1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, HZ/50); 249 cond_resched(); 250 goto retry; 251 } 252 err = -EAGAIN; 253 goto next; 254 } 255 256 err = f2fs_get_node_info(sbi, dn.nid, &ni); 257 if (err) { 258 f2fs_put_dnode(&dn); 259 return err; 260 } 261 262 if (cur->old_addr == NEW_ADDR) { 263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 264 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 265 } else 266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 267 cur->old_addr, ni.version, true, true); 268 f2fs_put_dnode(&dn); 269 } 270 next: 271 /* we don't need to invalidate this in the sccessful status */ 272 if (drop || recover) { 273 ClearPageUptodate(page); 274 clear_cold_data(page); 275 } 276 f2fs_clear_page_private(page); 277 f2fs_put_page(page, 1); 278 279 list_del(&cur->list); 280 kmem_cache_free(inmem_entry_slab, cur); 281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 282 } 283 return err; 284 } 285 286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 287 { 288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 289 struct inode *inode; 290 struct f2fs_inode_info *fi; 291 unsigned int count = sbi->atomic_files; 292 unsigned int looped = 0; 293 next: 294 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 295 if (list_empty(head)) { 296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 297 return; 298 } 299 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 300 inode = igrab(&fi->vfs_inode); 301 if (inode) 302 list_move_tail(&fi->inmem_ilist, head); 303 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 304 305 if (inode) { 306 if (gc_failure) { 307 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 308 goto skip; 309 } 310 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 311 f2fs_drop_inmem_pages(inode); 312 skip: 313 iput(inode); 314 } 315 congestion_wait(BLK_RW_ASYNC, HZ/50); 316 cond_resched(); 317 if (gc_failure) { 318 if (++looped >= count) 319 return; 320 } 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 while (!list_empty(&fi->inmem_pages)) { 330 mutex_lock(&fi->inmem_lock); 331 __revoke_inmem_pages(inode, &fi->inmem_pages, 332 true, false, true); 333 mutex_unlock(&fi->inmem_lock); 334 } 335 336 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 337 338 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 339 if (!list_empty(&fi->inmem_ilist)) 340 list_del_init(&fi->inmem_ilist); 341 if (f2fs_is_atomic_file(inode)) { 342 clear_inode_flag(inode, FI_ATOMIC_FILE); 343 sbi->atomic_files--; 344 } 345 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 346 } 347 348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 349 { 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 352 struct list_head *head = &fi->inmem_pages; 353 struct inmem_pages *cur = NULL; 354 355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 356 357 mutex_lock(&fi->inmem_lock); 358 list_for_each_entry(cur, head, list) { 359 if (cur->page == page) 360 break; 361 } 362 363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 364 list_del(&cur->list); 365 mutex_unlock(&fi->inmem_lock); 366 367 dec_page_count(sbi, F2FS_INMEM_PAGES); 368 kmem_cache_free(inmem_entry_slab, cur); 369 370 ClearPageUptodate(page); 371 f2fs_clear_page_private(page); 372 f2fs_put_page(page, 0); 373 374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 375 } 376 377 static int __f2fs_commit_inmem_pages(struct inode *inode) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct f2fs_inode_info *fi = F2FS_I(inode); 381 struct inmem_pages *cur, *tmp; 382 struct f2fs_io_info fio = { 383 .sbi = sbi, 384 .ino = inode->i_ino, 385 .type = DATA, 386 .op = REQ_OP_WRITE, 387 .op_flags = REQ_SYNC | REQ_PRIO, 388 .io_type = FS_DATA_IO, 389 }; 390 struct list_head revoke_list; 391 bool submit_bio = false; 392 int err = 0; 393 394 INIT_LIST_HEAD(&revoke_list); 395 396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 397 struct page *page = cur->page; 398 399 lock_page(page); 400 if (page->mapping == inode->i_mapping) { 401 trace_f2fs_commit_inmem_page(page, INMEM); 402 403 f2fs_wait_on_page_writeback(page, DATA, true, true); 404 405 set_page_dirty(page); 406 if (clear_page_dirty_for_io(page)) { 407 inode_dec_dirty_pages(inode); 408 f2fs_remove_dirty_inode(inode); 409 } 410 retry: 411 fio.page = page; 412 fio.old_blkaddr = NULL_ADDR; 413 fio.encrypted_page = NULL; 414 fio.need_lock = LOCK_DONE; 415 err = f2fs_do_write_data_page(&fio); 416 if (err) { 417 if (err == -ENOMEM) { 418 congestion_wait(BLK_RW_ASYNC, HZ/50); 419 cond_resched(); 420 goto retry; 421 } 422 unlock_page(page); 423 break; 424 } 425 /* record old blkaddr for revoking */ 426 cur->old_addr = fio.old_blkaddr; 427 submit_bio = true; 428 } 429 unlock_page(page); 430 list_move_tail(&cur->list, &revoke_list); 431 } 432 433 if (submit_bio) 434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 435 436 if (err) { 437 /* 438 * try to revoke all committed pages, but still we could fail 439 * due to no memory or other reason, if that happened, EAGAIN 440 * will be returned, which means in such case, transaction is 441 * already not integrity, caller should use journal to do the 442 * recovery or rewrite & commit last transaction. For other 443 * error number, revoking was done by filesystem itself. 444 */ 445 err = __revoke_inmem_pages(inode, &revoke_list, 446 false, true, false); 447 448 /* drop all uncommitted pages */ 449 __revoke_inmem_pages(inode, &fi->inmem_pages, 450 true, false, false); 451 } else { 452 __revoke_inmem_pages(inode, &revoke_list, 453 false, false, false); 454 } 455 456 return err; 457 } 458 459 int f2fs_commit_inmem_pages(struct inode *inode) 460 { 461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 462 struct f2fs_inode_info *fi = F2FS_I(inode); 463 int err; 464 465 f2fs_balance_fs(sbi, true); 466 467 down_write(&fi->i_gc_rwsem[WRITE]); 468 469 f2fs_lock_op(sbi); 470 set_inode_flag(inode, FI_ATOMIC_COMMIT); 471 472 mutex_lock(&fi->inmem_lock); 473 err = __f2fs_commit_inmem_pages(inode); 474 mutex_unlock(&fi->inmem_lock); 475 476 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 477 478 f2fs_unlock_op(sbi); 479 up_write(&fi->i_gc_rwsem[WRITE]); 480 481 return err; 482 } 483 484 /* 485 * This function balances dirty node and dentry pages. 486 * In addition, it controls garbage collection. 487 */ 488 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 489 { 490 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 491 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 492 f2fs_stop_checkpoint(sbi, false); 493 } 494 495 /* balance_fs_bg is able to be pending */ 496 if (need && excess_cached_nats(sbi)) 497 f2fs_balance_fs_bg(sbi); 498 499 if (!f2fs_is_checkpoint_ready(sbi)) 500 return; 501 502 /* 503 * We should do GC or end up with checkpoint, if there are so many dirty 504 * dir/node pages without enough free segments. 505 */ 506 if (has_not_enough_free_secs(sbi, 0, 0)) { 507 down_write(&sbi->gc_lock); 508 f2fs_gc(sbi, false, false, NULL_SEGNO); 509 } 510 } 511 512 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 513 { 514 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 515 return; 516 517 /* try to shrink extent cache when there is no enough memory */ 518 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 519 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 520 521 /* check the # of cached NAT entries */ 522 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 523 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 524 525 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 526 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 527 else 528 f2fs_build_free_nids(sbi, false, false); 529 530 if (!is_idle(sbi, REQ_TIME) && 531 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 532 return; 533 534 /* checkpoint is the only way to shrink partial cached entries */ 535 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 536 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 537 excess_prefree_segs(sbi) || 538 excess_dirty_nats(sbi) || 539 excess_dirty_nodes(sbi) || 540 f2fs_time_over(sbi, CP_TIME)) { 541 if (test_opt(sbi, DATA_FLUSH)) { 542 struct blk_plug plug; 543 544 mutex_lock(&sbi->flush_lock); 545 546 blk_start_plug(&plug); 547 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 548 blk_finish_plug(&plug); 549 550 mutex_unlock(&sbi->flush_lock); 551 } 552 f2fs_sync_fs(sbi->sb, true); 553 stat_inc_bg_cp_count(sbi->stat_info); 554 } 555 } 556 557 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 558 struct block_device *bdev) 559 { 560 struct bio *bio; 561 int ret; 562 563 bio = f2fs_bio_alloc(sbi, 0, false); 564 if (!bio) 565 return -ENOMEM; 566 567 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 568 bio_set_dev(bio, bdev); 569 ret = submit_bio_wait(bio); 570 bio_put(bio); 571 572 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 573 test_opt(sbi, FLUSH_MERGE), ret); 574 return ret; 575 } 576 577 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 578 { 579 int ret = 0; 580 int i; 581 582 if (!f2fs_is_multi_device(sbi)) 583 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 584 585 for (i = 0; i < sbi->s_ndevs; i++) { 586 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 587 continue; 588 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 589 if (ret) 590 break; 591 } 592 return ret; 593 } 594 595 static int issue_flush_thread(void *data) 596 { 597 struct f2fs_sb_info *sbi = data; 598 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 599 wait_queue_head_t *q = &fcc->flush_wait_queue; 600 repeat: 601 if (kthread_should_stop()) 602 return 0; 603 604 sb_start_intwrite(sbi->sb); 605 606 if (!llist_empty(&fcc->issue_list)) { 607 struct flush_cmd *cmd, *next; 608 int ret; 609 610 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 611 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 612 613 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 614 615 ret = submit_flush_wait(sbi, cmd->ino); 616 atomic_inc(&fcc->issued_flush); 617 618 llist_for_each_entry_safe(cmd, next, 619 fcc->dispatch_list, llnode) { 620 cmd->ret = ret; 621 complete(&cmd->wait); 622 } 623 fcc->dispatch_list = NULL; 624 } 625 626 sb_end_intwrite(sbi->sb); 627 628 wait_event_interruptible(*q, 629 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 630 goto repeat; 631 } 632 633 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 634 { 635 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 636 struct flush_cmd cmd; 637 int ret; 638 639 if (test_opt(sbi, NOBARRIER)) 640 return 0; 641 642 if (!test_opt(sbi, FLUSH_MERGE)) { 643 atomic_inc(&fcc->queued_flush); 644 ret = submit_flush_wait(sbi, ino); 645 atomic_dec(&fcc->queued_flush); 646 atomic_inc(&fcc->issued_flush); 647 return ret; 648 } 649 650 if (atomic_inc_return(&fcc->queued_flush) == 1 || 651 f2fs_is_multi_device(sbi)) { 652 ret = submit_flush_wait(sbi, ino); 653 atomic_dec(&fcc->queued_flush); 654 655 atomic_inc(&fcc->issued_flush); 656 return ret; 657 } 658 659 cmd.ino = ino; 660 init_completion(&cmd.wait); 661 662 llist_add(&cmd.llnode, &fcc->issue_list); 663 664 /* update issue_list before we wake up issue_flush thread */ 665 smp_mb(); 666 667 if (waitqueue_active(&fcc->flush_wait_queue)) 668 wake_up(&fcc->flush_wait_queue); 669 670 if (fcc->f2fs_issue_flush) { 671 wait_for_completion(&cmd.wait); 672 atomic_dec(&fcc->queued_flush); 673 } else { 674 struct llist_node *list; 675 676 list = llist_del_all(&fcc->issue_list); 677 if (!list) { 678 wait_for_completion(&cmd.wait); 679 atomic_dec(&fcc->queued_flush); 680 } else { 681 struct flush_cmd *tmp, *next; 682 683 ret = submit_flush_wait(sbi, ino); 684 685 llist_for_each_entry_safe(tmp, next, list, llnode) { 686 if (tmp == &cmd) { 687 cmd.ret = ret; 688 atomic_dec(&fcc->queued_flush); 689 continue; 690 } 691 tmp->ret = ret; 692 complete(&tmp->wait); 693 } 694 } 695 } 696 697 return cmd.ret; 698 } 699 700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 701 { 702 dev_t dev = sbi->sb->s_bdev->bd_dev; 703 struct flush_cmd_control *fcc; 704 int err = 0; 705 706 if (SM_I(sbi)->fcc_info) { 707 fcc = SM_I(sbi)->fcc_info; 708 if (fcc->f2fs_issue_flush) 709 return err; 710 goto init_thread; 711 } 712 713 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 714 if (!fcc) 715 return -ENOMEM; 716 atomic_set(&fcc->issued_flush, 0); 717 atomic_set(&fcc->queued_flush, 0); 718 init_waitqueue_head(&fcc->flush_wait_queue); 719 init_llist_head(&fcc->issue_list); 720 SM_I(sbi)->fcc_info = fcc; 721 if (!test_opt(sbi, FLUSH_MERGE)) 722 return err; 723 724 init_thread: 725 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 726 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 727 if (IS_ERR(fcc->f2fs_issue_flush)) { 728 err = PTR_ERR(fcc->f2fs_issue_flush); 729 kvfree(fcc); 730 SM_I(sbi)->fcc_info = NULL; 731 return err; 732 } 733 734 return err; 735 } 736 737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 738 { 739 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 740 741 if (fcc && fcc->f2fs_issue_flush) { 742 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 743 744 fcc->f2fs_issue_flush = NULL; 745 kthread_stop(flush_thread); 746 } 747 if (free) { 748 kvfree(fcc); 749 SM_I(sbi)->fcc_info = NULL; 750 } 751 } 752 753 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 754 { 755 int ret = 0, i; 756 757 if (!f2fs_is_multi_device(sbi)) 758 return 0; 759 760 for (i = 1; i < sbi->s_ndevs; i++) { 761 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 762 continue; 763 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 764 if (ret) 765 break; 766 767 spin_lock(&sbi->dev_lock); 768 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 769 spin_unlock(&sbi->dev_lock); 770 } 771 772 return ret; 773 } 774 775 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 776 enum dirty_type dirty_type) 777 { 778 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 779 780 /* need not be added */ 781 if (IS_CURSEG(sbi, segno)) 782 return; 783 784 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 785 dirty_i->nr_dirty[dirty_type]++; 786 787 if (dirty_type == DIRTY) { 788 struct seg_entry *sentry = get_seg_entry(sbi, segno); 789 enum dirty_type t = sentry->type; 790 791 if (unlikely(t >= DIRTY)) { 792 f2fs_bug_on(sbi, 1); 793 return; 794 } 795 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 796 dirty_i->nr_dirty[t]++; 797 } 798 } 799 800 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 801 enum dirty_type dirty_type) 802 { 803 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 804 805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 806 dirty_i->nr_dirty[dirty_type]--; 807 808 if (dirty_type == DIRTY) { 809 struct seg_entry *sentry = get_seg_entry(sbi, segno); 810 enum dirty_type t = sentry->type; 811 812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 813 dirty_i->nr_dirty[t]--; 814 815 if (get_valid_blocks(sbi, segno, true) == 0) { 816 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 817 dirty_i->victim_secmap); 818 #ifdef CONFIG_F2FS_CHECK_FS 819 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 820 #endif 821 } 822 } 823 } 824 825 /* 826 * Should not occur error such as -ENOMEM. 827 * Adding dirty entry into seglist is not critical operation. 828 * If a given segment is one of current working segments, it won't be added. 