1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 mutex_lock(&fi->inmem_lock); 246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 247 mutex_unlock(&fi->inmem_lock); 248 249 clear_inode_flag(inode, FI_ATOMIC_FILE); 250 stat_dec_atomic_write(inode); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = REQ_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 pgoff_t last_idx = ULONG_MAX; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 last_idx = page->index; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (last_idx != ULONG_MAX) 299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx, 300 DATA, WRITE); 301 302 if (!err) 303 __revoke_inmem_pages(inode, revoke_list, false, false); 304 305 return err; 306 } 307 308 int commit_inmem_pages(struct inode *inode) 309 { 310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 311 struct f2fs_inode_info *fi = F2FS_I(inode); 312 struct list_head revoke_list; 313 int err; 314 315 INIT_LIST_HEAD(&revoke_list); 316 f2fs_balance_fs(sbi, true); 317 f2fs_lock_op(sbi); 318 319 set_inode_flag(inode, FI_ATOMIC_COMMIT); 320 321 mutex_lock(&fi->inmem_lock); 322 err = __commit_inmem_pages(inode, &revoke_list); 323 if (err) { 324 int ret; 325 /* 326 * try to revoke all committed pages, but still we could fail 327 * due to no memory or other reason, if that happened, EAGAIN 328 * will be returned, which means in such case, transaction is 329 * already not integrity, caller should use journal to do the 330 * recovery or rewrite & commit last transaction. For other 331 * error number, revoking was done by filesystem itself. 332 */ 333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 334 if (ret) 335 err = ret; 336 337 /* drop all uncommitted pages */ 338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 342 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 343 344 f2fs_unlock_op(sbi); 345 return err; 346 } 347 348 /* 349 * This function balances dirty node and dentry pages. 350 * In addition, it controls garbage collection. 351 */ 352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 353 { 354 #ifdef CONFIG_F2FS_FAULT_INJECTION 355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 356 f2fs_show_injection_info(FAULT_CHECKPOINT); 357 f2fs_stop_checkpoint(sbi, false); 358 } 359 #endif 360 361 if (!need) 362 return; 363 364 /* balance_fs_bg is able to be pending */ 365 if (excess_cached_nats(sbi)) 366 f2fs_balance_fs_bg(sbi); 367 368 /* 369 * We should do GC or end up with checkpoint, if there are so many dirty 370 * dir/node pages without enough free segments. 371 */ 372 if (has_not_enough_free_secs(sbi, 0, 0)) { 373 mutex_lock(&sbi->gc_mutex); 374 f2fs_gc(sbi, false, false); 375 } 376 } 377 378 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 379 { 380 /* try to shrink extent cache when there is no enough memory */ 381 if (!available_free_memory(sbi, EXTENT_CACHE)) 382 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 383 384 /* check the # of cached NAT entries */ 385 if (!available_free_memory(sbi, NAT_ENTRIES)) 386 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 387 388 if (!available_free_memory(sbi, FREE_NIDS)) 389 try_to_free_nids(sbi, MAX_FREE_NIDS); 390 else 391 build_free_nids(sbi, false, false); 392 393 if (!is_idle(sbi)) 394 return; 395 396 /* checkpoint is the only way to shrink partial cached entries */ 397 if (!available_free_memory(sbi, NAT_ENTRIES) || 398 !available_free_memory(sbi, INO_ENTRIES) || 399 excess_prefree_segs(sbi) || 400 excess_dirty_nats(sbi) || 401 f2fs_time_over(sbi, CP_TIME)) { 402 if (test_opt(sbi, DATA_FLUSH)) { 403 struct blk_plug plug; 404 405 blk_start_plug(&plug); 406 sync_dirty_inodes(sbi, FILE_INODE); 407 blk_finish_plug(&plug); 408 } 409 f2fs_sync_fs(sbi->sb, true); 410 stat_inc_bg_cp_count(sbi->stat_info); 411 } 412 } 413 414 static int __submit_flush_wait(struct block_device *bdev) 415 { 416 struct bio *bio = f2fs_bio_alloc(0); 417 int ret; 418 419 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 420 bio->bi_bdev = bdev; 421 ret = submit_bio_wait(bio); 422 bio_put(bio); 423 return ret; 424 } 425 426 static int submit_flush_wait(struct f2fs_sb_info *sbi) 427 { 428 int ret = __submit_flush_wait(sbi->sb->s_bdev); 429 int i; 430 431 if (sbi->s_ndevs && !ret) { 432 for (i = 1; i < sbi->s_ndevs; i++) { 433 trace_f2fs_issue_flush(FDEV(i).bdev, 434 test_opt(sbi, NOBARRIER), 435 test_opt(sbi, FLUSH_MERGE)); 436 ret = __submit_flush_wait(FDEV(i).bdev); 437 if (ret) 438 break; 439 } 440 } 441 return ret; 442 } 443 444 static int issue_flush_thread(void *data) 445 { 446 struct f2fs_sb_info *sbi = data; 447 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 448 wait_queue_head_t *q = &fcc->flush_wait_queue; 449 repeat: 450 if (kthread_should_stop()) 451 return 0; 452 453 if (!llist_empty(&fcc->issue_list)) { 454 struct flush_cmd *cmd, *next; 455 int ret; 456 457 