 curseg = CURSEG_I(sbi, type); 1306 mutex_lock(&curseg->curseg_mutex); 1307 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1308 curseg->next_segno = segno; 1309 reset_curseg(sbi, type, 0); 1310 curseg->alloc_type = ckpt->alloc_type[type]; 1311 curseg->next_blkoff = blk_off; 1312 mutex_unlock(&curseg->curseg_mutex); 1313 f2fs_put_page(new, 1); 1314 return 0; 1315 } 1316 1317 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1318 { 1319 int type = CURSEG_HOT_DATA; 1320 int err; 1321 1322 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1323 /* restore for compacted data summary */ 1324 if (read_compacted_summaries(sbi)) 1325 return -EINVAL; 1326 type = CURSEG_HOT_NODE; 1327 } 1328 1329 for (; type <= CURSEG_COLD_NODE; type++) { 1330 err = read_normal_summaries(sbi, type); 1331 if (err) 1332 return err; 1333 } 1334 1335 return 0; 1336 } 1337 1338 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1339 { 1340 struct page *page; 1341 unsigned char *kaddr; 1342 struct f2fs_summary *summary; 1343 struct curseg_info *seg_i; 1344 int written_size = 0; 1345 int i, j; 1346 1347 page = grab_meta_page(sbi, blkaddr++); 1348 kaddr = (unsigned char *)page_address(page); 1349 1350 /* Step 1: write nat cache */ 1351 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1352 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1353 written_size += SUM_JOURNAL_SIZE; 1354 1355 /* Step 2: write sit cache */ 1356 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1357 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1358 SUM_JOURNAL_SIZE); 1359 written_size += SUM_JOURNAL_SIZE; 1360 1361 /* Step 3: write summary entries */ 1362 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1363 unsigned short blkoff; 1364 seg_i = CURSEG_I(sbi, i); 1365 if (sbi->ckpt->alloc_type[i] == SSR) 1366 blkoff = sbi->blocks_per_seg; 1367 else 1368 blkoff = curseg_blkoff(sbi, i); 1369 1370 for (j = 0; j < blkoff; j++) { 1371 if (!page) { 1372 page = grab_meta_page(sbi, blkaddr++); 1373 kaddr = (unsigned char *)page_address(page); 1374 written_size = 0; 1375 } 1376 summary = (struct f2fs_summary *)(kaddr + written_size); 1377 *summary = seg_i->sum_blk->entries[j]; 1378 written_size += SUMMARY_SIZE; 1379 1380 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1381 SUM_FOOTER_SIZE) 1382 continue; 1383 1384 set_page_dirty(page); 1385 f2fs_put_page(page, 1); 1386 page = NULL; 1387 } 1388 } 1389 if (page) { 1390 set_page_dirty(page); 1391 f2fs_put_page(page, 1); 1392 } 1393 } 1394 1395 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1396 block_t blkaddr, int type) 1397 { 1398 int i, end; 1399 if (IS_DATASEG(type)) 1400 end = type + NR_CURSEG_DATA_TYPE; 1401 else 1402 end = type + NR_CURSEG_NODE_TYPE; 1403 1404 for (i = type; i < end; i++) { 1405 struct curseg_info *sum = CURSEG_I(sbi, i); 1406 mutex_lock(&sum->curseg_mutex); 1407 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1408 mutex_unlock(&sum->curseg_mutex); 1409 } 1410 } 1411 1412 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1413 { 1414 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1415 write_compacted_summaries(sbi, start_blk); 1416 else 1417 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1418 } 1419 1420 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1421 { 1422 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1423 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1424 } 1425 1426 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1427 unsigned int val, int alloc) 1428 { 1429 int i; 1430 1431 if (type == NAT_JOURNAL) { 1432 for (i = 0; i < nats_in_cursum(sum); i++) { 1433 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1434 return i; 1435 } 1436 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1437 return update_nats_in_cursum(sum, 1); 1438 } else if (type == SIT_JOURNAL) { 1439 for (i = 0; i < sits_in_cursum(sum); i++) 1440 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1441 return i; 1442 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1443 return update_sits_in_cursum(sum, 1); 1444 } 1445 return -1; 1446 } 1447 1448 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1449 unsigned int segno) 1450 { 1451 struct sit_info *sit_i = SIT_I(sbi); 1452 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); 1453 block_t blk_addr = sit_i->sit_base_addr + offset; 1454 1455 