829 */ 830 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 831 { 832 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 833 unsigned short valid_blocks, ckpt_valid_blocks; 834 835 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 836 return; 837 838 mutex_lock(&dirty_i->seglist_lock); 839 840 valid_blocks = get_valid_blocks(sbi, segno, false); 841 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 842 843 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 844 ckpt_valid_blocks == sbi->blocks_per_seg)) { 845 __locate_dirty_segment(sbi, segno, PRE); 846 __remove_dirty_segment(sbi, segno, DIRTY); 847 } else if (valid_blocks < sbi->blocks_per_seg) { 848 __locate_dirty_segment(sbi, segno, DIRTY); 849 } else { 850 /* Recovery routine with SSR needs this */ 851 __remove_dirty_segment(sbi, segno, DIRTY); 852 } 853 854 mutex_unlock(&dirty_i->seglist_lock); 855 } 856 857 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 858 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 859 { 860 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 861 unsigned int segno; 862 863 mutex_lock(&dirty_i->seglist_lock); 864 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 865 if (get_valid_blocks(sbi, segno, false)) 866 continue; 867 if (IS_CURSEG(sbi, segno)) 868 continue; 869 __locate_dirty_segment(sbi, segno, PRE); 870 __remove_dirty_segment(sbi, segno, DIRTY); 871 } 872 mutex_unlock(&dirty_i->seglist_lock); 873 } 874 875 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 876 { 877 int ovp_hole_segs = 878 (overprovision_segments(sbi) - reserved_segments(sbi)); 879 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 881 block_t holes[2] = {0, 0}; /* DATA and NODE */ 882 block_t unusable; 883 struct seg_entry *se; 884 unsigned int segno; 885 886 mutex_lock(&dirty_i->seglist_lock); 887 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 888 se = get_seg_entry(sbi, segno); 889 if (IS_NODESEG(se->type)) 890 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 891 else 892 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 893 } 894 mutex_unlock(&dirty_i->seglist_lock); 895 896 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 897 if (unusable > ovp_holes) 898 return unusable - ovp_holes; 899 return 0; 900 } 901 902 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 903 { 904 int ovp_hole_segs = 905 (overprovision_segments(sbi) - reserved_segments(sbi)); 906 if (unusable > F2FS_OPTION(sbi).unusable_cap) 907 return -EAGAIN; 908 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 909 dirty_segments(sbi) > ovp_hole_segs) 910 return -EAGAIN; 911 return 0; 912 } 913 914 /* This is only used by SBI_CP_DISABLED */ 915 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 916 { 917 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 918 unsigned int segno = 0; 919 920 mutex_lock(&dirty_i->seglist_lock); 921 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 922 if (get_valid_blocks(sbi, segno, false)) 923 continue; 924 if (get_ckpt_valid_blocks(sbi, segno)) 925 continue; 926 mutex_unlock(&dirty_i->seglist_lock); 927 return segno; 928 } 929 mutex_unlock(&dirty_i->seglist_lock); 930 return NULL_SEGNO; 931 } 932 933 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 934 struct block_device *bdev, block_t lstart, 935 block_t start, block_t len) 936 { 937 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 938 struct list_head *pend_list; 939 struct discard_cmd *dc; 940 941 f2fs_bug_on(sbi, !len); 942 943 pend_list = &dcc->pend_list[plist_idx(len)]; 944 945 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 946 INIT_LIST_HEAD(&dc->list); 947 dc->bdev = bdev; 948 dc->lstart = lstart; 949 dc->start = start; 950 dc->len = len; 951 dc->ref = 0; 952 dc->state = D_PREP; 953 dc->queued = 0; 954 dc->error = 0; 955 init_completion(&dc->wait); 956 list_add_tail(&dc->list, pend_list); 957 spin_lock_init(&dc->lock); 958 dc->bio_ref = 0; 959 atomic_inc(&dcc->discard_cmd_cnt); 960 dcc->undiscard_blks += len; 961 962 return dc; 963 } 964 965 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 966 struct block_device *bdev, block_t lstart, 967 block_t start, block_t len, 968 struct rb_node *parent, struct rb_node **p, 969 bool leftmost) 970 { 971 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 972 struct discard_cmd *dc; 973 974 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 975 976 rb_link_node(&dc->rb_node, parent, p); 977 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 978 979 return dc; 980 } 981 982 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 983 struct discard_cmd *dc) 984 { 985 if (dc->state == D_DONE) 986 atomic_sub(dc->queued, &dcc->queued_discard); 987 988 list_del(&dc->list); 989 rb_erase_cached(&dc->rb_node, &dcc->root); 990 dcc->undiscard_blks -= dc->len; 991 992 kmem_cache_free(discard_cmd_slab, dc); 993 994 atomic_dec(&dcc->discard_cmd_cnt); 995 } 996 997 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 998 struct discard_cmd *dc) 999 { 1000 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1001 unsigned long flags; 1002 1003 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1004 1005 spin_lock_irqsave(&dc->lock, flags); 1006 if (dc->bio_ref) { 1007 spin_unlock_irqrestore(&dc->lock, flags); 1008 return; 1009 } 1010 spin_unlock_irqrestore(&dc->lock, flags); 1011 1012 f2fs_bug_on(sbi, dc->ref); 1013 1014 if (dc->error == -EOPNOTSUPP) 1015 dc->error = 0; 1016 1017 if (dc->error) 1018 printk_ratelimited( 1019 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1020 KERN_INFO, sbi->sb->s_id, 1021 dc->lstart, dc->start, dc->len, dc->error); 1022 __detach_discard_cmd(dcc, dc); 1023 } 1024 1025 static void f2fs_submit_discard_endio(struct bio *bio) 1026 { 1027 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1028 unsigned long flags; 1029 1030 dc->error = blk_status_to_errno(bio->bi_status); 1031 1032 spin_lock_irqsave(&dc->lock, flags); 1033 dc->bio_ref--; 1034 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1035 dc->state = D_DONE; 1036 complete_all(&dc->wait); 1037 } 1038 spin_unlock_irqrestore(&dc->lock, flags); 1039 bio_put(bio); 1040 } 1041 1042 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1043 block_t start, block_t end) 1044 { 1045 #ifdef CONFIG_F2FS_CHECK_FS 1046 struct seg_entry *sentry; 1047 unsigned int segno; 1048 block_t blk = start; 1049 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1050 unsigned long *map; 1051 1052 while (blk < end) { 1053 segno = GET_SEGNO(sbi, blk); 1054 sentry = get_seg_entry(sbi, segno); 1055 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1056 1057 if (end < START_BLOCK(sbi, segno + 1)) 1058 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1059 else 1060 size = max_blocks; 1061 map = (unsigned long *)(sentry->cur_valid_map); 1062 offset = __find_rev_next_bit(map, size, offset); 1063 f2fs_bug_on(sbi, offset != size); 1064 blk = START_BLOCK(sbi, segno + 1); 1065 } 1066 #endif 1067 } 1068 1069 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1070 struct discard_policy *dpolicy, 1071 int discard_type, unsigned int granularity) 1072 { 1073 /* common policy */ 1074 dpolicy->type = discard_type; 1075 dpolicy->sync = true; 1076 dpolicy->ordered = false; 1077 dpolicy->granularity = granularity; 1078 1079 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1080 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1081 dpolicy->timeout = 0; 1082 1083 if (discard_type == DPOLICY_BG) { 1084 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1085 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1086 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1087 dpolicy->io_aware = true; 1088 dpolicy->sync = false; 1089 dpolicy->ordered = true; 1090 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1091 dpolicy->granularity = 1; 1092 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1093 } 1094 } else if (discard_type == DPOLICY_FORCE) { 1095 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1096 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1097 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1098 dpolicy->io_aware = false; 1099 } else if (discard_type == DPOLICY_FSTRIM) { 1100 dpolicy->io_aware = false; 1101 } else if (discard_type == DPOLICY_UMOUNT) { 1102 dpolicy->max_requests = UINT_MAX; 1103 dpolicy->io_aware = false; 1104 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1105 dpolicy->granularity = 1; 1106 } 1107 } 1108 1109 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1110 struct block_device *bdev, block_t lstart, 1111 block_t start, block_t len); 1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1113 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1114 struct discard_policy *dpolicy, 1115 struct discard_cmd *dc, 1116 unsigned int *issued) 1117 { 1118 struct block_device *bdev = dc->bdev; 1119 struct request_queue *q = bdev_get_queue(bdev); 1120 unsigned int max_discard_blocks = 1121 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1122 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1123 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1124 &(dcc->fstrim_list) : &(dcc->wait_list); 1125 int flag = dpolicy->sync ? REQ_SYNC : 0; 1126 block_t lstart, start, len, total_len; 1127 int err = 0; 1128 1129 if (dc->state != D_PREP) 1130 return 0; 1131 1132 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1133 return 0; 1134 1135 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1136 1137 lstart = dc->lstart; 1138 start = dc->start; 1139 len = dc->len; 1140 total_len = len; 1141 1142 dc->len = 0; 1143 1144 while (total_len && *issued < dpolicy->max_requests && !err) { 1145 struct bio *bio = NULL; 1146 unsigned long flags; 1147 bool last = true; 1148 1149 if (len > max_discard_blocks) { 1150 len = max_discard_blocks; 1151 last = false; 1152 } 1153 1154 (*issued)++; 1155 if (*issued == dpolicy->max_requests) 1156 last = true; 1157 1158 dc->len += len; 1159 1160 if (time_to_inject(sbi, FAULT_DISCARD)) { 1161 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1162 err = -EIO; 1163 goto submit; 1164 } 1165 err = __blkdev_issue_discard(bdev, 1166 SECTOR_FROM_BLOCK(start), 1167 SECTOR_FROM_BLOCK(len), 1168 GFP_NOFS, 0, &bio); 1169 submit: 1170 if (err) { 1171 spin_lock_irqsave(&dc->lock, flags); 1172 if (dc->state == D_PARTIAL) 1173 dc->state = D_SUBMIT; 1174 spin_unlock_irqrestore(&dc->lock, flags); 1175 1176 break; 1177 } 1178 1179 f2fs_bug_on(sbi, !bio); 1180 1181 /* 1182 * should keep before submission to avoid D_DONE 1183 * right away 1184 */ 1185 spin_lock_irqsave(&dc->lock, flags); 1186 if (last) 1187 dc->state = D_SUBMIT; 1188 else 1189 dc->state = D_PARTIAL; 1190 dc->bio_ref++; 1191 spin_unlock_irqrestore(&dc->lock, flags); 1192 1193 atomic_inc(&dcc->queued_discard); 1194 dc->queued++; 1195 list_move_tail(&dc->list, wait_list); 1196 1197 /* sanity check on discard range */ 1198 __check_sit_bitmap(sbi, lstart, lstart + len); 1199 1200 bio->bi_private = dc; 1201 bio->bi_end_io = f2fs_submit_discard_endio; 1202 bio->bi_opf |= flag; 1203 submit_bio(bio); 1204 1205 atomic_inc(&dcc->issued_discard); 1206 1207 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1208 1209 lstart += len; 1210 start += len; 1211 total_len -= len; 1212 len = total_len; 1213 } 1214 1215 if (!err && len) 1216 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1217 return err; 1218 } 1219 1220 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1221 struct block_device *bdev, block_t lstart, 1222 block_t start, block_t len, 1223 struct rb_node **insert_p, 1224 struct rb_node *insert_parent) 1225 { 1226 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1227 struct rb_node **p; 1228 struct rb_node *parent = NULL; 1229 struct discard_cmd *dc = NULL; 1230 bool leftmost = true; 1231 1232 if (insert_p && insert_parent) { 1233 parent = insert_parent; 1234 p = insert_p; 1235 goto do_insert; 1236 } 1237 1238 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1239 lstart, &leftmost); 1240 do_insert: 1241 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1242 p, leftmost); 1243 if (!dc) 1244 return NULL; 1245 1246 return dc; 1247 } 1248 1249 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1250 struct discard_cmd *dc) 1251 { 1252 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1253 } 1254 1255 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1256 struct discard_cmd *dc, block_t blkaddr) 1257 { 1258 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1259 struct discard_info di = dc->di; 1260 bool modified = false; 1261 1262 if (dc->state == D_DONE || dc->len == 1) { 1263 __remove_discard_cmd(sbi, dc); 1264 return; 1265 } 1266 1267 dcc->undiscard_blks -= di.len; 1268 1269 if (blkaddr > di.lstart) { 1270 dc->len = blkaddr - dc->lstart; 1271 dcc->undiscard_blks += dc->len; 1272 __relocate_discard_cmd(dcc, dc); 1273 modified = true; 1274 } 1275 1276 if (blkaddr < di.lstart + di.len - 1) { 1277 if (modified) { 1278 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1279 di.start + blkaddr + 1 - di.lstart, 1280 di.lstart + di.len - 1 - blkaddr, 1281 NULL, NULL); 1282 } else { 1283 dc->lstart++; 1284 dc->len--; 1285 dc->start++; 1286 dcc->undiscard_blks += dc->len; 1287 __relocate_discard_cmd(dcc, dc); 1288 } 1289 } 1290 } 1291 1292 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1293 struct block_device *bdev, block_t lstart, 1294 block_t start, block_t len) 1295 { 1296 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1297 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1298 struct discard_cmd *dc; 1299 struct discard_info di = {0}; 1300 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1301 struct request_queue *q = bdev_get_queue(bdev); 1302 unsigned int max_discard_blocks = 1303 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1304 block_t end = lstart + len; 1305 1306 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1307 NULL, lstart, 1308 (struct rb_entry **)&prev_dc, 1309 (struct rb_entry **)&next_dc, 1310 &insert_p, &insert_parent, true, NULL); 1311 if (dc) 1312 prev_dc = dc; 1313 1314 if (!prev_dc) { 1315 di.lstart = lstart; 1316 di.len = next_dc ? next_dc->lstart - lstart : len; 1317 di.len = min(di.len, len); 1318 di.start = start; 1319 } 1320 1321 while (1) { 1322 struct rb_node *node; 1323 bool merged = false; 1324 struct discard_cmd *tdc = NULL; 1325 1326 if (prev_dc) { 1327 di.lstart = prev_dc->lstart + prev_dc->len; 1328 if (di.lstart < lstart) 1329 di.lstart = lstart; 1330 if (di.lstart >= end) 1331 break; 1332 1333 if (!next_dc || next_dc->lstart > end) 1334 di.len = end - di.lstart; 1335 else 1336 di.len = next_dc->lstart - di.lstart; 1337 di.start = start + di.lstart - lstart; 1338 } 1339 1340 if (!di.len) 1341 goto next; 1342 1343 if (prev_dc && prev_dc->state == D_PREP && 1344 prev_dc->bdev == bdev && 1345 __is_discard_back_mergeable(&di, &prev_dc->di, 1346 max_discard_blocks)) { 1347 prev_dc->di.len += di.len; 1348 dcc->undiscard_blks += di.len; 1349 __relocate_discard_cmd(dcc, prev_dc); 1350 di = prev_dc->di; 1351 tdc = prev_dc; 1352 merged = true; 1353 } 1354 1355 if (next_dc && next_dc->state == D_PREP && 1356 next_dc->bdev == bdev && 1357 __is_discard_front_mergeable(&di, &next_dc->di, 1358 max_discard_blocks)) { 1359 next_dc->di.lstart = di.lstart; 1360 next_dc->di.len += di.len; 1361 next_dc->di.start = di.start; 1362 dcc->undiscard_blks += di.len; 1363 __relocate_discard_cmd(dcc, next_dc); 1364 if (tdc) 1365 __remove_discard_cmd(sbi, tdc); 1366 merged = true; 1367 } 1368 1369 if (!merged) { 1370 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1371 di.len, NULL, NULL); 1372 } 1373 next: 1374 prev_dc = next_dc; 1375 if (!prev_dc) 1376 break; 1377 1378 node = rb_next(&prev_dc->rb_node); 1379 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1380 } 1381 } 1382 1383 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1384 struct block_device *bdev, block_t blkstart, block_t blklen) 1385 { 1386 block_t lblkstart = blkstart; 1387 1388 if (!f2fs_bdev_support_discard(bdev)) 1389 return 0; 1390 1391 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1392 1393 if (f2fs_is_multi_device(sbi)) { 1394 int devi = f2fs_target_device_index(sbi, blkstart); 1395 1396 blkstart -= FDEV(devi).start_blk; 1397 } 1398 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1399 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1400 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1401 return 0; 1402 } 1403 1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1405 struct discard_policy *dpolicy) 1406 { 1407 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1408 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1409 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1410 struct discard_cmd *dc; 1411 struct blk_plug plug; 1412 unsigned int pos = dcc->next_pos; 1413 unsigned int issued = 0; 1414 bool io_interrupted = false; 1415 1416 mutex_lock(&dcc->cmd_lock); 1417 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1418 NULL, pos, 1419 (struct rb_entry **)&prev_dc, 1420 (struct rb_entry **)&next_dc, 1421 &insert_p, &insert_parent, true, NULL); 1422 if (!dc) 1423 dc = next_dc; 1424 1425 blk_start_plug(&plug); 1426 1427 while (dc) { 1428 struct rb_node *node; 1429 int err = 0; 1430 1431 if (dc->state != D_PREP) 1432 goto next; 1433 1434 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1435 io_interrupted = true; 1436 break; 1437 } 1438 1439 dcc->next_pos = dc->lstart + dc->len; 1440 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1441 1442 if (issued >= dpolicy->max_requests) 1443 break; 1444 next: 1445 node = rb_next(&dc->rb_node); 1446 if (err) 1447 __remove_discard_cmd(sbi, dc); 1448 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1449 } 1450 1451 blk_finish_plug(&plug); 1452 