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 458 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 459 460 ret = submit_flush_wait(sbi); 461 llist_for_each_entry_safe(cmd, next, 462 fcc->dispatch_list, llnode) { 463 cmd->ret = ret; 464 complete(&cmd->wait); 465 } 466 fcc->dispatch_list = NULL; 467 } 468 469 wait_event_interruptible(*q, 470 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 471 goto repeat; 472 } 473 474 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 475 { 476 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 477 struct flush_cmd cmd; 478 479 if (test_opt(sbi, NOBARRIER)) 480 return 0; 481 482 if (!test_opt(sbi, FLUSH_MERGE)) 483 return submit_flush_wait(sbi); 484 485 if (!atomic_read(&fcc->submit_flush)) { 486 int ret; 487 488 atomic_inc(&fcc->submit_flush); 489 ret = submit_flush_wait(sbi); 490 atomic_dec(&fcc->submit_flush); 491 return ret; 492 } 493 494 init_completion(&cmd.wait); 495 496 atomic_inc(&fcc->submit_flush); 497 llist_add(&cmd.llnode, &fcc->issue_list); 498 499 if (!fcc->dispatch_list) 500 wake_up(&fcc->flush_wait_queue); 501 502 if (fcc->f2fs_issue_flush) { 503 wait_for_completion(&cmd.wait); 504 atomic_dec(&fcc->submit_flush); 505 } else { 506 llist_del_all(&fcc->issue_list); 507 atomic_set(&fcc->submit_flush, 0); 508 } 509 510 return cmd.ret; 511 } 512 513 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 514 { 515 dev_t dev = sbi->sb->s_bdev->bd_dev; 516 struct flush_cmd_control *fcc; 517 int err = 0; 518 519 if (SM_I(sbi)->fcc_info) { 520 fcc = SM_I(sbi)->fcc_info; 521 goto init_thread; 522 } 523 524 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 525 if (!fcc) 526 return -ENOMEM; 527 atomic_set(&fcc->submit_flush, 0); 528 init_waitqueue_head(&fcc->flush_wait_queue); 529 init_llist_head(&fcc->issue_list); 530 SM_I(sbi)->fcc_info = fcc; 531 init_thread: 532 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 533 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 534 if (IS_ERR(fcc->f2fs_issue_flush)) { 535 err = PTR_ERR(fcc->f2fs_issue_flush); 536 kfree(fcc); 537 SM_I(sbi)->fcc_info = NULL; 538 return err; 539 } 540 541 return err; 542 } 543 544 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 545 { 546 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 547 548 if (fcc && fcc->f2fs_issue_flush) { 549 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 550 551 fcc->f2fs_issue_flush = NULL; 552 kthread_stop(flush_thread); 553 } 554 if (free) { 555 kfree(fcc); 556 SM_I(sbi)->fcc_info = NULL; 557 } 558 } 559 560 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 561 enum dirty_type dirty_type) 562 { 563 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 564 565 /* need not be added */ 566 if (IS_CURSEG(sbi, segno)) 567 return; 568 569 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 570 dirty_i->nr_dirty[dirty_type]++; 571 572 if (dirty_type == DIRTY) { 573 struct seg_entry *sentry = get_seg_entry(sbi, segno); 574 enum dirty_type t = sentry->type; 575 576 if (unlikely(t >= DIRTY)) { 577 f2fs_bug_on(sbi, 1); 578 return; 579 } 580 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 581 dirty_i->nr_dirty[t]++; 582 } 583 } 584 585 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 586 enum dirty_type dirty_type) 587 { 588 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 589 590 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 591 dirty_i->nr_dirty[dirty_type]--; 592 593 if (dirty_type == DIRTY) { 594 struct seg_entry *sentry = get_seg_entry(sbi, segno); 595 enum dirty_type t = sentry->type; 596 597 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 598 dirty_i->nr_dirty[t]--; 599 600 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 601 clear_bit(GET_SECNO(sbi, segno), 602 dirty_i->victim_secmap); 603 } 604 } 605 606 /* 607 * Should not occur error such as -ENOMEM. 608 * Adding dirty entry into seglist is not critical operation. 609 * If a given segment is one of current working segments, it won't be added. 610 */ 611 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 612 { 613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 614 unsigned short valid_blocks; 615 616 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 617 return; 618 619 mutex_lock(&dirty_i->seglist_lock); 620 621 valid_blocks = get_valid_blocks(sbi, segno, 0); 622 623 if (valid_blocks == 0) { 624 __locate_dirty_segment(sbi, segno, PRE); 625 __remove_dirty_segment(sbi, segno, DIRTY); 626 } else if (valid_blocks < sbi->blocks_per_seg) { 627 __locate_dirty_segment(sbi, segno, DIRTY); 628 } else { 629 /* Recovery routine with SSR needs this */ 630 __remove_dirty_segment(sbi, segno, DIRTY); 631 } 632 633 mutex_unlock(&dirty_i->seglist_lock); 634 } 635 636 static void __add_discard_cmd(struct f2fs_sb_info *sbi, 637 struct bio *bio, block_t lstart, block_t len) 638 { 639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 