check_seg_range(sbi, segno); 1456 1457 /* calculate sit block address */ 1458 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 1459 blk_addr += sit_i->sit_blocks; 1460 1461 return get_meta_page(sbi, blk_addr); 1462 } 1463 1464 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1465 unsigned int start) 1466 { 1467 struct sit_info *sit_i = SIT_I(sbi); 1468 struct page *src_page, *dst_page; 1469 pgoff_t src_off, dst_off; 1470 void *src_addr, *dst_addr; 1471 1472 src_off = current_sit_addr(sbi, start); 1473 dst_off = next_sit_addr(sbi, src_off); 1474 1475 /* get current sit block page without lock */ 1476 src_page = get_meta_page(sbi, src_off); 1477 dst_page = grab_meta_page(sbi, dst_off); 1478 f2fs_bug_on(PageDirty(src_page)); 1479 1480 src_addr = page_address(src_page); 1481 dst_addr = page_address(dst_page); 1482 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1483 1484 set_page_dirty(dst_page); 1485 f2fs_put_page(src_page, 1); 1486 1487 set_to_next_sit(sit_i, start); 1488 1489 return dst_page; 1490 } 1491 1492 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) 1493 { 1494 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1495 struct f2fs_summary_block *sum = curseg->sum_blk; 1496 int i; 1497 1498 /* 1499 * If the journal area in the current summary is full of sit entries, 1500 * all the sit entries will be flushed. Otherwise the sit entries 1501 * are not able to replace with newly hot sit entries. 1502 */ 1503 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { 1504 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1505 unsigned int segno; 1506 segno = le32_to_cpu(segno_in_journal(sum, i)); 1507 __mark_sit_entry_dirty(sbi, segno); 1508 } 1509 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1510 return true; 1511 } 1512 return false; 1513 } 1514 1515 /* 1516 * CP calls this function, which flushes SIT entries including sit_journal, 1517 * and moves prefree segs to free segs. 1518 */ 1519 void flush_sit_entries(struct f2fs_sb_info *sbi) 1520 { 1521 struct sit_info *sit_i = SIT_I(sbi); 1522 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1523 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1524 struct f2fs_summary_block *sum = curseg->sum_blk; 1525 unsigned long nsegs = TOTAL_SEGS(sbi); 1526 struct page *page = NULL; 1527 struct f2fs_sit_block *raw_sit = NULL; 1528 unsigned int start = 0, end = 0; 1529 unsigned int segno; 1530 bool flushed; 1531 1532 mutex_lock(&curseg->curseg_mutex); 1533 mutex_lock(&sit_i->sentry_lock); 1534 1535 /* 1536 * "flushed" indicates whether sit entries in journal are flushed 1537 * to the SIT area or not. 1538 */ 1539 flushed = flush_sits_in_journal(sbi); 1540 1541 for_each_set_bit(segno, bitmap, nsegs) { 1542 struct seg_entry *se = get_seg_entry(sbi, segno); 1543 int sit_offset, offset; 1544 1545 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1546 1547 /* add discard candidates */ 1548 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) 1549 add_discard_addrs(sbi, segno, se); 1550 1551 if (flushed) 1552 goto to_sit_page; 1553 1554 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); 1555 if (offset >= 0) { 1556 segno_in_journal(sum, offset) = cpu_to_le32(segno); 1557 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); 1558 goto flush_done; 1559 } 1560 to_sit_page: 1561 if (!page || (start > segno) || (segno > end)) { 1562 if (page) { 1563 f2fs_put_page(page, 1); 1564 page = NULL; 1565 } 1566 1567 start = START_SEGNO(sit_i, segno); 1568 end = start + SIT_ENTRY_PER_BLOCK - 1; 1569 1570 /* read sit block that will be updated */ 1571 page = get_next_sit_page(sbi, start); 1572 raw_sit = page_address(page); 1573 } 1574 1575 /* udpate entry in SIT block */ 1576 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); 1577 flush_done: 1578 __clear_bit(segno, bitmap); 1579 sit_i->dirty_sentries--; 1580 } 1581 mutex_unlock(&sit_i->sentry_lock); 1582 mutex_unlock(&curseg->curseg_mutex); 1583 1584 /* writeout last modified SIT block */ 1585 f2fs_put_page(page, 1); 1586 1587 set_prefree_as_free_segments(sbi); 1588 } 1589 1590 static int build_sit_info(struct f2fs_sb_info *sbi) 1591 { 1592 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1593 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1594 struct sit_info *sit_i; 1595 unsigned int sit_segs, start; 1596 char *src_bitmap, *dst_bitmap; 1597 