1453 if (!dc) 1454 dcc->next_pos = 0; 1455 1456 mutex_unlock(&dcc->cmd_lock); 1457 1458 if (!issued && io_interrupted) 1459 issued = -1; 1460 1461 return issued; 1462 } 1463 1464 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1465 struct discard_policy *dpolicy) 1466 { 1467 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1468 struct list_head *pend_list; 1469 struct discard_cmd *dc, *tmp; 1470 struct blk_plug plug; 1471 int i, issued = 0; 1472 bool io_interrupted = false; 1473 1474 if (dpolicy->timeout != 0) 1475 f2fs_update_time(sbi, dpolicy->timeout); 1476 1477 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1478 if (dpolicy->timeout != 0 && 1479 f2fs_time_over(sbi, dpolicy->timeout)) 1480 break; 1481 1482 if (i + 1 < dpolicy->granularity) 1483 break; 1484 1485 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1486 return __issue_discard_cmd_orderly(sbi, dpolicy); 1487 1488 pend_list = &dcc->pend_list[i]; 1489 1490 mutex_lock(&dcc->cmd_lock); 1491 if (list_empty(pend_list)) 1492 goto next; 1493 if (unlikely(dcc->rbtree_check)) 1494 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1495 &dcc->root)); 1496 blk_start_plug(&plug); 1497 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1498 f2fs_bug_on(sbi, dc->state != D_PREP); 1499 1500 if (dpolicy->timeout != 0 && 1501 f2fs_time_over(sbi, dpolicy->timeout)) 1502 break; 1503 1504 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1505 !is_idle(sbi, DISCARD_TIME)) { 1506 io_interrupted = true; 1507 break; 1508 } 1509 1510 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1511 1512 if (issued >= dpolicy->max_requests) 1513 break; 1514 } 1515 blk_finish_plug(&plug); 1516 next: 1517 mutex_unlock(&dcc->cmd_lock); 1518 1519 if (issued >= dpolicy->max_requests || io_interrupted) 1520 break; 1521 } 1522 1523 if (!issued && io_interrupted) 1524 issued = -1; 1525 1526 return issued; 1527 } 1528 1529 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1530 { 1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1532 struct list_head *pend_list; 1533 struct discard_cmd *dc, *tmp; 1534 int i; 1535 bool dropped = false; 1536 1537 mutex_lock(&dcc->cmd_lock); 1538 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1539 pend_list = &dcc->pend_list[i]; 1540 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1541 f2fs_bug_on(sbi, dc->state != D_PREP); 1542 __remove_discard_cmd(sbi, dc); 1543 dropped = true; 1544 } 1545 } 1546 mutex_unlock(&dcc->cmd_lock); 1547 1548 return dropped; 1549 } 1550 1551 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1552 { 1553 __drop_discard_cmd(sbi); 1554 } 1555 1556 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1557 struct discard_cmd *dc) 1558 { 1559 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1560 unsigned int len = 0; 1561 1562 wait_for_completion_io(&dc->wait); 1563 mutex_lock(&dcc->cmd_lock); 1564 f2fs_bug_on(sbi, dc->state != D_DONE); 1565 dc->ref--; 1566 if (!dc->ref) { 1567 if (!dc->error) 1568 len = dc->len; 1569 __remove_discard_cmd(sbi, dc); 1570 } 1571 mutex_unlock(&dcc->cmd_lock); 1572 1573 return len; 1574 } 1575 1576 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1577 struct discard_policy *dpolicy, 1578 block_t start, block_t end) 1579 { 1580 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1581 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1582 &(dcc->fstrim_list) : &(dcc->wait_list); 1583 struct discard_cmd *dc, *tmp; 1584 bool need_wait; 1585 unsigned int trimmed = 0; 1586 1587 next: 1588 need_wait = false; 1589 1590 mutex_lock(&dcc->cmd_lock); 1591 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1592 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1593 continue; 1594 if (dc->len < dpolicy->granularity) 1595 continue; 1596 if (dc->state == D_DONE && !dc->ref) { 1597 wait_for_completion_io(&dc->wait); 1598 if (!dc->error) 1599 trimmed += dc->len; 1600 __remove_discard_cmd(sbi, dc); 1601 } else { 1602 dc->ref++; 1603 need_wait = true; 1604 break; 1605 } 1606 } 1607 mutex_unlock(&dcc->cmd_lock); 1608 1609 if (need_wait) { 1610 trimmed += __wait_one_discard_bio(sbi, dc); 1611 goto next; 1612 } 1613 1614 return trimmed; 1615 } 1616 1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1618 struct discard_policy *dpolicy) 1619 { 1620 struct discard_policy dp; 1621 unsigned int discard_blks; 1622 1623 if (dpolicy) 1624 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1625 1626 /* wait all */ 1627 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1628 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1629 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1630 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1631 1632 return discard_blks; 1633 } 1634 1635 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1636 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1637 { 1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1639 struct discard_cmd *dc; 1640 bool need_wait = false; 1641 1642 mutex_lock(&dcc->cmd_lock); 1643 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1644 NULL, blkaddr); 1645 if (dc) { 1646 if (dc->state == D_PREP) { 1647 __punch_discard_cmd(sbi, dc, blkaddr); 1648 } else { 1649 dc->ref++; 1650 need_wait = true; 1651 } 1652 } 1653 mutex_unlock(&dcc->cmd_lock); 1654 1655 if (need_wait) 1656 __wait_one_discard_bio(sbi, dc); 1657 } 1658 1659 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1660 { 1661 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1662 1663 if (dcc && dcc->f2fs_issue_discard) { 1664 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1665 1666 dcc->f2fs_issue_discard = NULL; 1667 kthread_stop(discard_thread); 1668 } 1669 } 1670 1671 /* This comes from f2fs_put_super */ 1672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1673 { 1674 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1675 struct discard_policy dpolicy; 1676 bool dropped; 1677 1678 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1679 dcc->discard_granularity); 1680 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1681 __issue_discard_cmd(sbi, &dpolicy); 1682 dropped = __drop_discard_cmd(sbi); 1683 1684 /* just to make sure there is no pending discard commands */ 1685 __wait_all_discard_cmd(sbi, NULL); 1686 1687 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1688 return dropped; 1689 } 1690 1691 static int issue_discard_thread(void *data) 1692 { 1693 struct f2fs_sb_info *sbi = data; 1694 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1695 wait_queue_head_t *q = &dcc->discard_wait_queue; 1696 struct discard_policy dpolicy; 1697 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1698 int issued; 1699 1700 set_freezable(); 1701 1702 do { 1703 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1704 dcc->discard_granularity); 1705 1706 wait_event_interruptible_timeout(*q, 1707 kthread_should_stop() || freezing(current) || 1708 dcc->discard_wake, 1709 msecs_to_jiffies(wait_ms)); 1710 1711 if (dcc->discard_wake) 1712 dcc->discard_wake = 0; 1713 1714 /* clean up pending candidates before going to sleep */ 1715 if (atomic_read(&dcc->queued_discard)) 1716 __wait_all_discard_cmd(sbi, NULL); 1717 1718 if (try_to_freeze()) 1719 continue; 1720 if (f2fs_readonly(sbi->sb)) 1721 continue; 1722 if (kthread_should_stop()) 1723 return 0; 1724 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1725 wait_ms = dpolicy.max_interval; 1726 continue; 1727 } 1728 1729 if (sbi->gc_mode == GC_URGENT) 1730 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1731 1732 sb_start_intwrite(sbi->sb); 1733 1734 issued = __issue_discard_cmd(sbi, &dpolicy); 1735 if (issued > 0) { 1736 __wait_all_discard_cmd(sbi, &dpolicy); 1737 wait_ms = dpolicy.min_interval; 1738 } else if (issued == -1){ 1739 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1740 if (!wait_ms) 1741 wait_ms = dpolicy.mid_interval; 1742 } else { 1743 wait_ms = dpolicy.max_interval; 1744 } 1745 1746 sb_end_intwrite(sbi->sb); 1747 1748 } while (!kthread_should_stop()); 1749 return 0; 1750 } 1751 1752 #ifdef CONFIG_BLK_DEV_ZONED 1753 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1754 struct block_device *bdev, block_t blkstart, block_t blklen) 1755 { 1756 sector_t sector, nr_sects; 1757 block_t lblkstart = blkstart; 1758 int devi = 0; 1759 1760 if (f2fs_is_multi_device(sbi)) { 1761 devi = f2fs_target_device_index(sbi, blkstart); 1762 if (blkstart < FDEV(devi).start_blk || 1763 blkstart > FDEV(devi).end_blk) { 1764 f2fs_err(sbi, "Invalid block %x", blkstart); 1765 return -EIO; 1766 } 1767 blkstart -= FDEV(devi).start_blk; 1768 } 1769 1770 /* For sequential zones, reset the zone write pointer */ 1771 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1772 sector = SECTOR_FROM_BLOCK(blkstart); 1773 nr_sects = SECTOR_FROM_BLOCK(blklen); 1774 1775 if (sector & (bdev_zone_sectors(bdev) - 1) || 1776 nr_sects != bdev_zone_sectors(bdev)) { 1777 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1778 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1779 blkstart, blklen); 1780 return -EIO; 1781 } 1782 trace_f2fs_issue_reset_zone(bdev, blkstart); 1783 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1784 sector, nr_sects, GFP_NOFS); 1785 } 1786 1787 /* For conventional zones, use regular discard if supported */ 1788 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1789 } 1790 #endif 1791 1792 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1793 struct block_device *bdev, block_t blkstart, block_t blklen) 1794 { 1795 #ifdef CONFIG_BLK_DEV_ZONED 1796 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1797 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1798 #endif 1799 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1800 } 1801 1802 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1803 block_t blkstart, block_t blklen) 1804 { 1805 sector_t start = blkstart, len = 0; 1806 struct block_device *bdev; 1807 struct seg_entry *se; 1808 unsigned int offset; 1809 block_t i; 1810 int err = 0; 1811 1812 bdev = f2fs_target_device(sbi, blkstart, NULL); 1813 1814 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1815 if (i != start) { 1816 struct block_device *bdev2 = 1817 f2fs_target_device(sbi, i, NULL); 1818 1819 if (bdev2 != bdev) { 1820 err = __issue_discard_async(sbi, bdev, 1821 start, len); 1822 if (err) 1823 return err; 1824 bdev = bdev2; 1825 start = i; 1826 len = 0; 1827 } 1828 } 1829 1830 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1831 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1832 1833 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1834 sbi->discard_blks--; 1835 } 1836 1837 if (len) 1838 err = __issue_discard_async(sbi, bdev, start, len); 1839 return err; 1840 } 1841 1842 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1843 bool check_only) 1844 { 1845 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1846 int max_blocks = sbi->blocks_per_seg; 1847 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1848 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1849 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1850 unsigned long *discard_map = (unsigned long *)se->discard_map; 1851 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1852 unsigned int start = 0, end = -1; 1853 bool force = (cpc->reason & CP_DISCARD); 1854 struct discard_entry *de = NULL; 1855 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1856 int i; 1857 1858 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1859 return false; 1860 1861 if (!force) { 1862 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1863 SM_I(sbi)->dcc_info->nr_discards >= 1864 SM_I(sbi)->dcc_info->max_discards) 1865 return false; 1866 } 1867 1868 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1869 for (i = 0; i < entries; i++) 1870 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1871 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1872 1873 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1874 SM_I(sbi)->dcc_info->max_discards) { 1875 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1876 if (start >= max_blocks) 1877 break; 1878 1879 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1880 if (force && start && end != max_blocks 1881 && (end - start) < cpc->trim_minlen) 1882 continue; 1883 1884 if (check_only) 1885 return true; 1886 1887 if (!de) { 1888 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1889 GFP_F2FS_ZERO); 1890 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1891 list_add_tail(&de->list, head); 1892 } 1893 1894 for (i = start; i < end; i++) 1895 __set_bit_le(i, (void *)de->discard_map); 1896 1897 SM_I(sbi)->dcc_info->nr_discards += end - start; 1898 } 1899 return false; 1900 } 1901 1902 static void release_discard_addr(struct discard_entry *entry) 1903 { 1904 list_del(&entry->list); 1905 kmem_cache_free(discard_entry_slab, entry); 1906 } 1907 1908 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1909 { 1910 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1911 struct discard_entry *entry, *this; 1912 1913 /* drop caches */ 1914 list_for_each_entry_safe(entry, this, head, list) 1915 release_discard_addr(entry); 1916 } 1917 1918 /* 1919 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1920 */ 1921 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1922 { 1923 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1924 unsigned int segno; 1925 1926 mutex_lock(&dirty_i->seglist_lock); 1927 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1928 __set_test_and_free(sbi, segno); 1929 mutex_unlock(&dirty_i->seglist_lock); 1930 } 1931 1932 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1933 struct cp_control *cpc) 1934 { 1935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1936 struct list_head *head = &dcc->entry_list; 1937 struct discard_entry *entry, *this; 1938 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1939 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1940 unsigned int start = 0, end = -1; 1941 unsigned int secno, start_segno; 1942 bool force = (cpc->reason & CP_DISCARD); 1943 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1944 1945 mutex_lock(&dirty_i->seglist_lock); 1946 1947 while (1) { 1948 int i; 1949 1950 if (need_align && end != -1) 1951 end--; 1952 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1953 if (start >= MAIN_SEGS(sbi)) 1954 break; 1955 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1956 start + 1); 1957 1958 if (need_align) { 1959 start = rounddown(start, sbi->segs_per_sec); 1960 end = roundup(end, sbi->segs_per_sec); 1961 } 1962 1963 for (i = start; i < end; i++) { 1964 if (test_and_clear_bit(i, prefree_map)) 1965 dirty_i->nr_dirty[PRE]--; 1966 } 1967 1968 if (!f2fs_realtime_discard_enable(sbi)) 1969 continue; 1970 1971 if (force && start >= cpc->trim_start && 1972 (end - 1) <= cpc->trim_end) 1973 continue; 1974 1975 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1977 (end - start) << sbi->log_blocks_per_seg); 1978 continue; 1979 } 1980 next: 1981 secno = GET_SEC_FROM_SEG(sbi, start); 1982 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1983 if (!IS_CURSEC(sbi, secno) && 1984 !get_valid_blocks(sbi, start, true)) 1985 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1986 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1987 1988 start = start_segno + sbi->segs_per_sec; 1989 if (start < end) 1990 goto next; 1991 else 1992 end = start - 1; 1993 } 1994 mutex_unlock(&dirty_i->seglist_lock); 1995 1996 /* send small discards */ 1997 list_for_each_entry_safe(entry, this, head, list) { 1998 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1999 bool is_valid = test_bit_le(0, entry->discard_map); 2000 2001 find_next: 2002 if (is_valid) { 2003 next_pos = find_next_zero_bit_le(entry->discard_map, 2004 sbi->blocks_per_seg, cur_pos); 2005 len = next_pos - cur_pos; 2006 2007 if (f2fs_sb_has_blkzoned(sbi) || 2008 (force && len < cpc->trim_minlen)) 2009 goto skip; 2010 2011 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2012 len); 2013 total_len += len; 2014 } else { 2015 next_pos = find_next_bit_le(entry->discard_map, 2016 sbi->blocks_per_seg, cur_pos); 2017 } 2018 skip: 2019 cur_pos = next_pos; 2020 is_valid = !is_valid; 2021 2022 if (cur_pos < sbi->blocks_per_seg) 2023 goto find_next; 2024 2025 release_discard_addr(entry); 2026 dcc->nr_discards -= total_len; 2027 } 2028 2029 wake_up_discard_thread(sbi, false); 2030 } 2031 2032 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2033 { 2034 dev_t dev = sbi->sb->s_bdev->bd_dev; 2035 struct discard_cmd_control *dcc; 2036 int err = 0, i; 2037 2038 if (SM_I(sbi)->dcc_info) { 2039 dcc = SM_I(sbi)->dcc_info; 2040 goto init_thread; 2041 } 2042 2043 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2044 if (!dcc) 2045 return -ENOMEM; 2046 2047 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2048 INIT_LIST_HEAD(&dcc->entry_list); 2049 for (i = 0; i < MAX_PLIST_NUM; i++) 2050 INIT_LIST_HEAD(&dcc->pend_list[i]); 2051 INIT_LIST_HEAD(&dcc->wait_list); 2052 INIT_LIST_HEAD(&dcc->fstrim_list); 2053 mutex_init(&dcc->cmd_lock); 2054 atomic_set(&dcc->issued_discard, 0); 2055 atomic_set(&dcc->queued_discard, 0); 2056 atomic_set(&dcc->discard_cmd_cnt, 0); 2057 dcc->nr_discards = 0; 2058 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2059 dcc->undiscard_blks = 0; 2060 dcc->next_pos = 0; 2061 dcc->root = RB_ROOT_CACHED; 2062 dcc->rbtree_check = false; 2063 2064 init_waitqueue_head(&dcc->discard_wait_queue); 2065 SM_I(sbi)->dcc_info = dcc; 2066 init_thread: 2067 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2068 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2069 if (IS_ERR(dcc->f2fs_issue_discard)) { 2070 err = PTR_ERR(dcc->f2fs_issue_discard); 2071 kvfree(dcc); 2072 SM_I(sbi)->dcc_info = NULL; 2073 return err; 2074 } 2075 2076 return err; 2077 } 2078 2079 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2080 { 2081 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2082 2083 if (!dcc) 2084 return; 2085 2086 f2fs_stop_discard_thread(sbi); 2087 2088 /* 2089 * Recovery can cache discard commands, so in error path of 2090 * fill_super(), it needs to give a chance to handle them. 2091 */ 2092 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2093 f2fs_issue_discard_timeout(sbi); 2094 2095 kvfree(dcc); 2096 SM_I(sbi)->dcc_info = NULL; 2097 } 2098 2099 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2100 { 2101 struct sit_info *sit_i = SIT_I(sbi); 2102 2103 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2104 sit_i->dirty_sentries++; 2105 return false; 2106 } 2107 2108 return true; 2109 } 2110 2111 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2112 unsigned int segno, int modified) 2113 { 2114 struct seg_entry *se = get_seg_entry(sbi, segno); 2115 se->type = type; 2116 if (modified) 2117 __mark_sit_entry_dirty(sbi, segno); 2118 } 2119 2120 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2121 { 2122 struct seg_entry *se; 2123 unsigned int segno, offset; 2124 long int new_vblocks; 2125 bool exist; 2126 #ifdef CONFIG_F2FS_CHECK_FS 2127 bool mir_exist; 2128 #endif 2129 2130 segno = GET_SEGNO(sbi, blkaddr); 2131 2132 se = get_seg_entry(sbi, segno); 2133 new_vblocks = se->valid_blocks + del; 2134 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2135 2136 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2137 (new_vblocks > sbi->blocks_per_seg))); 2138 2139 se->valid_blocks = new_vblocks; 2140 se->mtime = get_mtime(sbi, false); 2141 if (se->mtime > SIT_I(sbi)->max_mtime) 2142 SIT_I(sbi)->max_mtime = se->mtime; 2143 2144 /* Update valid block bitmap */ 2145 if (del > 0) { 2146 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2147 #ifdef CONFIG_F2FS_CHECK_FS 2148 mir_exist = f2fs_test_and_set_bit(offset, 2149 se->cur_valid_map_mir); 2150 if (unlikely(exist != mir_exist)) { 2151 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2152 blkaddr, exist); 2153 f2fs_bug_on(sbi, 1); 2154 } 2155 #endif 2156 if (unlikely(exist)) { 2157 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2158 blkaddr); 2159 f2fs_bug_on(sbi, 1); 2160 se->valid_blocks--; 2161 del = 0; 2162 } 2163 2164 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2165 sbi->discard_blks--; 2166 2167 /* 2168 * SSR should never reuse block which is checkpointed 2169 * or newly invalidated. 2170 */ 2171 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2172 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2173 se->ckpt_valid_blocks++; 2174 } 2175 } else { 2176 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2177 #ifdef CONFIG_F2FS_CHECK_FS 2178 mir_exist = f2fs_test_and_clear_bit(offset, 2179 se->cur_valid_map_mir); 2180 if (unlikely(exist != mir_exist)) { 2181 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2182 blkaddr, exist); 2183 f2fs_bug_on(sbi, 1); 2184 } 2185 #endif 2186 if (unlikely(!exist)) { 2187 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2188 blkaddr); 2189 f2fs_bug_on(sbi, 1); 2190 se->valid_blocks++; 2191 del = 0; 2192 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2193 /* 2194 * If checkpoints are off, we must not reuse data that 2195 * was used in the previous checkpoint. If it was used 2196 * before, we must track that to know how much space we 2197 * really have. 2198 */ 2199 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2200 spin_lock(&sbi->stat_lock); 2201 sbi->unusable_block_count++; 2202 spin_unlock(&sbi->stat_lock); 2203 } 2204 } 2205 2206 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2207 sbi->discard_blks++; 2208 } 2209 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2210 se->ckpt_valid_blocks += del; 2211 2212 __mark_sit_entry_dirty(sbi, segno); 2213 2214 /* update total number of valid blocks to be written in ckpt area */ 2215 SIT_I(sbi)->written_valid_blocks += del; 2216 2217 if (__is_large_section(sbi)) 2218 get_sec_entry(sbi, segno)->valid_blocks += del; 2219 } 2220 2221 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2222 { 2223 unsigned int segno = GET_SEGNO(sbi, addr); 2224 struct sit_info *sit_i = SIT_I(sbi); 2225 2226 f2fs_bug_on(sbi, addr == NULL_ADDR); 2227 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2228 return; 2229 2230 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2231 2232 /* add it into sit main buffer */ 2233 down_write(&sit_i->sentry_lock); 2234 2235 update_sit_entry(sbi, addr, -1); 2236 2237 /* add it into dirty seglist */ 2238 locate_dirty_segment(sbi, segno); 2239 2240 up_write(&sit_i->sentry_lock); 2241 } 2242 2243 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2244 { 2245 struct sit_info *sit_i = SIT_I(sbi); 2246 unsigned int segno, offset; 2247 struct seg_entry *se; 2248 bool is_cp = false; 2249 2250 if (!__is_valid_data_blkaddr(blkaddr)) 2251 return true; 2252 2253 down_read(&sit_i->sentry_lock); 2254 2255 segno = GET_SEGNO(sbi, blkaddr); 2256 se = get_seg_entry(sbi, segno); 2257 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2258 2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2260 is_cp = true; 2261 2262 up_read(&sit_i->sentry_lock); 2263 2264 return is_cp; 2265 } 2266 2267 /* 2268 * This function should be resided under the curseg_mutex lock 2269 */ 2270 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2271 struct f2fs_summary *sum) 2272 { 2273 struct curseg_info *curseg = CURSEG_I(sbi, type); 2274 void *addr = curseg->sum_blk; 2275 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2276 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2277 } 2278 2279 /* 2280 * Calculate the number of current summary pages for writing 2281 */ 2282 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2283 { 2284 int valid_sum_count = 0; 2285 int i, sum_in_page; 2286 2287 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2288 if (sbi->ckpt->alloc_type[i] == SSR) 2289 valid_sum_count += sbi->blocks_per_seg; 2290 else { 2291 if (for_ra) 2292 valid_sum_count += le16_to_cpu( 2293 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2294 else 2295 valid_sum_count += curseg_blkoff(sbi, i); 2296 } 2297 } 2298 2299 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2300 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2301 if (valid_sum_count <= sum_in_page) 2302 return 1; 2303 else if ((valid_sum_count - sum_in_page) <= 2304 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2305 return 2; 2306 return 3; 2307 } 2308 2309 /* 2310 * Caller should put this summary page 2311 */ 2312 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2313 { 2314 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2315 } 2316 2317 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2318 void *src, block_t blk_addr) 2319 { 2320 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2321 2322 memcpy(page_address(page), src, PAGE_SIZE); 2323 set_page_dirty(page); 2324 f2fs_put_page(page, 1); 2325 } 2326 2327 static void write_sum_page(struct f2fs_sb_info *sbi, 2328 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2329 { 2330 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2331 } 2332 2333 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2334 int type, block_t blk_addr) 2335 { 2336 struct curseg_info *curseg = CURSEG_I(sbi, type); 2337 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2338 struct f2fs_summary_block *src = curseg->sum_blk; 2339 struct f2fs_summary_block *dst; 2340 2341 dst = (struct f2fs_summary_block *)page_address(page); 2342 memset(dst, 0, PAGE_SIZE); 2343 2344 mutex_lock(&curseg->curseg_mutex); 2345 2346 down_read(&curseg->journal_rwsem); 2347 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2348 up_read(&curseg->journal_rwsem); 2349 2350 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2351 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2352 2353 mutex_unlock(&curseg->curseg_mutex); 2354 2355 set_page_dirty(page); 2356 f2fs_put_page(page, 1); 2357 } 2358 2359 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2360 { 2361 struct curseg_info *curseg = CURSEG_I(sbi, type); 2362 unsigned int segno = curseg->segno + 1; 2363 struct free_segmap_info *free_i = FREE_I(sbi); 2364 2365 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2366 return !test_bit(segno, free_i->free_segmap); 2367 return 0; 2368 } 2369 2370 /* 2371 * Find a new segment from the free segments bitmap to right order 2372 * This function should be returned with success, otherwise BUG 2373 */ 2374 static void get_new_segment(struct f2fs_sb_info *sbi, 2375 unsigned int *newseg, bool new_sec, int dir) 2376 { 2377 struct free_segmap_info *free_i = FREE_I(sbi); 2378 unsigned int segno, secno, zoneno; 2379 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2380 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2381 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2382 unsigned int left_start = hint; 2383 bool init = true; 2384 int go_left = 0; 2385 int i; 2386 2387 spin_lock(&free_i->segmap_lock); 2388 2389 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2390 segno = find_next_zero_bit(free_i->free_segmap, 2391 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2392 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2393 goto got_it; 2394 } 2395 find_other_zone: 2396 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2397 if (secno >= MAIN_SECS(sbi)) { 2398 if (dir == ALLOC_RIGHT) { 2399 secno = find_next_zero_bit(free_i->free_secmap, 2400 MAIN_SECS(sbi), 0); 2401 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2402 } else { 2403 go_left = 1; 2404 left_start = hint - 1; 2405 } 2406 } 2407 if (go_left == 0) 2408 goto skip_left; 2409 2410 while (test_bit(left_start, free_i->free_secmap)) { 2411 if (left_start > 0) { 2412 left_start--; 2413 continue; 2414 } 2415 left_start = find_next_zero_bit(free_i->free_secmap, 2416 MAIN_SECS(sbi), 0); 2417 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2418 break; 2419 } 2420 secno = left_start; 2421 skip_left: 2422 segno = GET_SEG_FROM_SEC(sbi, secno); 2423 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2424 2425 /* give up on finding another zone */ 2426 if (!init) 2427 goto got_it; 2428 if (sbi->secs_per_zone == 1) 2429 goto got_it; 2430 if (zoneno == old_zoneno) 2431 goto got_it; 2432 if (dir == ALLOC_LEFT) { 2433 if (!go_left && zoneno + 1 >= total_zones) 2434 goto got_it; 2435 if (go_left && zoneno == 0) 2436 goto got_it; 2437 } 2438 for (i = 0; i < NR_CURSEG_TYPE; i++) 2439 if (CURSEG_I(sbi, i)->zone == zoneno) 2440 break; 2441 2442 if (i < NR_CURSEG_TYPE) { 2443 /* zone is in user, try another */ 2444 if (go_left) 2445 hint = zoneno * sbi->secs_per_zone - 1; 2446 else if (zoneno + 1 >= total_zones) 2447 hint = 0; 2448 else 2449 hint = (zoneno + 1) * sbi->secs_per_zone; 2450 init = false; 2451 goto find_other_zone; 2452 } 2453 got_it: 2454 /* set it as dirty segment in free segmap */ 2455 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2456 __set_inuse(sbi, segno); 2457 *newseg = segno; 2458 spin_unlock(&free_i->segmap_lock); 2459 } 2460 2461 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2462 { 2463 struct curseg_info *curseg = CURSEG_I(sbi, type); 2464 struct summary_footer *sum_footer; 2465 2466 curseg->segno = curseg->next_segno; 2467 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2468 curseg->next_blkoff = 0; 2469 curseg->next_segno = NULL_SEGNO; 2470 2471 sum_footer = &(curseg->sum_blk->footer); 2472 memset(sum_footer, 0, sizeof(struct summary_footer)); 2473 if (IS_DATASEG(type)) 2474 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2475 if (IS_NODESEG(type)) 2476 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2477 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2478 } 2479 2480 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2481 { 2482 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2483 if (__is_large_section(sbi)) 2484 return CURSEG_I(sbi, type)->segno; 2485 2486 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2487 return 0; 2488 2489 if (test_opt(sbi, NOHEAP) && 2490 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2491 return 0; 2492 2493 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2494 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2495 2496 /* find segments from 0 to reuse freed segments */ 2497 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2498 return 0; 2499 2500 return CURSEG_I(sbi, type)->segno; 2501 } 2502 2503 /* 2504 * Allocate a current working segment. 2505 * This function always allocates a free segment in LFS manner. 2506 */ 2507 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2508 { 2509 struct curseg_info *curseg = CURSEG_I(sbi, type); 2510 unsigned int segno = curseg->segno; 2511 int dir = ALLOC_LEFT; 2512 2513 write_sum_page(sbi, curseg->sum_blk, 2514 GET_SUM_BLOCK(sbi, segno)); 2515 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2516 dir = ALLOC_RIGHT; 2517 2518 if (test_opt(sbi, NOHEAP)) 2519 dir = ALLOC_RIGHT; 2520 2521 segno = __get_next_segno(sbi, type); 2522 get_new_segment(sbi, &segno, new_sec, dir); 2523 curseg->next_segno = segno; 2524 reset_curseg(sbi, type, 1); 2525 curseg->alloc_type = LFS; 2526 } 2527 2528 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2529 struct curseg_info *seg, block_t start) 2530 { 2531 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2532 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2533 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2534 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2535 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2536 int i, pos; 2537 2538 for (i = 0; i < entries; i++) 2539 target_map[i] = ckpt_map[i] | cur_map[i]; 2540 2541 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2542 2543 seg->next_blkoff = pos; 2544 } 2545 2546 /* 2547 * If a segment is written by LFS manner, next block offset is just obtained 2548 * by increasing the current block offset. However, if a segment is written by 2549 * SSR manner, next block offset obtained by calling __next_free_blkoff 2550 */ 2551 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2552 struct curseg_info *seg) 2553 { 2554 if (seg->alloc_type == SSR) 2555 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2556 else 2557 seg->next_blkoff++; 2558 } 2559 2560 /* 2561 * This function always allocates a used segment(from dirty seglist) by SSR 2562 * manner, so it should recover the existing segment information of valid blocks 2563 */ 2564 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2565 { 2566 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2567 struct curseg_info *curseg = CURSEG_I(sbi, type); 2568 unsigned int new_segno = curseg->next_segno; 2569 struct f2fs_summary_block *sum_node; 2570 struct page *sum_page; 2571 2572 write_sum_page(sbi, curseg->sum_blk, 2573 GET_SUM_BLOCK(sbi, curseg->segno)); 2574 __set_test_and_inuse(sbi, new_segno); 2575 2576 mutex_lock(&dirty_i->seglist_lock); 2577 __remove_dirty_segment(sbi, new_segno, PRE); 2578 __remove_dirty_segment(sbi, new_segno, DIRTY); 2579 mutex_unlock(&dirty_i->seglist_lock); 2580 2581 reset_curseg(sbi, type, 1); 2582 curseg->alloc_type = SSR; 2583 __next_free_blkoff(sbi, curseg, 0); 2584 2585 sum_page = f2fs_get_sum_page(sbi, new_segno); 