640 struct list_head *cmd_list = &(dcc->discard_cmd_list); 641 struct discard_cmd *dc; 642 643 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 644 INIT_LIST_HEAD(&dc->list); 645 dc->bio = bio; 646 bio->bi_private = dc; 647 dc->lstart = lstart; 648 dc->len = len; 649 dc->state = D_PREP; 650 init_completion(&dc->wait); 651 652 mutex_lock(&dcc->cmd_lock); 653 list_add_tail(&dc->list, cmd_list); 654 mutex_unlock(&dcc->cmd_lock); 655 } 656 657 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) 658 { 659 int err = dc->bio->bi_error; 660 661 if (dc->state == D_DONE) 662 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard)); 663 664 if (err == -EOPNOTSUPP) 665 err = 0; 666 667 if (err) 668 f2fs_msg(sbi->sb, KERN_INFO, 669 "Issue discard failed, ret: %d", err); 670 bio_put(dc->bio); 671 list_del(&dc->list); 672 kmem_cache_free(discard_cmd_slab, dc); 673 } 674 675 /* This should be covered by global mutex, &sit_i->sentry_lock */ 676 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 677 { 678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 679 struct list_head *wait_list = &(dcc->discard_cmd_list); 680 struct discard_cmd *dc, *tmp; 681 struct blk_plug plug; 682 683 mutex_lock(&dcc->cmd_lock); 684 685 blk_start_plug(&plug); 686 687 list_for_each_entry_safe(dc, tmp, wait_list, list) { 688 689 if (blkaddr == NULL_ADDR) { 690 if (dc->state == D_PREP) { 691 dc->state = D_SUBMIT; 692 submit_bio(dc->bio); 693 atomic_inc(&dcc->submit_discard); 694 } 695 continue; 696 } 697 698 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) { 699 if (dc->state == D_SUBMIT) 700 wait_for_completion_io(&dc->wait); 701 else 702 __remove_discard_cmd(sbi, dc); 703 } 704 } 705 blk_finish_plug(&plug); 706 707 /* this comes from f2fs_put_super */ 708 if (blkaddr == NULL_ADDR) { 709 list_for_each_entry_safe(dc, tmp, wait_list, list) { 710 wait_for_completion_io(&dc->wait); 711 __remove_discard_cmd(sbi, dc); 712 } 713 } 714 mutex_unlock(&dcc->cmd_lock); 715 } 716 717 static void f2fs_submit_discard_endio(struct bio *bio) 718 { 719 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 720 721 complete(&dc->wait); 722 dc->state = D_DONE; 723 } 724 725 static int issue_discard_thread(void *data) 726 { 727 struct f2fs_sb_info *sbi = data; 728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 729 wait_queue_head_t *q = &dcc->discard_wait_queue; 730 struct list_head *cmd_list = &dcc->discard_cmd_list; 731 struct discard_cmd *dc, *tmp; 732 struct blk_plug plug; 733 int iter = 0; 734 repeat: 735 if (kthread_should_stop()) 736 return 0; 737 738 blk_start_plug(&plug); 739 740 mutex_lock(&dcc->cmd_lock); 741 list_for_each_entry_safe(dc, tmp, cmd_list, list) { 742 if (dc->state == D_PREP) { 743 dc->state = D_SUBMIT; 744 submit_bio(dc->bio); 745 atomic_inc(&dcc->submit_discard); 746 if (iter++ > DISCARD_ISSUE_RATE) 747 break; 748 } else if (dc->state == D_DONE) { 749 __remove_discard_cmd(sbi, dc); 750 } 751 } 752 mutex_unlock(&dcc->cmd_lock); 753 754 blk_finish_plug(&plug); 755 756 iter = 0; 757 congestion_wait(BLK_RW_SYNC, HZ/50); 758 759 wait_event_interruptible(*q, 760 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list)); 761 goto repeat; 762 } 763 764 765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 766 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 767 struct block_device *bdev, block_t blkstart, block_t blklen) 768 { 769 struct bio *bio = NULL; 770 block_t lblkstart = blkstart; 771 int err; 772 773 trace_f2fs_issue_discard(bdev, blkstart, blklen); 774 775 if (sbi->s_ndevs) { 776 int devi = f2fs_target_device_index(sbi, blkstart); 777 778 blkstart -= FDEV(devi).start_blk; 779 } 780 err = __blkdev_issue_discard(bdev, 781 SECTOR_FROM_BLOCK(blkstart), 782 SECTOR_FROM_BLOCK(blklen), 783 GFP_NOFS, 0, &bio); 784 if (!err && bio) { 785 bio->bi_end_io = f2fs_submit_discard_endio; 786 bio->bi_opf |= REQ_SYNC; 787 788 __add_discard_cmd(sbi, bio, lblkstart, blklen); 789 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue); 790 } 791 return err; 792 } 793 794 #ifdef CONFIG_BLK_DEV_ZONED 795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 796 struct block_device *bdev, block_t blkstart, block_t blklen) 797 { 798 sector_t sector, nr_sects; 799 int devi = 0; 800 801 if (sbi->s_ndevs) { 802 devi = f2fs_target_device_index(sbi, blkstart); 803 blkstart -= FDEV(devi).start_blk; 804 } 805 806 /* 807 * We need to know the type of the zone: for conventional zones, 808 * use regular discard if the drive supports it. For sequential 809 * zones, reset the zone write pointer. 