unsigned int bitmap_size; 1598 1599 /* allocate memory for SIT information */ 1600 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1601 if (!sit_i) 1602 return -ENOMEM; 1603 1604 SM_I(sbi)->sit_info = sit_i; 1605 1606 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); 1607 if (!sit_i->sentries) 1608 return -ENOMEM; 1609 1610 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1611 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1612 if (!sit_i->dirty_sentries_bitmap) 1613 return -ENOMEM; 1614 1615 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1616 sit_i->sentries[start].cur_valid_map 1617 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1618 sit_i->sentries[start].ckpt_valid_map 1619 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1620 if (!sit_i->sentries[start].cur_valid_map 1621 || !sit_i->sentries[start].ckpt_valid_map) 1622 return -ENOMEM; 1623 } 1624 1625 if (sbi->segs_per_sec > 1) { 1626 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) * 1627 sizeof(struct sec_entry)); 1628 if (!sit_i->sec_entries) 1629 return -ENOMEM; 1630 } 1631 1632 /* get information related with SIT */ 1633 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1634 1635 /* setup SIT bitmap from ckeckpoint pack */ 1636 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1637 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1638 1639 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1640 if (!dst_bitmap) 1641 return -ENOMEM; 1642 1643 /* init SIT information */ 1644 sit_i->s_ops = &default_salloc_ops; 1645 1646 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1647 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1648 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1649 sit_i->sit_bitmap = dst_bitmap; 1650 sit_i->bitmap_size = bitmap_size; 1651 sit_i->dirty_sentries = 0; 1652 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1653 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1654 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1655 mutex_init(&sit_i->sentry_lock); 1656 return 0; 1657 } 1658 1659 static int build_free_segmap(struct f2fs_sb_info *sbi) 1660 { 1661 struct f2fs_sm_info *sm_info = SM_I(sbi); 1662 struct free_segmap_info *free_i; 1663 unsigned int bitmap_size, sec_bitmap_size; 1664 1665 /* allocate memory for free segmap information */ 1666 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1667 if (!free_i) 1668 return -ENOMEM; 1669 1670 SM_I(sbi)->free_info = free_i; 1671 1672 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1673 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1674 if (!free_i->free_segmap) 1675 return -ENOMEM; 1676 1677 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); 1678 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1679 if (!free_i->free_secmap) 1680 return -ENOMEM; 1681 1682 /* set all segments as dirty temporarily */ 1683 memset(free_i->free_segmap, 0xff, bitmap_size); 1684 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1685 1686 /* init free segmap information */ 1687 free_i->start_segno = 1688 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); 1689 free_i->free_segments = 0; 1690 free_i->free_sections = 0; 1691 rwlock_init(&free_i->segmap_lock); 1692 return 0; 1693 } 1694 1695 static int build_curseg(struct f2fs_sb_info *sbi) 1696 { 1697 struct curseg_info *array; 1698 int i; 1699 1700 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1701 if (!array) 1702 return -ENOMEM; 1703 1704 SM_I(sbi)->curseg_array = array; 1705 1706 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1707 mutex_init(&array[i].curseg_mutex); 1708 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1709 if (!array[i].sum_blk) 1710 return -ENOMEM; 1711 array[i].segno = NULL_SEGNO; 1712 array[i].next_blkoff = 0; 1713 } 1714 return restore_curseg_summaries(sbi); 1715 } 1716 1717 static void build_sit_entries(struct f2fs_sb_info *sbi) 1718 { 1719 struct sit_info *sit_i = SIT_I(sbi); 1720 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1721 struct f2fs_summary_block *sum = curseg->sum_blk; 1722 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1723 unsigned int i, start, end; 1724 unsigned int readed, start_blk = 0; 1725 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 1726 1727 do { 1728 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1729 1730 start = start_blk * sit_i->sents_per_block; 1731 end = (start_blk + readed) * sit_i->sents_per_block; 1732 1733 for (; start < end && start < TOTAL_SEGS(sbi); start++) { 1734 struct seg_entry *se = &sit_i->sentries[start]; 1735 struct f2fs_sit_block *sit_blk; 1736 struct f2fs_sit_entry sit; 1737 struct page *page; 1738 1739 mutex_lock(&curseg->curseg_mutex); 1740 for (i = 0; i < sits_in_cursum(sum); i++) { 1741 if (le32_to_cpu(segno_in_journal(sum, i)) 1742 == start) { 1743 sit = sit_in_journal(sum, i); 1744 mutex_unlock(&curseg->curseg_mutex); 1745 goto got_it; 1746 } 1747 } 1748 mutex_unlock(&curseg->curseg_mutex); 1749 1750 page = get_current_sit_page(sbi, start); 1751 sit_blk = (struct f2fs_sit_block *)page_address(page); 1752 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1753 f2fs_put_page(page, 1); 1754 got_it: 1755 check_block_count(sbi, start, &sit); 1756 seg_info_from_raw_sit(se, &sit); 1757 if (sbi->segs_per_sec > 1) { 1758 struct sec_entry *e = get_sec_entry(sbi, start); 1759 e->valid_blocks += se->valid_blocks; 1760 } 1761 } 1762 start_blk += readed; 1763 } while (start_blk < sit_blk_cnt); 1764 } 1765 1766 static void init_free_segmap(struct f2fs_sb_info *sbi) 1767 { 1768 unsigned int start; 1769 int type; 1770 1771 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1772 struct seg_entry *sentry = get_seg_entry(sbi, start); 1773 if (!sentry->valid_blocks) 1774 __set_free(sbi, start); 1775 } 1776 1777 /* set use the current segments */ 1778 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1779 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1780 __set_test_and_inuse(sbi, curseg_t->segno); 1781 } 1782 } 1783 1784 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1785 { 1786 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1787 struct free_segmap_info *free_i = FREE_I(sbi); 1788 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi); 1789 unsigned short valid_blocks; 1790 1791 while (1) { 1792 /* find dirty segment based on free segmap */ 1793 segno = find_next_inuse(free_i, total_segs, offset); 1794 if (segno >= total_segs) 1795 break; 1796 offset = segno + 1; 1797 valid_blocks = get_valid_blocks(sbi, segno, 0); 1798 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) 1799 continue; 1800 mutex_lock(&dirty_i->seglist_lock); 1801 __locate_dirty_segment(sbi, segno, DIRTY); 1802 mutex_unlock(&dirty_i->seglist_lock); 1803 } 1804 } 1805 1806 static int init_victim_secmap(struct f2fs_sb_info *sbi) 1807 { 1808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1809 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); 1810 1811 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 1812 if (!dirty_i->victim_secmap) 1813 return -ENOMEM; 1814 return 0; 1815 } 1816 1817 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 1818 { 1819 struct dirty_seglist_info *dirty_i; 1820 unsigned int bitmap_size, i; 1821 1822 /* allocate memory for dirty segments list information */ 1823 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 1824 if (!dirty_i) 1825 return -ENOMEM; 1826 1827 SM_I(sbi)->dirty_info = dirty_i; 1828 mutex_init(&dirty_i->seglist_lock); 1829 1830 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1831 1832 for (i = 0; i < NR_DIRTY_TYPE; i++) { 1833 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 1834 if (!dirty_i->dirty_segmap[i]) 1835 return -ENOMEM; 1836 } 1837 1838 init_dirty_segmap(sbi); 1839 return init_victim_secmap(sbi); 1840 } 1841 1842 /* 1843 * Update min, max modified time for cost-benefit GC algorithm 1844 */ 1845 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 1846 { 1847 struct sit_info *sit_i = SIT_I(sbi); 1848 unsigned int segno; 1849 1850 mutex_lock(&sit_i->sentry_lock); 1851 1852 sit_i->min_mtime = LLONG_MAX; 1853 1854 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { 1855 unsigned int i; 1856 unsigned long long mtime = 0; 1857 1858 for (i = 0; i < sbi->segs_per_sec; i++) 1859 mtime += get_seg_entry(sbi, segno + i)->mtime; 1860 1861 mtime = div_u64(mtime, sbi->segs_per_sec); 1862 1863 if (sit_i->min_mtime > mtime) 1864 sit_i->min_mtime = mtime; 1865 } 1866 sit_i->max_mtime = get_mtime(sbi); 1867 mutex_unlock(&sit_i->sentry_lock); 1868 } 1869 1870 int build_segment_manager(struct f2fs_sb_info *sbi) 1871 { 1872 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1873 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1874 