2586 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2587 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2588 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2589 f2fs_put_page(sum_page, 1); 2590 } 2591 2592 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2593 { 2594 struct curseg_info *curseg = CURSEG_I(sbi, type); 2595 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2596 unsigned segno = NULL_SEGNO; 2597 int i, cnt; 2598 bool reversed = false; 2599 2600 /* f2fs_need_SSR() already forces to do this */ 2601 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2602 curseg->next_segno = segno; 2603 return 1; 2604 } 2605 2606 /* For node segments, let's do SSR more intensively */ 2607 if (IS_NODESEG(type)) { 2608 if (type >= CURSEG_WARM_NODE) { 2609 reversed = true; 2610 i = CURSEG_COLD_NODE; 2611 } else { 2612 i = CURSEG_HOT_NODE; 2613 } 2614 cnt = NR_CURSEG_NODE_TYPE; 2615 } else { 2616 if (type >= CURSEG_WARM_DATA) { 2617 reversed = true; 2618 i = CURSEG_COLD_DATA; 2619 } else { 2620 i = CURSEG_HOT_DATA; 2621 } 2622 cnt = NR_CURSEG_DATA_TYPE; 2623 } 2624 2625 for (; cnt-- > 0; reversed ? i-- : i++) { 2626 if (i == type) 2627 continue; 2628 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2629 curseg->next_segno = segno; 2630 return 1; 2631 } 2632 } 2633 2634 /* find valid_blocks=0 in dirty list */ 2635 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2636 segno = get_free_segment(sbi); 2637 if (segno != NULL_SEGNO) { 2638 curseg->next_segno = segno; 2639 return 1; 2640 } 2641 } 2642 return 0; 2643 } 2644 2645 /* 2646 * flush out current segment and replace it with new segment 2647 * This function should be returned with success, otherwise BUG 2648 */ 2649 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2650 int type, bool force) 2651 { 2652 struct curseg_info *curseg = CURSEG_I(sbi, type); 2653 2654 if (force) 2655 new_curseg(sbi, type, true); 2656 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2657 type == CURSEG_WARM_NODE) 2658 new_curseg(sbi, type, false); 2659 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2660 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2661 new_curseg(sbi, type, false); 2662 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2663 change_curseg(sbi, type); 2664 else 2665 new_curseg(sbi, type, false); 2666 2667 stat_inc_seg_type(sbi, curseg); 2668 } 2669 2670 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2671 unsigned int start, unsigned int end) 2672 { 2673 struct curseg_info *curseg = CURSEG_I(sbi, type); 2674 unsigned int segno; 2675 2676 down_read(&SM_I(sbi)->curseg_lock); 2677 mutex_lock(&curseg->curseg_mutex); 2678 down_write(&SIT_I(sbi)->sentry_lock); 2679 2680 segno = CURSEG_I(sbi, type)->segno; 2681 if (segno < start || segno > end) 2682 goto unlock; 2683 2684 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2685 change_curseg(sbi, type); 2686 else 2687 new_curseg(sbi, type, true); 2688 2689 stat_inc_seg_type(sbi, curseg); 2690 2691 locate_dirty_segment(sbi, segno); 2692 unlock: 2693 up_write(&SIT_I(sbi)->sentry_lock); 2694 2695 if (segno != curseg->segno) 2696 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2697 type, segno, curseg->segno); 2698 2699 mutex_unlock(&curseg->curseg_mutex); 2700 up_read(&SM_I(sbi)->curseg_lock); 2701 } 2702 2703 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type) 2704 { 2705 struct curseg_info *curseg; 2706 unsigned int old_segno; 2707 int i; 2708 2709 down_write(&SIT_I(sbi)->sentry_lock); 2710 2711 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2712 if (type != NO_CHECK_TYPE && i != type) 2713 continue; 2714 2715 curseg = CURSEG_I(sbi, i); 2716 if (type == NO_CHECK_TYPE || curseg->next_blkoff || 2717 get_valid_blocks(sbi, curseg->segno, false) || 2718 get_ckpt_valid_blocks(sbi, curseg->segno)) { 2719 old_segno = curseg->segno; 2720 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2721 locate_dirty_segment(sbi, old_segno); 2722 } 2723 } 2724 2725 up_write(&SIT_I(sbi)->sentry_lock); 2726 } 2727 2728 static const struct segment_allocation default_salloc_ops = { 2729 .allocate_segment = allocate_segment_by_default, 2730 }; 2731 2732 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2733 struct cp_control *cpc) 2734 { 2735 __u64 trim_start = cpc->trim_start; 2736 bool has_candidate = false; 2737 2738 down_write(&SIT_I(sbi)->sentry_lock); 2739 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2740 if (add_discard_addrs(sbi, cpc, true)) { 2741 has_candidate = true; 2742 break; 2743 } 2744 } 2745 up_write(&SIT_I(sbi)->sentry_lock); 2746 2747 cpc->trim_start = trim_start; 2748 return has_candidate; 2749 } 2750 2751 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2752 struct discard_policy *dpolicy, 2753 unsigned int start, unsigned int end) 2754 { 2755 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2756 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2757 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2758 struct discard_cmd *dc; 2759 struct blk_plug plug; 2760 int issued; 2761 unsigned int trimmed = 0; 2762 2763 next: 2764 issued = 0; 2765 2766 mutex_lock(&dcc->cmd_lock); 2767 if (unlikely(dcc->rbtree_check)) 2768 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2769 &dcc->root)); 2770 2771 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2772 NULL, start, 2773 (struct rb_entry **)&prev_dc, 2774 (struct rb_entry **)&next_dc, 2775 &insert_p, &insert_parent, true, NULL); 2776 if (!dc) 2777 dc = next_dc; 2778 2779 blk_start_plug(&plug); 2780 2781 while (dc && dc->lstart <= end) { 2782 struct rb_node *node; 2783 int err = 0; 2784 2785 if (dc->len < dpolicy->granularity) 2786 goto skip; 2787 2788 if (dc->state != D_PREP) { 2789 list_move_tail(&dc->list, &dcc->fstrim_list); 2790 goto skip; 2791 } 2792 2793 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2794 2795 if (issued >= dpolicy->max_requests) { 2796 start = dc->lstart + dc->len; 2797 2798 if (err) 2799 __remove_discard_cmd(sbi, dc); 2800 2801 blk_finish_plug(&plug); 2802 mutex_unlock(&dcc->cmd_lock); 2803 trimmed += __wait_all_discard_cmd(sbi, NULL); 2804 congestion_wait(BLK_RW_ASYNC, HZ/50); 2805 goto next; 2806 } 2807 skip: 2808 node = rb_next(&dc->rb_node); 2809 if (err) 2810 __remove_discard_cmd(sbi, dc); 2811 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2812 2813 if (fatal_signal_pending(current)) 2814 break; 2815 } 2816 2817 blk_finish_plug(&plug); 2818 mutex_unlock(&dcc->cmd_lock); 2819 2820 return trimmed; 2821 } 2822 2823 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2824 { 2825 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2826 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2827 unsigned int start_segno, end_segno; 2828 block_t start_block, end_block; 2829 struct cp_control cpc; 2830 struct discard_policy dpolicy; 2831 unsigned long long trimmed = 0; 2832 int err = 0; 2833 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2834 2835 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2836 return -EINVAL; 2837 2838 if (end < MAIN_BLKADDR(sbi)) 2839 goto out; 2840 2841 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2842 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2843 return -EFSCORRUPTED; 2844 } 2845 2846 /* start/end segment number in main_area */ 2847 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2848 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2849 GET_SEGNO(sbi, end); 2850 if (need_align) { 2851 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2852 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2853 } 2854 2855 cpc.reason = CP_DISCARD; 2856 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2857 cpc.trim_start = start_segno; 2858 cpc.trim_end = end_segno; 2859 2860 if (sbi->discard_blks == 0) 2861 goto out; 2862 2863 down_write(&sbi->gc_lock); 2864 err = f2fs_write_checkpoint(sbi, &cpc); 2865 up_write(&sbi->gc_lock); 2866 if (err) 2867 goto out; 2868 2869 /* 2870 * We filed discard candidates, but actually we don't need to wait for 2871 * all of them, since they'll be issued in idle time along with runtime 2872 * discard option. User configuration looks like using runtime discard 2873 * or periodic fstrim instead of it. 2874 */ 2875 if (f2fs_realtime_discard_enable(sbi)) 2876 goto out; 2877 2878 start_block = START_BLOCK(sbi, start_segno); 2879 end_block = START_BLOCK(sbi, end_segno + 1); 2880 2881 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2882 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2883 start_block, end_block); 2884 2885 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2886 start_block, end_block); 2887 out: 2888 if (!err) 2889 range->len = F2FS_BLK_TO_BYTES(trimmed); 2890 return err; 2891 } 2892 2893 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2894 { 2895 struct curseg_info *curseg = CURSEG_I(sbi, type); 2896 if (curseg->next_blkoff < sbi->blocks_per_seg) 2897 return true; 2898 return false; 2899 } 2900 2901 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2902 { 2903 switch (hint) { 2904 case WRITE_LIFE_SHORT: 2905 return CURSEG_HOT_DATA; 2906 case WRITE_LIFE_EXTREME: 2907 return CURSEG_COLD_DATA; 2908 default: 2909 return CURSEG_WARM_DATA; 2910 } 2911 } 2912 2913 /* This returns write hints for each segment type. This hints will be 2914 * passed down to block layer. There are mapping tables which depend on 2915 * the mount option 'whint_mode'. 2916 * 2917 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2918 * 2919 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2920 * 2921 * User F2FS Block 2922 * ---- ---- ----- 2923 * META WRITE_LIFE_NOT_SET 2924 * HOT_NODE " 2925 * WARM_NODE " 2926 * COLD_NODE " 2927 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2928 * extension list " " 2929 * 2930 * -- buffered io 2931 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2932 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2933 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2934 * WRITE_LIFE_NONE " " 2935 * WRITE_LIFE_MEDIUM " " 2936 * WRITE_LIFE_LONG " " 2937 * 2938 * -- direct io 2939 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2940 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2941 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2942 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2943 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2944 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2945 * 2946 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2947 * 2948 * User F2FS Block 2949 * ---- ---- ----- 2950 * META WRITE_LIFE_MEDIUM; 2951 * HOT_NODE WRITE_LIFE_NOT_SET 2952 * WARM_NODE " 2953 * COLD_NODE WRITE_LIFE_NONE 2954 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2955 * extension list " " 2956 * 2957 * -- buffered io 2958 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2959 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2960 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2961 * WRITE_LIFE_NONE " " 2962 * WRITE_LIFE_MEDIUM " " 2963 * WRITE_LIFE_LONG " " 2964 * 2965 * -- direct io 2966 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2967 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2968 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2969 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2970 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2971 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2972 */ 2973 2974 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2975 enum page_type type, enum temp_type temp) 2976 { 2977 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2978 if (type == DATA) { 2979 if (temp == WARM) 2980 return WRITE_LIFE_NOT_SET; 2981 else if (temp == HOT) 2982 return WRITE_LIFE_SHORT; 2983 else if (temp == COLD) 2984 return WRITE_LIFE_EXTREME; 2985 } else { 2986 return WRITE_LIFE_NOT_SET; 2987 } 2988 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2989 if (type == DATA) { 2990 if (temp == WARM) 2991 return WRITE_LIFE_LONG; 2992 else if (temp == HOT) 2993 return WRITE_LIFE_SHORT; 2994 else if (temp == COLD) 2995 return WRITE_LIFE_EXTREME; 2996 } else if (type == NODE) { 2997 if (temp == WARM || temp == HOT) 2998 return WRITE_LIFE_NOT_SET; 2999 else if (temp == COLD) 3000 return WRITE_LIFE_NONE; 3001 } else if (type == META) { 3002 return WRITE_LIFE_MEDIUM; 3003 } 3004 } 3005 return WRITE_LIFE_NOT_SET; 3006 } 3007 3008 static int __get_segment_type_2(struct f2fs_io_info *fio) 3009 { 3010 if (fio->type == DATA) 3011 return CURSEG_HOT_DATA; 3012 else 3013 return CURSEG_HOT_NODE; 3014 } 3015 3016 static int __get_segment_type_4(struct f2fs_io_info *fio) 3017 { 3018 if (fio->type == DATA) { 3019 struct inode *inode = fio->page->mapping->host; 3020 3021 if (S_ISDIR(inode->i_mode)) 3022 return CURSEG_HOT_DATA; 3023 else 3024 return CURSEG_COLD_DATA; 3025 } else { 3026 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3027 return CURSEG_WARM_NODE; 3028 else 3029 return CURSEG_COLD_NODE; 3030 } 3031 } 3032 3033 static int __get_segment_type_6(struct f2fs_io_info *fio) 3034 { 3035 if (fio->type == DATA) { 3036 struct inode *inode = fio->page->mapping->host; 3037 3038 if (is_cold_data(fio->page) || file_is_cold(inode) || 3039 f2fs_compressed_file(inode)) 3040 return CURSEG_COLD_DATA; 3041 if (file_is_hot(inode) || 3042 is_inode_flag_set(inode, FI_HOT_DATA) || 3043 f2fs_is_atomic_file(inode) || 3044 f2fs_is_volatile_file(inode)) 3045 return CURSEG_HOT_DATA; 3046 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3047 } else { 3048 if (IS_DNODE(fio->page)) 3049 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3050 CURSEG_HOT_NODE; 3051 return CURSEG_COLD_NODE; 3052 } 3053 } 3054 3055 static int __get_segment_type(struct f2fs_io_info *fio) 3056 { 3057 int type = 0; 3058 3059 switch (F2FS_OPTION(fio->sbi).active_logs) { 3060 case 2: 3061 type = __get_segment_type_2(fio); 3062 break; 3063 case 4: 3064 type = __get_segment_type_4(fio); 3065 break; 3066 case 6: 3067 type = __get_segment_type_6(fio); 3068 break; 3069 default: 3070 f2fs_bug_on(fio->sbi, true); 3071 } 3072 3073 if (IS_HOT(type)) 3074 fio->temp = HOT; 3075 else if (IS_WARM(type)) 3076 fio->temp = WARM; 3077 else 3078 fio->temp = COLD; 3079 return type; 3080 } 3081 3082 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3083 block_t old_blkaddr, block_t *new_blkaddr, 3084 struct f2fs_summary *sum, int type, 3085 struct f2fs_io_info *fio, bool add_list) 3086 { 3087 struct sit_info *sit_i = SIT_I(sbi); 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 bool put_pin_sem = false; 3090 3091 if (type == CURSEG_COLD_DATA) { 3092 /* GC during CURSEG_COLD_DATA_PINNED allocation */ 3093 if (down_read_trylock(&sbi->pin_sem)) { 3094 put_pin_sem = true; 3095 } else { 3096 type = CURSEG_WARM_DATA; 3097 curseg = CURSEG_I(sbi, type); 3098 } 3099 } else if (type == CURSEG_COLD_DATA_PINNED) { 3100 type = CURSEG_COLD_DATA; 3101 } 3102 3103 down_read(&SM_I(sbi)->curseg_lock); 3104 3105 mutex_lock(&curseg->curseg_mutex); 3106 down_write(&sit_i->sentry_lock); 3107 3108 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3109 3110 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3111 3112 /* 3113 * __add_sum_entry should be resided under the curseg_mutex 3114 * because, this function updates a summary entry in the 3115 * current summary block. 3116 */ 3117 __add_sum_entry(sbi, type, sum); 3118 3119 __refresh_next_blkoff(sbi, curseg); 3120 3121 stat_inc_block_count(sbi, curseg); 3122 3123 /* 3124 * SIT information should be updated before segment allocation, 3125 * since SSR needs latest valid block information. 3126 */ 3127 update_sit_entry(sbi, *new_blkaddr, 1); 3128 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3129 update_sit_entry(sbi, old_blkaddr, -1); 3130 3131 if (!__has_curseg_space(sbi, type)) 3132 sit_i->s_ops->allocate_segment(sbi, type, false); 3133 3134 /* 3135 * segment dirty status should be updated after segment allocation, 3136 * so we just need to update status only one time after previous 3137 * segment being closed. 