810 */ 811 switch (get_blkz_type(sbi, bdev, blkstart)) { 812 813 case BLK_ZONE_TYPE_CONVENTIONAL: 814 if (!blk_queue_discard(bdev_get_queue(bdev))) 815 return 0; 816 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 817 case BLK_ZONE_TYPE_SEQWRITE_REQ: 818 case BLK_ZONE_TYPE_SEQWRITE_PREF: 819 sector = SECTOR_FROM_BLOCK(blkstart); 820 nr_sects = SECTOR_FROM_BLOCK(blklen); 821 822 if (sector & (bdev_zone_sectors(bdev) - 1) || 823 nr_sects != bdev_zone_sectors(bdev)) { 824 f2fs_msg(sbi->sb, KERN_INFO, 825 "(%d) %s: Unaligned discard attempted (block %x + %x)", 826 devi, sbi->s_ndevs ? FDEV(devi).path: "", 827 blkstart, blklen); 828 return -EIO; 829 } 830 trace_f2fs_issue_reset_zone(bdev, blkstart); 831 return blkdev_reset_zones(bdev, sector, 832 nr_sects, GFP_NOFS); 833 default: 834 /* Unknown zone type: broken device ? */ 835 return -EIO; 836 } 837 } 838 #endif 839 840 static int __issue_discard_async(struct f2fs_sb_info *sbi, 841 struct block_device *bdev, block_t blkstart, block_t blklen) 842 { 843 #ifdef CONFIG_BLK_DEV_ZONED 844 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 845 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 846 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 847 #endif 848 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 849 } 850 851 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 852 block_t blkstart, block_t blklen) 853 { 854 sector_t start = blkstart, len = 0; 855 struct block_device *bdev; 856 struct seg_entry *se; 857 unsigned int offset; 858 block_t i; 859 int err = 0; 860 861 bdev = f2fs_target_device(sbi, blkstart, NULL); 862 863 for (i = blkstart; i < blkstart + blklen; i++, len++) { 864 if (i != start) { 865 struct block_device *bdev2 = 866 f2fs_target_device(sbi, i, NULL); 867 868 if (bdev2 != bdev) { 869 err = __issue_discard_async(sbi, bdev, 870 start, len); 871 if (err) 872 return err; 873 bdev = bdev2; 874 start = i; 875 len = 0; 876 } 877 } 878 879 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 880 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 881 882 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 883 sbi->discard_blks--; 884 } 885 886 if (len) 887 err = __issue_discard_async(sbi, bdev, start, len); 888 return err; 889 } 890 891 static void __add_discard_entry(struct f2fs_sb_info *sbi, 892 struct cp_control *cpc, struct seg_entry *se, 893 unsigned int start, unsigned int end) 894 { 895 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list; 896 struct discard_entry *new, *last; 897 898 if (!list_empty(head)) { 899 last = list_last_entry(head, struct discard_entry, list); 900 if (START_BLOCK(sbi, cpc->trim_start) + start == 901 last->blkaddr + last->len && 902 last->len < MAX_DISCARD_BLOCKS(sbi)) { 903 last->len += end - start; 904 goto done; 905 } 906 } 907 908 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 909 INIT_LIST_HEAD(&new->list); 910 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 911 new->len = end - start; 912 list_add_tail(&new->list, head); 913 done: 914 SM_I(sbi)->dcc_info->nr_discards += end - start; 915 } 916 917 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 918 bool check_only) 919 { 920 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 921 int max_blocks = sbi->blocks_per_seg; 922 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 923 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 924 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 925 unsigned long *discard_map = (unsigned long *)se->discard_map; 926 unsigned long *dmap = SIT_I(sbi)->tmp_map; 927 unsigned int start = 0, end = -1; 928 bool force = (cpc->reason == CP_DISCARD); 929 int i; 930 931 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 932 return false; 933 934 if (!force) { 935 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 936 SM_I(sbi)->dcc_info->nr_discards >= 937 SM_I(sbi)->dcc_info->max_discards) 938 return false; 939 } 940 941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 942 for (i = 0; i < entries; i++) 943 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 944 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 945 946 while (force || SM_I(sbi)->dcc_info->nr_discards <= 947 SM_I(sbi)->dcc_info->max_discards) { 948 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 949 if (start >= max_blocks) 950 break; 951 952 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 953 if (force && start && end != max_blocks 954 && (end - start) < cpc->trim_minlen) 955 continue; 956 957 if (check_only) 958 return true; 959 960 __add_discard_entry(sbi, cpc, se, start, end); 961 } 962 return false; 963 } 964 965 void release_discard_addrs(struct f2fs_sb_info *sbi) 966 { 967 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 968 struct discard_entry *entry, *this; 969 970 /* drop caches */ 971 list_for_each_entry_safe(entry, this, head, list) { 972 list_del(&entry->list); 973 kmem_cache_free(discard_entry_slab, entry); 974 } 975 } 976 977 /* 978 * Should call clear_prefree_segments after checkpoint is done. 979 */ 980 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 981 { 982 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 983 unsigned int