struct f2fs_sm_info *sm_info; 1875 int err; 1876 1877 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 1878 if (!sm_info) 1879 return -ENOMEM; 1880 1881 /* init sm info */ 1882 sbi->sm_info = sm_info; 1883 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1884 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1885 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 1886 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1887 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1888 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 1889 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1890 sm_info->rec_prefree_segments = sm_info->main_segments * 1891 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 1892 sm_info->ipu_policy = F2FS_IPU_DISABLE; 1893 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 1894 1895 INIT_LIST_HEAD(&sm_info->discard_list); 1896 sm_info->nr_discards = 0; 1897 sm_info->max_discards = 0; 1898 1899 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 1900 err = create_flush_cmd_control(sbi); 1901 if (err) 1902 return err; 1903 } 1904 1905 err = build_sit_info(sbi); 1906 if (err) 1907 return err; 1908 err = build_free_segmap(sbi); 1909 if (err) 1910 return err; 1911 err = build_curseg(sbi); 1912 if (err) 1913 return err; 1914 1915 /* reinit free segmap based on SIT */ 1916 build_sit_entries(sbi); 1917 1918 init_free_segmap(sbi); 1919 err = build_dirty_segmap(sbi); 1920 if (err) 1921 return err; 1922 1923 init_min_max_mtime(sbi); 1924 return 0; 1925 } 1926 1927 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 1928 enum dirty_type dirty_type) 1929 { 1930 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1931 1932 mutex_lock(&dirty_i->seglist_lock); 1933 kfree(dirty_i->dirty_segmap[dirty_type]); 1934 dirty_i->nr_dirty[dirty_type] = 0; 1935 mutex_unlock(&dirty_i->seglist_lock); 1936 } 1937 1938 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 1939 { 1940 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1941 kfree(dirty_i->victim_secmap); 1942 } 1943 1944 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 1945 { 1946 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1947 int i; 1948 1949 if (!dirty_i) 1950 return; 1951 1952 /* discard pre-free/dirty segments list */ 1953 for (i = 0; i < NR_DIRTY_TYPE; i++) 1954 discard_dirty_segmap(sbi, i); 1955 1956 destroy_victim_secmap(sbi); 1957 SM_I(sbi)->dirty_info = NULL; 1958 kfree(dirty_i); 1959 } 1960 1961 static void destroy_curseg(struct f2fs_sb_info *sbi) 1962 { 1963 struct curseg_info *array = SM_I(sbi)->curseg_array; 1964 int i; 1965 1966 if (!array) 1967 return; 1968 SM_I(sbi)->curseg_array = NULL; 1969 for (i = 0; i < NR_CURSEG_TYPE; i++) 1970 kfree(array[i].sum_blk); 1971 kfree(array); 1972 } 1973 1974 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 1975 { 1976 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 1977 if (!free_i) 1978 return; 1979 SM_I(sbi)->free_info = NULL; 1980 kfree(free_i->free_segmap); 1981 kfree(free_i->free_secmap); 1982 kfree(free_i); 1983 } 1984 1985 static void destroy_sit_info(struct f2fs_sb_info *sbi) 1986 { 1987 struct sit_info *sit_i = SIT_I(sbi); 1988 unsigned int start; 1989 1990 if (!sit_i) 1991 return; 1992 1993 if (sit_i->sentries) { 1994 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1995 kfree(sit_i->sentries[start].cur_valid_map); 1996 kfree(sit_i->sentries[start].ckpt_valid_map); 1997 } 1998 } 1999 vfree(sit_i->sentries); 2000 vfree(sit_i->sec_entries); 2001 kfree(sit_i->dirty_sentries_bitmap); 2002 2003 SM_I(sbi)->sit_info = NULL; 2004 kfree(sit_i->sit_bitmap); 2005 kfree(sit_i); 2006 } 2007 2008 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2009 { 2010 struct f2fs_sm_info *sm_info = SM_I(sbi); 2011 2012 if (!sm_info) 2013 return; 2014 destroy_flush_cmd_control(sbi); 2015 destroy_dirty_segmap(sbi); 2016 destroy_curseg(sbi); 2017 destroy_free_segmap(sbi); 2018 destroy_sit_info(sbi); 2019 sbi->sm_info = NULL; 2020 kfree(sm_info); 2021 } 2022 2023 int __init create_segment_manager_caches(void) 2024 { 2025 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2026 sizeof(struct discard_entry)); 2027 if (!discard_entry_slab) 2028 return -ENOMEM; 2029 return 0; 2030 } 2031 2032 void destroy_segment_manager_caches(void) 2033 { 2034 kmem_cache_destroy(discard_entry_slab); 2035 } 2036