3138 */ 3139 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3140 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3141 3142 up_write(&sit_i->sentry_lock); 3143 3144 if (page && IS_NODESEG(type)) { 3145 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3146 3147 f2fs_inode_chksum_set(sbi, page); 3148 } 3149 3150 if (F2FS_IO_ALIGNED(sbi)) 3151 fio->retry = false; 3152 3153 if (add_list) { 3154 struct f2fs_bio_info *io; 3155 3156 INIT_LIST_HEAD(&fio->list); 3157 fio->in_list = true; 3158 io = sbi->write_io[fio->type] + fio->temp; 3159 spin_lock(&io->io_lock); 3160 list_add_tail(&fio->list, &io->io_list); 3161 spin_unlock(&io->io_lock); 3162 } 3163 3164 mutex_unlock(&curseg->curseg_mutex); 3165 3166 up_read(&SM_I(sbi)->curseg_lock); 3167 3168 if (put_pin_sem) 3169 up_read(&sbi->pin_sem); 3170 } 3171 3172 static void update_device_state(struct f2fs_io_info *fio) 3173 { 3174 struct f2fs_sb_info *sbi = fio->sbi; 3175 unsigned int devidx; 3176 3177 if (!f2fs_is_multi_device(sbi)) 3178 return; 3179 3180 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3181 3182 /* update device state for fsync */ 3183 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3184 3185 /* update device state for checkpoint */ 3186 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3187 spin_lock(&sbi->dev_lock); 3188 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3189 spin_unlock(&sbi->dev_lock); 3190 } 3191 } 3192 3193 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3194 { 3195 int type = __get_segment_type(fio); 3196 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3197 3198 if (keep_order) 3199 down_read(&fio->sbi->io_order_lock); 3200 reallocate: 3201 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3202 &fio->new_blkaddr, sum, type, fio, true); 3203 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3204 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3205 fio->old_blkaddr, fio->old_blkaddr); 3206 3207 /* writeout dirty page into bdev */ 3208 f2fs_submit_page_write(fio); 3209 if (fio->retry) { 3210 fio->old_blkaddr = fio->new_blkaddr; 3211 goto reallocate; 3212 } 3213 3214 update_device_state(fio); 3215 3216 if (keep_order) 3217 up_read(&fio->sbi->io_order_lock); 3218 } 3219 3220 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3221 enum iostat_type io_type) 3222 { 3223 struct f2fs_io_info fio = { 3224 .sbi = sbi, 3225 .type = META, 3226 .temp = HOT, 3227 .op = REQ_OP_WRITE, 3228 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3229 .old_blkaddr = page->index, 3230 .new_blkaddr = page->index, 3231 .page = page, 3232 .encrypted_page = NULL, 3233 .in_list = false, 3234 }; 3235 3236 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3237 fio.op_flags &= ~REQ_META; 3238 3239 set_page_writeback(page); 3240 ClearPageError(page); 3241 f2fs_submit_page_write(&fio); 3242 3243 stat_inc_meta_count(sbi, page->index); 3244 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3245 } 3246 3247 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3248 { 3249 struct f2fs_summary sum; 3250 3251 set_summary(&sum, nid, 0, 0); 3252 do_write_page(&sum, fio); 3253 3254 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3255 } 3256 3257 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3258 struct f2fs_io_info *fio) 3259 { 3260 struct f2fs_sb_info *sbi = fio->sbi; 3261 struct f2fs_summary sum; 3262 3263 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3264 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3265 do_write_page(&sum, fio); 3266 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3267 3268 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3269 } 3270 3271 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3272 { 3273 int err; 3274 struct f2fs_sb_info *sbi = fio->sbi; 3275 unsigned int segno; 3276 3277 fio->new_blkaddr = fio->old_blkaddr; 3278 /* i/o temperature is needed for passing down write hints */ 3279 __get_segment_type(fio); 3280 3281 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3282 3283 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3284 set_sbi_flag(sbi, SBI_NEED_FSCK); 3285 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3286 __func__, segno); 3287 return -EFSCORRUPTED; 3288 } 3289 3290 stat_inc_inplace_blocks(fio->sbi); 3291 3292 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3293 err = f2fs_merge_page_bio(fio); 3294 else 3295 err = f2fs_submit_page_bio(fio); 3296 if (!err) { 3297 update_device_state(fio); 3298 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3299 } 3300 3301 return err; 3302 } 3303 3304 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3305 unsigned int segno) 3306 { 3307 int i; 3308 3309 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3310 if (CURSEG_I(sbi, i)->segno == segno) 3311 break; 3312 } 3313 return i; 3314 } 3315 3316 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3317 block_t old_blkaddr, block_t new_blkaddr, 3318 bool recover_curseg, bool recover_newaddr) 3319 { 3320 struct sit_info *sit_i = SIT_I(sbi); 3321 struct curseg_info *curseg; 3322 unsigned int segno, old_cursegno; 3323 struct seg_entry *se; 3324 int type; 3325 unsigned short old_blkoff; 3326 3327 segno = GET_SEGNO(sbi, new_blkaddr); 3328 se = get_seg_entry(sbi, segno); 3329 type = se->type; 3330 3331 down_write(&SM_I(sbi)->curseg_lock); 3332 3333 if (!recover_curseg) { 3334 /* for recovery flow */ 3335 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3336 if (old_blkaddr == NULL_ADDR) 3337 type = CURSEG_COLD_DATA; 3338 else 3339 type = CURSEG_WARM_DATA; 3340 } 3341 } else { 3342 if (IS_CURSEG(sbi, segno)) { 3343 /* se->type is volatile as SSR allocation */ 3344 type = __f2fs_get_curseg(sbi, segno); 3345 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3346 } else { 3347 type = CURSEG_WARM_DATA; 3348 } 3349 } 3350 3351 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3352 curseg = CURSEG_I(sbi, type); 3353 3354 mutex_lock(&curseg->curseg_mutex); 3355 down_write(&sit_i->sentry_lock); 3356 3357 old_cursegno = curseg->segno; 3358 old_blkoff = curseg->next_blkoff; 3359 3360 /* change the current segment */ 3361 if (segno != curseg->segno) { 3362 curseg->next_segno = segno; 3363 change_curseg(sbi, type); 3364 } 3365 3366 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3367 __add_sum_entry(sbi, type, sum); 3368 3369 if (!recover_curseg || recover_newaddr) 3370 update_sit_entry(sbi, new_blkaddr, 1); 3371 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3372 invalidate_mapping_pages(META_MAPPING(sbi), 3373 old_blkaddr, old_blkaddr); 3374 update_sit_entry(sbi, old_blkaddr, -1); 3375 } 3376 3377 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3378 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3379 3380 locate_dirty_segment(sbi, old_cursegno); 3381 3382 if (recover_curseg) { 3383 if (old_cursegno != curseg->segno) { 3384 curseg->next_segno = old_cursegno; 3385 change_curseg(sbi, type); 3386 } 3387 curseg->next_blkoff = old_blkoff; 3388 } 3389 3390 up_write(&sit_i->sentry_lock); 3391 mutex_unlock(&curseg->curseg_mutex); 3392 up_write(&SM_I(sbi)->curseg_lock); 3393 } 3394 3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3396 block_t old_addr, block_t new_addr, 3397 unsigned char version, bool recover_curseg, 3398 bool recover_newaddr) 3399 { 3400 struct f2fs_summary sum; 3401 3402 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3403 3404 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3405 recover_curseg, recover_newaddr); 3406 3407 f2fs_update_data_blkaddr(dn, new_addr); 3408 } 3409 3410 void f2fs_wait_on_page_writeback(struct page *page, 3411 enum page_type type, bool ordered, bool locked) 3412 { 3413 if (PageWriteback(page)) { 3414 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3415 3416 /* submit cached LFS IO */ 3417 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3418 /* sbumit cached IPU IO */ 3419 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3420 if (ordered) { 3421 wait_on_page_writeback(page); 3422 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3423 } else { 3424 wait_for_stable_page(page); 3425 } 3426 } 3427 } 3428 3429 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3430 { 3431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3432 struct page *cpage; 3433 3434 if (!f2fs_post_read_required(inode)) 3435 return; 3436 3437 if (!__is_valid_data_blkaddr(blkaddr)) 3438 return; 3439 3440 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3441 if (cpage) { 3442 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3443 f2fs_put_page(cpage, 1); 3444 } 3445 } 3446 3447 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3448 block_t len) 3449 { 3450 block_t i; 3451 3452 for (i = 0; i < len; i++) 3453 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3454 } 3455 3456 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3457 { 3458 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3459 struct curseg_info *seg_i; 3460 unsigned char *kaddr; 3461 struct page *page; 3462 block_t start; 3463 int i, j, offset; 3464 3465 start = start_sum_block(sbi); 3466 3467 page = f2fs_get_meta_page(sbi, start++); 3468 if (IS_ERR(page)) 3469 return PTR_ERR(page); 3470 kaddr = (unsigned char *)page_address(page); 3471 3472 /* Step 1: restore nat cache */ 3473 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3474 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3475 3476 /* Step 2: restore sit cache */ 3477 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3478 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3479 offset = 2 * SUM_JOURNAL_SIZE; 3480 3481 /* Step 3: restore summary entries */ 3482 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3483 unsigned short blk_off; 3484 unsigned int segno; 3485 3486 seg_i = CURSEG_I(sbi, i); 3487 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3488 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3489 seg_i->next_segno = segno; 3490 reset_curseg(sbi, i, 0); 3491 seg_i->alloc_type = ckpt->alloc_type[i]; 3492 seg_i->next_blkoff = blk_off; 3493 3494 if (seg_i->alloc_type == SSR) 3495 blk_off = sbi->blocks_per_seg; 3496 3497 for (j = 0; j < blk_off; j++) { 3498 struct f2fs_summary *s; 3499 s = (struct f2fs_summary *)(kaddr + offset); 3500 seg_i->sum_blk->entries[j] = *s; 3501 offset += SUMMARY_SIZE; 3502 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3503 SUM_FOOTER_SIZE) 3504 continue; 3505 3506 f2fs_put_page(page, 1); 3507 page = NULL; 3508 3509 page = f2fs_get_meta_page(sbi, start++); 3510 if (IS_ERR(page)) 3511 return PTR_ERR(page); 3512 kaddr = (unsigned char *)page_address(page); 3513 offset = 0; 3514 } 3515 } 3516 f2fs_put_page(page, 1); 3517 return 0; 3518 } 3519 3520 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3521 { 3522 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3523 struct f2fs_summary_block *sum; 3524 struct curseg_info *curseg; 3525 struct page *new; 3526 unsigned short blk_off; 3527 unsigned int segno = 0; 3528 block_t blk_addr = 0; 3529 int err = 0; 3530 3531 /* get segment number and block addr */ 3532 if (IS_DATASEG(type)) { 3533 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3534 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3535 CURSEG_HOT_DATA]); 3536 if (__exist_node_summaries(sbi)) 3537 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3538 else 3539 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3540 } else { 3541 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3542 CURSEG_HOT_NODE]); 3543 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3544 CURSEG_HOT_NODE]); 3545 if (__exist_node_summaries(sbi)) 3546 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3547 type - CURSEG_HOT_NODE); 3548 else 3549 blk_addr = GET_SUM_BLOCK(sbi, segno); 3550 } 3551 3552 new = f2fs_get_meta_page(sbi, blk_addr); 3553 if (IS_ERR(new)) 3554 return PTR_ERR(new); 3555 sum = (struct f2fs_summary_block *)page_address(new); 3556 3557 if (IS_NODESEG(type)) { 3558 if (__exist_node_summaries(sbi)) { 3559 struct f2fs_summary *ns = &sum->entries[0]; 3560 int i; 3561 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3562 ns->version = 0; 3563 ns->ofs_in_node = 0; 3564 } 3565 } else { 3566 err = f2fs_restore_node_summary(sbi, segno, sum); 3567 if (err) 3568 goto out; 3569 } 3570 } 3571 3572 /* set uncompleted segment to curseg */ 3573 curseg = CURSEG_I(sbi, type); 3574 mutex_lock(&curseg->curseg_mutex); 3575 3576 /* update journal info */ 3577 down_write(&curseg->journal_rwsem); 3578 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3579 up_write(&curseg->journal_rwsem); 3580 3581 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3582 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3583 curseg->next_segno = segno; 3584 reset_curseg(sbi, type, 0); 3585 curseg->alloc_type = ckpt->alloc_type[type]; 3586 curseg->next_blkoff = blk_off; 3587 mutex_unlock(&curseg->curseg_mutex); 3588 out: 3589 f2fs_put_page(new, 1); 3590 return err; 3591 } 3592 3593 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3594 { 3595 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3596 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3597 int type = CURSEG_HOT_DATA; 3598 int err; 3599 3600 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3601 int npages = f2fs_npages_for_summary_flush(sbi, true); 3602 3603 if (npages >= 2) 3604 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3605 META_CP, true); 3606 3607 /* restore for compacted data summary */ 3608 err = read_compacted_summaries(sbi); 3609 if (err) 3610 return err; 3611 type = CURSEG_HOT_NODE; 3612 } 3613 3614 if (__exist_node_summaries(sbi)) 3615 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3616 NR_CURSEG_TYPE - type, META_CP, true); 3617 3618 for (; type <= CURSEG_COLD_NODE; type++) { 3619 err = read_normal_summaries(sbi, type); 3620 if (err) 3621 return err; 3622 } 3623 3624 /* sanity check for summary blocks */ 3625 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3626 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3627 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3628 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3629 return -EINVAL; 3630 } 3631 3632 return 0; 3633 } 3634 3635 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3636 { 3637 struct page *page; 3638 unsigned char *kaddr; 3639 struct f2fs_summary *summary; 3640 struct curseg_info *seg_i; 3641 int written_size = 0; 3642 int i, j; 3643 3644 page = f2fs_grab_meta_page(sbi, blkaddr++); 3645 kaddr = (unsigned char *)page_address(page); 3646 memset(kaddr, 0, PAGE_SIZE); 3647 3648 /* Step 1: write nat cache */ 3649 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3650 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3651 written_size += SUM_JOURNAL_SIZE; 3652 3653 /* Step 2: write sit cache */ 3654 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3655 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3656 written_size += SUM_JOURNAL_SIZE; 3657 3658 /* Step 3: write summary entries */ 3659 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3660 unsigned short blkoff; 3661 seg_i = CURSEG_I(sbi, i); 3662 if (sbi->ckpt->alloc_type[i] == SSR) 3663 blkoff = sbi->blocks_per_seg; 3664 else 3665 blkoff = curseg_blkoff(sbi, i); 3666 3667 for (j = 0; j < blkoff; j++) { 3668 if (!page) { 3669 page = f2fs_grab_meta_page(sbi, blkaddr++); 3670 kaddr = (unsigned char *)page_address(page); 3671 memset(kaddr, 0, PAGE_SIZE); 3672 written_size = 0; 3673 } 3674 summary = (struct f2fs_summary *)(kaddr + written_size); 3675 *summary = seg_i->sum_blk->entries[j]; 3676 written_size += SUMMARY_SIZE; 3677 3678 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3679 SUM_FOOTER_SIZE) 3680 continue; 3681 3682 set_page_dirty(page); 3683 f2fs_put_page(page, 1); 3684 page = NULL; 3685 } 3686 } 3687 if (page) { 3688 set_page_dirty(page); 3689 f2fs_put_page(page, 1); 3690 } 3691 } 3692 3693 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3694 block_t blkaddr, int type) 3695 { 3696 int i, end; 3697 if (IS_DATASEG(type)) 3698 end = type + NR_CURSEG_DATA_TYPE; 3699 else 3700 end = type + NR_CURSEG_NODE_TYPE; 3701 3702 for (i = type; i < end; i++) 3703 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3704 } 3705 3706 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3707 { 3708 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3709 write_compacted_summaries(sbi, start_blk); 3710 else 3711 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3712 } 3713 3714 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3715 { 3716 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3717 } 3718 3719 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3720 unsigned int val, int alloc) 3721 { 3722 int i; 3723 3724 if (type == NAT_JOURNAL) { 3725 for (i = 0; i < nats_in_cursum(journal); i++) { 3726 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3727 return i; 3728 } 3729 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3730 return update_nats_in_cursum(journal, 1); 3731 } else if (type == SIT_JOURNAL) { 3732 for (i = 0; i < sits_in_cursum(journal); i++) 3733 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3734 return i; 3735 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3736 return update_sits_in_cursum(journal, 1); 3737 } 3738 return -1; 3739 } 3740 3741 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3742 unsigned int segno) 3743 { 3744 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3745 } 3746 3747 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3748 unsigned int start) 3749 { 3750 struct sit_info *sit_i = SIT_I(sbi); 3751 struct page *page; 3752 pgoff_t src_off, dst_off; 3753 3754 src_off = current_sit_addr(sbi, start); 3755 dst_off = next_sit_addr(sbi, src_off); 3756 3757 page = f2fs_grab_meta_page(sbi, dst_off); 3758 seg_info_to_sit_page(sbi, page, start); 3759 3760 set_page_dirty(page); 3761 set_to_next_sit(sit_i, start); 3762 3763 return page; 3764 } 3765 3766 static struct sit_entry_set *grab_sit_entry_set(void) 3767 { 3768 struct sit_entry_set *ses = 3769 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3770 3771 ses->entry_cnt = 0; 3772 INIT_LIST_HEAD(&ses->set_list); 3773 return ses; 3774 } 3775 3776 static void release_sit_entry_set(struct sit_entry_set *ses) 3777 { 3778 list_del(&ses->set_list); 3779 kmem_cache_free(sit_entry_set_slab, ses); 3780 } 3781 3782 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3783 struct list_head *head) 3784 { 3785 struct sit_entry_set *next = ses; 3786 3787 if (list_is_last(&ses->set_list, head)) 3788 return; 3789 3790 list_for_each_entry_continue(next, head, set_list) 3791 if (ses->entry_cnt <= next->entry_cnt) 3792 break; 3793 3794 list_move_tail(&ses->set_list, &next->set_list); 3795 } 3796 3797 static void add_sit_entry(unsigned int segno, struct list_head *head) 3798 { 3799 struct sit_entry_set *ses; 3800 unsigned int start_segno = START_SEGNO(segno); 3801 3802 list_for_each_entry(ses, head, set_list) { 3803 if (ses->start_segno == start_segno) { 3804 ses->entry_cnt++; 3805 adjust_sit_entry_set(ses, head); 3806 return; 3807 } 3808 } 3809 3810 ses = grab_sit_entry_set(); 3811 3812 ses->start_segno = start_segno; 3813 ses->entry_cnt++; 3814 list_add(&ses->set_list, head); 3815 } 3816 3817 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3818 { 3819 struct f2fs_sm_info *sm_info = SM_I(sbi); 3820 struct list_head *set_list = &sm_info->sit_entry_set; 3821 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3822 unsigned int segno; 3823 3824 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3825 add_sit_entry(segno, set_list); 3826 } 3827 3828 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3829 { 3830 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3831 struct f2fs_journal *journal = curseg->journal; 3832 int i; 3833 3834 down_write(&curseg->journal_rwsem); 3835 for (i = 0; i < sits_in_cursum(journal); i++) { 3836 unsigned int segno; 3837 bool dirtied; 3838 3839 segno = le32_to_cpu(segno_in_journal(journal, i)); 3840 dirtied = __mark_sit_entry_dirty(sbi, segno); 3841 3842 if (!dirtied) 3843 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3844 } 3845 update_sits_in_cursum(journal, -i); 3846 up_write(&curseg->journal_rwsem); 3847 } 3848 3849 /* 3850 * CP calls this function, which flushes SIT entries including sit_journal, 3851 * and moves prefree segs to free segs. 3852 */ 3853 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3854 { 3855 struct sit_info *sit_i = SIT_I(sbi); 3856 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3858 struct f2fs_journal *journal = curseg->journal; 3859 struct sit_entry_set *ses, *tmp; 3860 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3861 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3862 struct seg_entry *se; 3863 3864 down_write(&sit_i->sentry_lock); 3865 3866 if (!sit_i->dirty_sentries) 3867 goto out; 3868 3869 /* 3870 * add and account sit entries of dirty bitmap in sit entry 3871 * set temporarily 3872 */ 3873 add_sits_in_set(sbi); 3874 3875 /* 3876 * if there are no enough space in journal to store dirty sit 3877 * entries, remove all entries from journal and add and account 3878 * them in sit entry set. 3879 */ 3880 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3881 !to_journal) 3882 remove_sits_in_journal(sbi); 3883 3884 /* 3885 * there are two steps to flush sit entries: 3886 * #1, flush sit entries to journal in current cold data summary block. 3887 * #2, flush sit entries to sit page. 3888 */ 3889 list_for_each_entry_safe(ses, tmp, head, set_list) { 3890 struct page *page = NULL; 3891 struct f2fs_sit_block *raw_sit = NULL; 3892 unsigned int start_segno = ses->start_segno; 3893 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3894 (unsigned long)MAIN_SEGS(sbi)); 3895 unsigned int segno = start_segno; 3896 3897 if (to_journal && 3898 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3899 to_journal = false; 3900 3901 if (to_journal) { 3902 down_write(&curseg->journal_rwsem); 3903 } else { 3904 page = get_next_sit_page(sbi, start_segno); 3905 raw_sit = page_address(page); 3906 } 3907 3908 /* flush dirty sit entries in region of current sit set */ 3909 for_each_set_bit_from(segno, bitmap, end) { 3910 int offset, sit_offset; 3911 3912 se = get_seg_entry(sbi, segno); 3913 #ifdef CONFIG_F2FS_CHECK_FS 3914 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3915 SIT_VBLOCK_MAP_SIZE)) 3916 f2fs_bug_on(sbi, 1); 3917 #endif 3918 3919 /* add discard candidates */ 3920 if (!(cpc->reason & CP_DISCARD)) { 3921 cpc->trim_start = segno; 3922 add_discard_addrs(sbi, cpc, false); 3923 } 3924 3925 if (to_journal) { 3926 offset = f2fs_lookup_journal_in_cursum(journal, 3927 SIT_JOURNAL, segno, 1); 3928 f2fs_bug_on(sbi, offset < 0); 3929 segno_in_journal(journal, offset) = 3930 cpu_to_le32(segno); 3931 seg_info_to_raw_sit(se, 3932 &sit_in_journal(journal, offset)); 3933 check_block_count(sbi, segno, 3934 &sit_in_journal(journal, offset)); 3935 } else { 3936 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3937 seg_info_to_raw_sit(se, 3938 &raw_sit->entries[sit_offset]); 3939 check_block_count(sbi, segno, 3940 &raw_sit->entries[sit_offset]); 3941 } 3942 3943 __clear_bit(segno, bitmap); 3944 sit_i->dirty_sentries--; 3945 ses->entry_cnt--; 3946 } 3947 3948 if (to_journal) 3949 up_write(&curseg->journal_rwsem); 3950 else 3951 f2fs_put_page(page, 1); 3952 3953 f2fs_bug_on(sbi, ses->entry_cnt); 3954 release_sit_entry_set(ses); 3955 } 3956 3957 f2fs_bug_on(sbi, !list_empty(head)); 3958 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3959 out: 3960 if (cpc->reason & CP_DISCARD) { 3961 __u64 trim_start = cpc->trim_start; 3962 3963 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3964 add_discard_addrs(sbi, cpc, false); 3965 3966 cpc->trim_start = trim_start; 3967 } 3968 up_write(&sit_i->sentry_lock); 3969 3970 set_prefree_as_free_segments(sbi); 3971 } 3972 3973 static int build_sit_info(struct f2fs_sb_info *sbi) 3974 { 3975 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3976 struct sit_info *sit_i; 3977 unsigned int sit_segs, start; 3978 char *src_bitmap, *bitmap; 3979 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 3980 3981 /* allocate memory for SIT information */ 3982 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3983 if (!sit_i) 3984 return -ENOMEM; 3985 3986 SM_I(sbi)->sit_info = sit_i; 3987 3988 sit_i->sentries = 3989 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3990 MAIN_SEGS(sbi)), 3991 GFP_KERNEL); 3992 if (!sit_i->sentries) 3993 return -ENOMEM; 3994 3995 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3996 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 3997 GFP_KERNEL); 3998 if (!sit_i->dirty_sentries_bitmap) 3999 return -ENOMEM; 4000 4001 #ifdef CONFIG_F2FS_CHECK_FS 4002 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4003 #else 4004 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4005 #endif 4006 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4007 if (!sit_i->bitmap) 4008 return -ENOMEM; 4009 4010 bitmap = sit_i->bitmap; 4011 4012 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4013 sit_i->sentries[start].cur_valid_map = bitmap; 4014 bitmap += SIT_VBLOCK_MAP_SIZE; 4015 4016 sit_i->sentries[start].ckpt_valid_map = bitmap; 4017 bitmap += SIT_VBLOCK_MAP_SIZE; 4018 4019 #ifdef CONFIG_F2FS_CHECK_FS 4020 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4021 bitmap += SIT_VBLOCK_MAP_SIZE; 4022 #endif 4023 4024 sit_i->sentries[start].discard_map = bitmap; 4025 bitmap += SIT_VBLOCK_MAP_SIZE; 4026 } 4027 4028 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4029 if (!sit_i->tmp_map) 4030 return -ENOMEM; 4031 4032 if (__is_large_section(sbi)) { 4033 sit_i->sec_entries = 4034 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4035 MAIN_SECS(sbi)), 4036 GFP_KERNEL); 4037 if (!sit_i->sec_entries) 4038 return -ENOMEM; 4039 } 4040 4041 /* get information related with SIT */ 4042 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4043 4044 /* setup SIT bitmap from ckeckpoint pack */ 4045 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4046 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4047 4048 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4049 if (!sit_i->sit_bitmap) 4050 return -ENOMEM; 4051 4052 #ifdef CONFIG_F2FS_CHECK_FS 4053 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4054 sit_bitmap_size, GFP_KERNEL); 4055 if (!sit_i->sit_bitmap_mir) 4056 return -ENOMEM; 4057 4058 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4059 main_bitmap_size, GFP_KERNEL); 4060 if (!sit_i->invalid_segmap) 4061 return -ENOMEM; 4062 #endif 4063 4064 /* init SIT information */ 4065 sit_i->s_ops = &default_salloc_ops; 4066 4067 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4068 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4069 sit_i->written_valid_blocks = 0; 4070 sit_i->bitmap_size = sit_bitmap_size; 4071 sit_i->dirty_sentries = 0; 4072 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4073 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4074 sit_i->mounted_time = ktime_get_real_seconds(); 4075 init_rwsem(&sit_i->sentry_lock); 4076 return 0; 4077 } 4078 4079 static int build_free_segmap(struct f2fs_sb_info *sbi) 4080 { 4081 struct free_segmap_info *free_i; 4082 unsigned int bitmap_size, sec_bitmap_size; 4083 4084 /* allocate memory for free segmap information */ 4085 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4086 if (!free_i) 4087 return -ENOMEM; 4088 4089 SM_I(sbi)->free_info = free_i; 4090 4091 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4092 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4093 if (!free_i->free_segmap) 4094 return -ENOMEM; 4095 4096 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4097 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4098 if (!free_i->free_secmap) 4099 return -ENOMEM; 4100 4101 /* set all segments as dirty temporarily */ 4102 memset(free_i->free_segmap, 0xff, bitmap_size); 4103 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4104 4105 /* init free segmap information */ 4106 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4107 free_i->free_segments = 0; 4108 free_i->free_sections = 0; 4109 spin_lock_init(&free_i->segmap_lock); 4110 return 0; 4111 } 4112 4113 static int build_curseg(struct f2fs_sb_info *sbi) 4114 { 4115 struct curseg_info *array; 4116 int i; 4117 4118 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4119 GFP_KERNEL); 4120 if (!array) 4121 return -ENOMEM; 4122 4123 SM_I(sbi)->curseg_array = array; 4124 4125 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4126 mutex_init(&array[i].curseg_mutex); 4127 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4128 if (!array[i].sum_blk) 4129 return -ENOMEM; 4130 init_rwsem(&array[i].journal_rwsem); 4131 array[i].journal = f2fs_kzalloc(sbi, 4132 sizeof(struct f2fs_journal), GFP_KERNEL); 4133 if (!array[i].journal) 4134 return -ENOMEM; 4135 array[i].segno = NULL_SEGNO; 4136 array[i].next_blkoff = 0; 4137 } 4138 return restore_curseg_summaries(sbi); 4139 } 4140 4141 static int build_sit_entries(struct f2fs_sb_info *sbi) 4142 { 4143 struct sit_info *sit_i = SIT_I(sbi); 4144 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4145 struct f2fs_journal *journal = curseg->journal; 4146 struct seg_entry *se; 4147 struct f2fs_sit_entry sit; 4148 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4149 unsigned int i, start, end; 4150 unsigned int readed, start_blk = 0; 4151 int err = 0; 4152 block_t total_node_blocks = 0; 4153 4154 do { 4155 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4156 META_SIT, true); 4157 4158 start = start_blk * sit_i->sents_per_block; 4159 end = (start_blk + readed) * sit_i->sents_per_block; 4160 4161 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4162 struct f2fs_sit_block *sit_blk; 4163 struct page *page; 4164 4165 se = &sit_i->sentries[start]; 4166 page = get_current_sit_page(sbi, start); 4167 if (IS_ERR(page)) 4168 return PTR_ERR(page); 4169 sit_blk = (struct f2fs_sit_block *)page_address(page); 4170 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4171 f2fs_put_page(page, 1); 4172 4173 err = check_block_count(sbi, start, &sit); 4174 if (err) 4175 return err; 4176 seg_info_from_raw_sit(se, &sit); 4177 if (IS_NODESEG(se->type)) 4178 total_node_blocks += se->valid_blocks; 4179 4180 /* build discard map only one time */ 4181 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4182 memset(se->discard_map, 0xff, 4183 SIT_VBLOCK_MAP_SIZE); 4184 } else { 4185 memcpy(se->discard_map, 4186 se->cur_valid_map, 4187 SIT_VBLOCK_MAP_SIZE); 4188 sbi->discard_blks += 4189 sbi->blocks_per_seg - 4190 se->valid_blocks; 4191 } 4192 4193 if (__is_large_section(sbi)) 4194 get_sec_entry(sbi, start)->valid_blocks += 4195 se->valid_blocks; 4196 } 4197 start_blk += readed; 4198 } while (start_blk < sit_blk_cnt); 4199 4200 down_read(&curseg->journal_rwsem); 4201 for (i = 0; i < sits_in_cursum(journal); i++) { 4202 unsigned int old_valid_blocks; 4203 4204 start = le32_to_cpu(segno_in_journal(journal, i)); 4205 if (start >= MAIN_SEGS(sbi)) { 4206 f2fs_err(sbi, "Wrong journal entry on segno %u", 4207 start); 4208 err = -EFSCORRUPTED; 4209 break; 4210 } 4211 4212 se = &sit_i->sentries[start]; 4213 sit = sit_in_journal(journal, i); 4214 4215 old_valid_blocks = se->valid_blocks; 4216 if (IS_NODESEG(se->type)) 4217 total_node_blocks -= old_valid_blocks; 4218 4219 err = check_block_count(sbi, start, &sit); 4220 if (err) 4221 break; 4222 seg_info_from_raw_sit(se, &sit); 4223 if (IS_NODESEG(se->type)) 4224 total_node_blocks += se->valid_blocks; 4225 4226 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4227 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4228 } else { 4229 memcpy(se->discard_map, se->cur_valid_map, 4230 SIT_VBLOCK_MAP_SIZE); 4231 sbi->discard_blks += old_valid_blocks; 4232 sbi->discard_blks -= se->valid_blocks; 4233 } 4234 4235 if (__is_large_section(sbi)) { 4236 get_sec_entry(sbi, start)->valid_blocks += 4237 se->valid_blocks; 4238 get_sec_entry(sbi, start)->valid_blocks -= 4239 old_valid_blocks; 4240 } 4241 } 4242 up_read(&curseg->journal_rwsem); 4243 4244 if (!err && total_node_blocks != valid_node_count(sbi)) { 4245 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4246 total_node_blocks, valid_node_count(sbi)); 4247 err = -EFSCORRUPTED; 4248 } 4249 4250 return err; 4251 } 4252 4253 static void init_free_segmap(struct f2fs_sb_info *sbi) 4254 { 4255 unsigned int start; 4256 int type; 4257 4258 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4259 struct seg_entry *sentry = get_seg_entry(sbi, start); 4260 if (!sentry->valid_blocks) 4261 __set_free(sbi, start); 4262 else 4263 SIT_I(sbi)->written_valid_blocks += 4264 sentry->valid_blocks; 4265 } 4266 4267 /* set use the current segments */ 4268 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4269 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4270 __set_test_and_inuse(sbi, curseg_t->segno); 4271 } 4272 } 4273 4274 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4275 { 4276 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4277 struct free_segmap_info *free_i = FREE_I(sbi); 4278 unsigned int segno = 0, offset = 0; 4279 unsigned short valid_blocks; 4280 4281 while (1) { 4282 /* find dirty segment based on free segmap */ 4283 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4284 if (segno >= MAIN_SEGS(sbi)) 4285 break; 4286 offset = segno + 1; 4287 valid_blocks = get_valid_blocks(sbi, segno, false); 4288 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4289 continue; 4290 if (valid_blocks > sbi->blocks_per_seg) { 4291 