segno; 984 985 mutex_lock(&dirty_i->seglist_lock); 986 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 987 __set_test_and_free(sbi, segno); 988 mutex_unlock(&dirty_i->seglist_lock); 989 } 990 991 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 992 { 993 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 994 struct discard_entry *entry, *this; 995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 996 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 997 unsigned int start = 0, end = -1; 998 unsigned int secno, start_segno; 999 bool force = (cpc->reason == CP_DISCARD); 1000 1001 mutex_lock(&dirty_i->seglist_lock); 1002 1003 while (1) { 1004 int i; 1005 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1006 if (start >= MAIN_SEGS(sbi)) 1007 break; 1008 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1009 start + 1); 1010 1011 for (i = start; i < end; i++) 1012 clear_bit(i, prefree_map); 1013 1014 dirty_i->nr_dirty[PRE] -= end - start; 1015 1016 if (!test_opt(sbi, DISCARD)) 1017 continue; 1018 1019 if (force && start >= cpc->trim_start && 1020 (end - 1) <= cpc->trim_end) 1021 continue; 1022 1023 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1024 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1025 (end - start) << sbi->log_blocks_per_seg); 1026 continue; 1027 } 1028 next: 1029 secno = GET_SECNO(sbi, start); 1030 start_segno = secno * sbi->segs_per_sec; 1031 if (!IS_CURSEC(sbi, secno) && 1032 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 1033 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1034 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1035 1036 start = start_segno + sbi->segs_per_sec; 1037 if (start < end) 1038 goto next; 1039 else 1040 end = start - 1; 1041 } 1042 mutex_unlock(&dirty_i->seglist_lock); 1043 1044 /* send small discards */ 1045 list_for_each_entry_safe(entry, this, head, list) { 1046 if (force && entry->len < cpc->trim_minlen) 1047 goto skip; 1048 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 1049 cpc->trimmed += entry->len; 1050 skip: 1051 list_del(&entry->list); 1052 SM_I(sbi)->dcc_info->nr_discards -= entry->len; 1053 kmem_cache_free(discard_entry_slab, entry); 1054 } 1055 } 1056 1057 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1058 { 1059 dev_t dev = sbi->sb->s_bdev->bd_dev; 1060 struct discard_cmd_control *dcc; 1061 int err = 0; 1062 1063 if (SM_I(sbi)->dcc_info) { 1064 dcc = SM_I(sbi)->dcc_info; 1065 goto init_thread; 1066 } 1067 1068 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL); 1069 if (!dcc) 1070 return -ENOMEM; 1071 1072 INIT_LIST_HEAD(&dcc->discard_entry_list); 1073 INIT_LIST_HEAD(&dcc->discard_cmd_list); 1074 mutex_init(&dcc->cmd_lock); 1075 atomic_set(&dcc->submit_discard, 0); 1076 dcc->nr_discards = 0; 1077 dcc->max_discards = 0; 1078 1079 init_waitqueue_head(&dcc->discard_wait_queue); 1080 SM_I(sbi)->dcc_info = dcc; 1081 init_thread: 1082 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1083 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1084 if (IS_ERR(dcc->f2fs_issue_discard)) { 1085 err = PTR_ERR(dcc->f2fs_issue_discard); 1086 kfree(dcc); 1087 SM_I(sbi)->dcc_info = NULL; 1088 return err; 1089 } 1090 1091 return err; 1092 } 1093 1094 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free) 1095 { 1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1097 1098 if (dcc && dcc->f2fs_issue_discard) { 1099 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1100 1101 dcc->f2fs_issue_discard = NULL; 1102 kthread_stop(discard_thread); 1103 } 1104 if (free) { 1105 kfree(dcc); 1106 SM_I(sbi)->dcc_info = NULL; 1107 } 1108 } 1109 1110 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1111 { 1112 struct sit_info *sit_i = SIT_I(sbi); 1113 1114 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1115 sit_i->dirty_sentries++; 1116 return false; 1117 } 1118 1119 return true; 1120 } 1121 1122 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1123 unsigned int segno, int modified) 1124 { 1125 struct seg_entry *se = get_seg_entry(sbi, segno); 1126 se->type = type; 1127 if (modified) 1128 __mark_sit_entry_dirty(sbi, segno); 1129 } 1130 1131 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1132 { 1133 struct seg_entry *se; 1134 unsigned int segno, offset; 1135 long int new_vblocks; 1136 1137 segno = GET_SEGNO(sbi, blkaddr); 1138 1139 se = get_seg_entry(sbi, segno); 1140 new_vblocks = se->valid_blocks + del; 1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1142 1143 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1144 (new_vblocks > sbi->blocks_per_seg))); 1145 1146 se->valid_blocks = new_vblocks; 1147 se->mtime = get_mtime(sbi); 1148 SIT_I(sbi)->max_mtime = se->mtime; 1149 1150 /* Update valid block bitmap */ 1151 if (del > 0) { 1152 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) { 1153 #ifdef CONFIG_F2FS_CHECK_FS 1154 if (f2fs_test_and_set_bit(offset, 1155 se->cur_valid_map_mir)) 1156 f2fs_bug_on(sbi, 1); 1157 else 1158 WARN_ON(1); 1159 #else 1160 f2fs_bug_on(sbi, 1); 1161 #endif 1162 } 1163 if (f2fs_discard_en(sbi) && 1164 !f2fs_test_and_set_bit(offset, se->discard_map)) 1165 sbi->discard_blks--; 1166 1167 /* don't overwrite by SSR to keep node chain */ 1168 if (se->type == CURSEG_WARM_NODE) { 1169 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 1170 se->ckpt_valid_blocks++; 1171 } 1172 } else { 1173 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) { 1174 #ifdef CONFIG_F2FS_CHECK_FS 1175 if (!f2fs_test_and_clear_bit(offset, 1176 se->cur_valid_map_mir)) 1177 f2fs_bug_on(sbi, 1); 1178 else 1179 WARN_ON(1); 1180 #else 1181 f2fs_bug_on(sbi, 1); 1182 #endif 1183 } 1184 if (f2fs_discard_en(sbi) && 1185 f2fs_test_and_clear_bit(offset, se->discard_map)) 1186 sbi->discard_blks++; 1187 } 1188 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1189 se->ckpt_valid_blocks += del; 1190 1191 __mark_sit_entry_dirty(sbi, segno); 1192 1193 /* update total number of valid blocks to be written in ckpt area */ 1194 SIT_I(sbi)->written_valid_blocks += del; 1195 1196 if (sbi->segs_per_sec > 1) 1197 get_sec_entry(sbi, segno)->valid_blocks += del; 1198 } 1199 1200 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1201 { 1202 update_sit_entry(sbi, new, 1); 1203 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1204 update_sit_entry(sbi, old, -1); 1205 1206 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1207 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1208 } 1209 1210 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1211 { 1212 unsigned int segno = GET_SEGNO(sbi, addr); 1213 struct sit_info *sit_i = SIT_I(sbi); 1214 1215 f2fs_bug_on(sbi, addr == NULL_ADDR); 1216 if (addr == NEW_ADDR) 1217 return; 1218 1219 /* add it into sit main buffer */ 1220 mutex_lock(&sit_i->sentry_lock); 1221 1222 update_sit_entry(sbi, addr, -1); 1223 1224 /* add it into dirty seglist */ 1225 locate_dirty_segment(sbi, segno); 1226 1227 mutex_unlock(&sit_i->sentry_lock); 1228 } 1229 1230 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1231 { 1232 struct sit_info *sit_i = SIT_I(sbi); 1233 unsigned int segno, offset; 1234 struct seg_entry *se; 1235 bool is_cp = false; 1236 1237 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1238 return true; 1239 1240 mutex_lock(&sit_i->sentry_lock); 1241 1242 segno = GET_SEGNO(sbi, blkaddr); 1243 se = get_seg_entry(sbi, segno); 1244 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1245 1246 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1247 is_cp = true; 1248 1249 mutex_unlock(&sit_i->sentry_lock); 1250 1251 return is_cp; 1252 } 1253 1254 /* 1255 * This function should be resided under the curseg_mutex lock 1256 */ 1257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1258 struct f2fs_summary *sum) 1259 { 1260 struct curseg_info *curseg = CURSEG_I(sbi, type); 1261 void *addr = curseg->sum_blk; 1262 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1263 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1264 } 1265 1266 /* 1267 * Calculate the number of current summary pages for writing 1268 */ 1269 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1270 { 1271 int valid_sum_count = 0; 1272 int i, sum_in_page; 1273 1274 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1275 if (sbi->ckpt->alloc_type[i] == SSR) 1276 valid_sum_count += sbi->blocks_per_seg; 1277 else { 1278 if (for_ra) 1279 valid_sum_count += le16_to_cpu( 1280 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1281 else 1282 valid_sum_count += curseg_blkoff(sbi, i); 1283 } 1284 } 1285 1286 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1287 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1288 if (valid_sum_count <= sum_in_page) 1289 return 1; 1290 else if ((valid_sum_count - sum_in_page) <= 1291 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1292 return 2; 1293 return 3; 1294 } 1295 1296 /* 1297 * Caller should put this summary page 1298 */ 1299 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1300 { 1301 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1302 } 1303 1304 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1305 { 1306 struct page *page = grab_meta_page(sbi, blk_addr); 1307 void *dst = page_address(page); 1308 1309 if (src) 1310 memcpy(dst, src, PAGE_SIZE); 1311 else 1312 memset(dst, 0, PAGE_SIZE); 1313 set_page_dirty(page); 1314 f2fs_put_page(page, 1); 1315 } 1316 1317 static void write_sum_page(struct f2fs_sb_info *sbi, 1318 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1319 { 1320 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1321 } 1322 1323 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1324 int type, block_t blk_addr) 1325 { 1326 struct curseg_info *curseg = CURSEG_I(sbi, type); 1327 struct page *page = grab_meta_page(sbi, blk_addr); 