f2fs_bug_on(sbi, 1); 4292 continue; 4293 } 4294 mutex_lock(&dirty_i->seglist_lock); 4295 __locate_dirty_segment(sbi, segno, DIRTY); 4296 mutex_unlock(&dirty_i->seglist_lock); 4297 } 4298 } 4299 4300 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4301 { 4302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4303 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4304 4305 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4306 if (!dirty_i->victim_secmap) 4307 return -ENOMEM; 4308 return 0; 4309 } 4310 4311 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4312 { 4313 struct dirty_seglist_info *dirty_i; 4314 unsigned int bitmap_size, i; 4315 4316 /* allocate memory for dirty segments list information */ 4317 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4318 GFP_KERNEL); 4319 if (!dirty_i) 4320 return -ENOMEM; 4321 4322 SM_I(sbi)->dirty_info = dirty_i; 4323 mutex_init(&dirty_i->seglist_lock); 4324 4325 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4326 4327 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4328 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4329 GFP_KERNEL); 4330 if (!dirty_i->dirty_segmap[i]) 4331 return -ENOMEM; 4332 } 4333 4334 init_dirty_segmap(sbi); 4335 return init_victim_secmap(sbi); 4336 } 4337 4338 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4339 { 4340 int i; 4341 4342 /* 4343 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4344 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4345 */ 4346 for (i = 0; i < NO_CHECK_TYPE; i++) { 4347 struct curseg_info *curseg = CURSEG_I(sbi, i); 4348 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4349 unsigned int blkofs = curseg->next_blkoff; 4350 4351 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4352 goto out; 4353 4354 if (curseg->alloc_type == SSR) 4355 continue; 4356 4357 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4358 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4359 continue; 4360 out: 4361 f2fs_err(sbi, 4362 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4363 i, curseg->segno, curseg->alloc_type, 4364 curseg->next_blkoff, blkofs); 4365 return -EFSCORRUPTED; 4366 } 4367 } 4368 return 0; 4369 } 4370 4371 #ifdef CONFIG_BLK_DEV_ZONED 4372 4373 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4374 struct f2fs_dev_info *fdev, 4375 struct blk_zone *zone) 4376 { 4377 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4378 block_t zone_block, wp_block, last_valid_block; 4379 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4380 int i, s, b, ret; 4381 struct seg_entry *se; 4382 4383 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4384 return 0; 4385 4386 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4387 wp_segno = GET_SEGNO(sbi, wp_block); 4388 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4389 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4390 zone_segno = GET_SEGNO(sbi, zone_block); 4391 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4392 4393 if (zone_segno >= MAIN_SEGS(sbi)) 4394 return 0; 4395 4396 /* 4397 * Skip check of zones cursegs point to, since 4398 * fix_curseg_write_pointer() checks them. 4399 */ 4400 for (i = 0; i < NO_CHECK_TYPE; i++) 4401 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4402 CURSEG_I(sbi, i)->segno)) 4403 return 0; 4404 4405 /* 4406 * Get last valid block of the zone. 4407 */ 4408 last_valid_block = zone_block - 1; 4409 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4410 segno = zone_segno + s; 4411 se = get_seg_entry(sbi, segno); 4412 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4413 if (f2fs_test_bit(b, se->cur_valid_map)) { 4414 last_valid_block = START_BLOCK(sbi, segno) + b; 4415 break; 4416 } 4417 if (last_valid_block >= zone_block) 4418 break; 4419 } 4420 4421 /* 4422 * If last valid block is beyond the write pointer, report the 4423 * inconsistency. This inconsistency does not cause write error 4424 * because the zone will not be selected for write operation until 4425 * it get discarded. Just report it. 4426 */ 4427 if (last_valid_block >= wp_block) { 4428 f2fs_notice(sbi, "Valid block beyond write pointer: " 4429 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4430 GET_SEGNO(sbi, last_valid_block), 4431 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4432 wp_segno, wp_blkoff); 4433 return 0; 4434 } 4435 4436 /* 4437 * If there is no valid block in the zone and if write pointer is 4438 * not at zone start, reset the write pointer. 4439 */ 4440 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4441 f2fs_notice(sbi, 4442 "Zone without valid block has non-zero write " 4443 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4444 wp_segno, wp_blkoff); 4445 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4446 zone->len >> log_sectors_per_block); 4447 if (ret) { 4448 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4449 fdev->path, ret); 4450 return ret; 4451 } 4452 } 4453 4454 return 0; 4455 } 4456 4457 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4458 block_t zone_blkaddr) 4459 { 4460 int i; 4461 4462 for (i = 0; i < sbi->s_ndevs; i++) { 4463 if (!bdev_is_zoned(FDEV(i).bdev)) 4464 continue; 4465 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4466 zone_blkaddr <= FDEV(i).end_blk)) 4467 return &FDEV(i); 4468 } 4469 4470 return NULL; 4471 } 4472 4473 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4474 void *data) { 4475 memcpy(data, zone, sizeof(struct blk_zone)); 4476 return 0; 4477 } 4478 4479 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4480 { 4481 struct curseg_info *cs = CURSEG_I(sbi, type); 4482 struct f2fs_dev_info *zbd; 4483 struct blk_zone zone; 4484 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4485 block_t cs_zone_block, wp_block; 4486 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4487 sector_t zone_sector; 4488 int err; 4489 4490 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4491 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4492 4493 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4494 if (!zbd) 4495 return 0; 4496 4497 /* report zone for the sector the curseg points to */ 4498 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4499 << log_sectors_per_block; 4500 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4501 report_one_zone_cb, &zone); 4502 if (err != 1) { 4503 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4504 zbd->path, err); 4505 return err; 4506 } 4507 4508 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4509 return 0; 4510 4511 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4512 wp_segno = GET_SEGNO(sbi, wp_block); 4513 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4514 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4515 4516 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4517 wp_sector_off == 0) 4518 return 0; 4519 4520 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4521 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4522 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4523 4524 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4525 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4526 allocate_segment_by_default(sbi, type, true); 4527 4528 /* check consistency of the zone curseg pointed to */ 4529 if (check_zone_write_pointer(sbi, zbd, &zone)) 4530 return -EIO; 4531 4532 /* check newly assigned zone */ 4533 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4534 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4535 4536 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4537 if (!zbd) 4538 return 0; 4539 4540 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4541 << log_sectors_per_block; 4542 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4543 report_one_zone_cb, &zone); 4544 if (err != 1) { 4545 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4546 zbd->path, err); 4547 return err; 4548 } 4549 4550 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4551 return 0; 4552 4553 if (zone.wp != zone.start) { 4554 f2fs_notice(sbi, 4555 "New zone for curseg[%d] is not yet discarded. " 4556 "Reset the zone: curseg[0x%x,0x%x]", 4557 type, cs->segno, cs->next_blkoff); 4558 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4559 zone_sector >> log_sectors_per_block, 4560 zone.len >> log_sectors_per_block); 4561 if (err) { 4562 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4563 zbd->path, err); 4564 return err; 4565 } 4566 } 4567 4568 return 0; 4569 } 4570 4571 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4572 { 4573 int i, ret; 4574 4575 for (i = 0; i < NO_CHECK_TYPE; i++) { 4576 ret = fix_curseg_write_pointer(sbi, i); 4577 if (ret) 4578 return ret; 4579 } 4580 4581 return 0; 4582 } 4583 4584 struct check_zone_write_pointer_args { 4585 struct f2fs_sb_info *sbi; 4586 struct f2fs_dev_info *fdev; 4587 }; 4588 4589 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4590 void *data) { 4591 struct check_zone_write_pointer_args *args; 4592 args = (struct check_zone_write_pointer_args *)data; 4593 4594 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4595 } 4596 4597 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4598 { 4599 int i, ret; 4600 struct check_zone_write_pointer_args args; 4601 4602 for (i = 0; i < sbi->s_ndevs; i++) { 4603 if (!bdev_is_zoned(FDEV(i).bdev)) 4604 continue; 4605 4606 args.sbi = sbi; 4607 args.fdev = &FDEV(i); 4608 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4609 check_zone_write_pointer_cb, &args); 4610 if (ret < 0) 4611 return ret; 4612 } 4613 4614 return 0; 4615 } 4616 #else 4617 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4618 { 4619 return 0; 4620 } 4621 4622 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4623 { 4624 return 0; 4625 } 4626 #endif 4627 4628 /* 4629 * Update min, max modified time for cost-benefit GC algorithm 4630 */ 4631 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4632 { 4633 struct sit_info *sit_i = SIT_I(sbi); 4634 unsigned int segno; 4635 4636 down_write(&sit_i->sentry_lock); 4637 4638 sit_i->min_mtime = ULLONG_MAX; 4639 4640 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4641 unsigned int i; 4642 unsigned long long mtime = 0; 4643 4644 for (i = 0; i < sbi->segs_per_sec; i++) 4645 mtime += get_seg_entry(sbi, segno + i)->mtime; 4646 4647 mtime = div_u64(mtime, sbi->segs_per_sec); 4648 4649 if (sit_i->min_mtime > mtime) 4650 sit_i->min_mtime = mtime; 4651 } 4652 sit_i->max_mtime = get_mtime(sbi, false); 4653 up_write(&sit_i->sentry_lock); 4654 } 4655 4656 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4657 { 4658 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4659 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4660 struct f2fs_sm_info *sm_info; 4661 int err; 4662 4663 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4664 if (!sm_info) 4665 return -ENOMEM; 4666 4667 /* init sm info */ 4668 sbi->sm_info = sm_info; 4669 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4670 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4671 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4672 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4673 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4674 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4675 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4676 sm_info->rec_prefree_segments = sm_info->main_segments * 4677 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4678 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4679 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4680 4681 if (!test_opt(sbi, LFS)) 4682 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4683 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4684 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4685 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4686 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4687 sm_info->min_ssr_sections = reserved_sections(sbi); 4688 4689 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4690 4691 init_rwsem(&sm_info->curseg_lock); 4692 4693 if (!f2fs_readonly(sbi->sb)) { 4694 err = f2fs_create_flush_cmd_control(sbi); 4695 if (err) 4696 return err; 4697 } 4698 4699 err = create_discard_cmd_control(sbi); 4700 if (err) 4701 return err; 4702 4703 err = build_sit_info(sbi); 4704 if (err) 4705 return err; 4706 err = build_free_segmap(sbi); 4707 if (err) 4708 return err; 4709 err = build_curseg(sbi); 4710 if (err) 4711 return err; 4712 4713 /* reinit free segmap based on SIT */ 4714 err = build_sit_entries(sbi); 4715 if (err) 4716 return err; 4717 4718 init_free_segmap(sbi); 4719 err = build_dirty_segmap(sbi); 4720 if (err) 4721 return err; 4722 4723 err = sanity_check_curseg(sbi); 4724 if (err) 4725 return err; 4726 4727 init_min_max_mtime(sbi); 4728 return 0; 4729 } 4730 4731 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4732 enum dirty_type dirty_type) 4733 { 4734 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4735 4736 mutex_lock(&dirty_i->seglist_lock); 4737 kvfree(dirty_i->dirty_segmap[dirty_type]); 4738 dirty_i->nr_dirty[dirty_type] = 0; 4739 mutex_unlock(&dirty_i->seglist_lock); 4740 } 4741 4742 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4743 { 4744 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4745 kvfree(dirty_i->victim_secmap); 4746 } 4747 4748 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4749 { 4750 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4751 int i; 4752 4753 if (!dirty_i) 4754 return; 4755 4756 /* discard pre-free/dirty segments list */ 4757 for (i = 0; i < NR_DIRTY_TYPE; i++) 4758 discard_dirty_segmap(sbi, i); 4759 4760 destroy_victim_secmap(sbi); 4761 SM_I(sbi)->dirty_info = NULL; 4762 kvfree(dirty_i); 4763 } 4764 4765 static void destroy_curseg(struct f2fs_sb_info *sbi) 4766 { 4767 struct curseg_info *array = SM_I(sbi)->curseg_array; 4768 int i; 4769 4770 if (!array) 4771 return; 4772 SM_I(sbi)->curseg_array = NULL; 4773 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4774 kvfree(array[i].sum_blk); 4775 kvfree(array[i].journal); 4776 } 4777 kvfree(array); 4778 } 4779 4780 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4781 { 4782 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4783 if (!free_i) 4784 return; 4785 SM_I(sbi)->free_info = NULL; 4786 kvfree(free_i->free_segmap); 4787 kvfree(free_i->free_secmap); 4788 kvfree(free_i); 4789 } 4790 4791 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4792 { 4793 struct sit_info *sit_i = SIT_I(sbi); 4794 4795 if (!sit_i) 4796 return; 4797 4798 if (sit_i->sentries) 4799 kvfree(sit_i->bitmap); 4800 kvfree(sit_i->tmp_map); 4801 4802 kvfree(sit_i->sentries); 4803 kvfree(sit_i->sec_entries); 4804 kvfree(sit_i->dirty_sentries_bitmap); 4805 4806 SM_I(sbi)->sit_info = NULL; 4807 kvfree(sit_i->sit_bitmap); 4808 #ifdef CONFIG_F2FS_CHECK_FS 4809 kvfree(sit_i->sit_bitmap_mir); 4810 kvfree(sit_i->invalid_segmap); 4811 #endif 4812 kvfree(sit_i); 4813 } 4814 4815 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4816 { 4817 struct f2fs_sm_info *sm_info = SM_I(sbi); 4818 4819 if (!sm_info) 4820 return; 4821 f2fs_destroy_flush_cmd_control(sbi, true); 4822 destroy_discard_cmd_control(sbi); 4823 destroy_dirty_segmap(sbi); 4824 destroy_curseg(sbi); 4825 destroy_free_segmap(sbi); 4826 destroy_sit_info(sbi); 4827 sbi->sm_info = NULL; 4828 kvfree(sm_info); 4829 } 4830 4831 int __init f2fs_create_segment_manager_caches(void) 4832 { 4833 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4834 sizeof(struct discard_entry)); 4835 if (!discard_entry_slab) 4836 goto fail; 4837 4838 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4839 sizeof(struct discard_cmd)); 4840 if (!discard_cmd_slab) 4841 goto destroy_discard_entry; 4842 4843 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4844 sizeof(struct sit_entry_set)); 4845 if (!sit_entry_set_slab) 4846 goto destroy_discard_cmd; 4847 4848 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4849 sizeof(struct inmem_pages)); 4850 if (!inmem_entry_slab) 4851 goto destroy_sit_entry_set; 4852 return 0; 4853 4854 destroy_sit_entry_set: 4855 kmem_cache_destroy(sit_entry_set_slab); 4856 destroy_discard_cmd: 4857 kmem_cache_destroy(discard_cmd_slab); 4858 destroy_discard_entry: 4859 kmem_cache_destroy(discard_entry_slab); 4860 fail: 4861 return -ENOMEM; 4862 } 4863 4864 void f2fs_destroy_segment_manager_caches(void) 4865 { 4866 kmem_cache_destroy(sit_entry_set_slab); 4867 kmem_cache_destroy(discard_cmd_slab); 4868 kmem_cache_destroy(discard_entry_slab); 4869 kmem_cache_destroy(inmem_entry_slab); 4870 } 4871