1328 struct f2fs_summary_block *src = curseg->sum_blk; 1329 struct f2fs_summary_block *dst; 1330 1331 dst = (struct f2fs_summary_block *)page_address(page); 1332 1333 mutex_lock(&curseg->curseg_mutex); 1334 1335 down_read(&curseg->journal_rwsem); 1336 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1337 up_read(&curseg->journal_rwsem); 1338 1339 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1340 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1341 1342 mutex_unlock(&curseg->curseg_mutex); 1343 1344 set_page_dirty(page); 1345 f2fs_put_page(page, 1); 1346 } 1347 1348 /* 1349 * Find a new segment from the free segments bitmap to right order 1350 * This function should be returned with success, otherwise BUG 1351 */ 1352 static void get_new_segment(struct f2fs_sb_info *sbi, 1353 unsigned int *newseg, bool new_sec, int dir) 1354 { 1355 struct free_segmap_info *free_i = FREE_I(sbi); 1356 unsigned int segno, secno, zoneno; 1357 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1358 unsigned int hint = *newseg / sbi->segs_per_sec; 1359 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1360 unsigned int left_start = hint; 1361 bool init = true; 1362 int go_left = 0; 1363 int i; 1364 1365 spin_lock(&free_i->segmap_lock); 1366 1367 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1368 segno = find_next_zero_bit(free_i->free_segmap, 1369 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1370 if (segno < (hint + 1) * sbi->segs_per_sec) 1371 goto got_it; 1372 } 1373 find_other_zone: 1374 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1375 if (secno >= MAIN_SECS(sbi)) { 1376 if (dir == ALLOC_RIGHT) { 1377 secno = find_next_zero_bit(free_i->free_secmap, 1378 MAIN_SECS(sbi), 0); 1379 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1380 } else { 1381 go_left = 1; 1382 left_start = hint - 1; 1383 } 1384 } 1385 if (go_left == 0) 1386 goto skip_left; 1387 1388 while (test_bit(left_start, free_i->free_secmap)) { 1389 if (left_start > 0) { 1390 left_start--; 1391 continue; 1392 } 1393 left_start = find_next_zero_bit(free_i->free_secmap, 1394 MAIN_SECS(sbi), 0); 1395 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1396 break; 1397 } 1398 secno = left_start; 1399 skip_left: 1400 hint = secno; 1401 segno = secno * sbi->segs_per_sec; 1402 zoneno = secno / sbi->secs_per_zone; 1403 1404 /* give up on finding another zone */ 1405 if (!init) 1406 goto got_it; 1407 if (sbi->secs_per_zone == 1) 1408 goto got_it; 1409 if (zoneno == old_zoneno) 1410 goto got_it; 1411 if (dir == ALLOC_LEFT) { 1412 if (!go_left && zoneno + 1 >= total_zones) 1413 goto got_it; 1414 if (go_left && zoneno == 0) 1415 goto got_it; 1416 } 1417 for (i = 0; i < NR_CURSEG_TYPE; i++) 1418 if (CURSEG_I(sbi, i)->zone == zoneno) 1419 break; 1420 1421 if (i < NR_CURSEG_TYPE) { 1422 /* zone is in user, try another */ 1423 if (go_left) 1424 hint = zoneno * sbi->secs_per_zone - 1; 1425 else if (zoneno + 1 >= total_zones) 1426 hint = 0; 1427 else 1428 hint = (zoneno + 1) * sbi->secs_per_zone; 1429 init = false; 1430 goto find_other_zone; 1431 } 1432 got_it: 1433 /* set it as dirty segment in free segmap */ 1434 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1435 __set_inuse(sbi, segno); 1436 *newseg = segno; 1437 spin_unlock(&free_i->segmap_lock); 1438 } 1439 1440 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1441 { 1442 struct curseg_info *curseg = CURSEG_I(sbi, type); 1443 struct summary_footer *sum_footer; 1444 1445 curseg->segno = curseg->next_segno; 1446 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1447 curseg->next_blkoff = 0; 1448 curseg->next_segno = NULL_SEGNO; 1449 1450 sum_footer = &(curseg->sum_blk->footer); 1451 memset(sum_footer, 0, sizeof(struct summary_footer)); 1452 if (IS_DATASEG(type)) 1453 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1454 if (IS_NODESEG(type)) 1455 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1456 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1457 } 1458 1459 /* 1460 * Allocate a current working segment. 1461 * This function always allocates a free segment in LFS manner. 1462 */ 1463 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1464 { 1465 struct curseg_info *curseg = CURSEG_I(sbi, type); 1466 unsigned int segno = curseg->segno; 1467 int dir = ALLOC_LEFT; 1468 1469 write_sum_page(sbi, curseg->sum_blk, 1470 GET_SUM_BLOCK(sbi, segno)); 1471 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1472 dir = ALLOC_RIGHT; 1473 1474 if (test_opt(sbi, NOHEAP)) 1475 dir = ALLOC_RIGHT; 1476 1477 get_new_segment(sbi, &segno, new_sec, dir); 1478 curseg->next_segno = segno; 1479 reset_curseg(sbi, type, 1); 1480 curseg->alloc_type = LFS; 1481 } 1482 1483 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1484 struct curseg_info *seg, block_t start) 1485 { 1486 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1487 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1488 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1489 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1490 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1491 int i, pos; 1492 1493 for (i = 0; i < entries; i++) 1494 target_map[i] = ckpt_map[i] | cur_map[i]; 1495 1496 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1497 1498 seg->next_blkoff = pos; 1499 } 1500 1501 /* 1502 * If a segment is written by LFS manner, next block offset is just obtained 1503 * by increasing the current block offset. However, if a segment is written by 1504 * SSR manner, next block offset obtained by calling __next_free_blkoff 1505 */ 1506 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1507 struct curseg_info *seg) 1508 { 1509 if (seg->alloc_type == SSR) 1510 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1511 else 1512 seg->next_blkoff++; 1513 } 1514 1515 /* 1516 * This function always allocates a used segment(from dirty seglist) by SSR 1517 * manner, so it should recover the existing segment information of valid blocks 1518 */ 1519 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1520 { 1521 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1522 struct curseg_info *curseg = CURSEG_I(sbi, type); 1523 unsigned int new_segno = curseg->next_segno; 1524 struct f2fs_summary_block *sum_node; 1525 struct page *sum_page; 1526 1527 write_sum_page(sbi, curseg->sum_blk, 1528 GET_SUM_BLOCK(sbi, curseg->segno)); 1529 __set_test_and_inuse(sbi, new_segno); 1530 1531 mutex_lock(&dirty_i->seglist_lock); 1532 __remove_dirty_segment(sbi, new_segno, PRE); 1533 __remove_dirty_segment(sbi, new_segno, DIRTY); 1534 mutex_unlock(&dirty_i->seglist_lock); 1535 1536 reset_curseg(sbi, type, 1); 1537 curseg->alloc_type = SSR; 1538 __next_free_blkoff(sbi, curseg, 0); 1539 1540 if (reuse) { 1541 sum_page = get_sum_page(sbi, new_segno); 1542 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1543 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1544 f2fs_put_page(sum_page, 1); 1545 } 1546 } 1547 1548 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1549 { 1550 struct curseg_info *curseg = CURSEG_I(sbi, type); 1551 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1552 int i, cnt; 1553 bool reversed = false; 1554 1555 /* need_SSR() already forces to do this */ 1556 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR)) 1557 return 1; 1558 1559 /* For node segments, let's do SSR more intensively */ 1560 if (IS_NODESEG(type)) { 1561 if (type >= CURSEG_WARM_NODE) { 1562 reversed = true; 1563 i = CURSEG_COLD_NODE; 1564 } else { 1565 i = CURSEG_HOT_NODE; 1566 } 1567 cnt = NR_CURSEG_NODE_TYPE; 1568 } else { 1569 if (type >= CURSEG_WARM_DATA) { 1570 reversed = true; 1571 i = CURSEG_COLD_DATA; 1572 } else { 1573 i = CURSEG_HOT_DATA; 1574 } 1575 cnt = NR_CURSEG_DATA_TYPE; 1576 } 1577 1578 for (; cnt-- > 0; reversed ? i-- : i++) { 1579 if (i == type) 1580 continue; 1581 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1582 BG_GC, i, SSR)) 1583 return 1; 1584 } 1585 return 0; 1586 } 1587 1588 /* 1589 * flush out current segment and replace it with new segment 1590 * This function should be returned with success, otherwise BUG 1591 */ 1592 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1593 int type, bool force) 1594 { 1595 if (force) 1596 new_curseg(sbi, type, true); 1597 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 1598 type == CURSEG_WARM_NODE) 1599 new_curseg(sbi, type, false); 1600 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1601 change_curseg(sbi, type, true); 1602 else 1603 new_curseg(sbi, type, false); 1604 1605 stat_inc_seg_type(sbi, CURSEG_I(sbi, type)); 1606 } 1607 1608 void allocate_new_segments(struct f2fs_sb_info *sbi) 1609 { 1610 struct curseg_info *curseg; 1611 unsigned int old_segno; 1612 int i; 1613 1614 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1615 curseg = CURSEG_I(sbi, i); 1616 old_segno = curseg->segno; 1617 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1618 locate_dirty_segment(sbi, old_segno); 1619 } 1620 } 1621 1622 static const struct segment_allocation default_salloc_ops = { 1623 .allocate_segment = allocate_segment_by_default, 1624 }; 1625 1626 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1627 { 1628 __u64 trim_start = cpc->trim_start; 1629 bool has_candidate = false; 1630 1631 mutex_lock(&SIT_I(sbi)->sentry_lock); 1632 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 1633 if (add_discard_addrs(sbi, cpc, true)) { 1634 has_candidate = true; 1635 break; 1636 } 1637 } 1638 mutex_unlock(&SIT_I(sbi)->sentry_lock); 1639 1640 cpc->trim_start = trim_start; 1641 return has_candidate; 1642 } 1643 1644 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1645 { 1646 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1647 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1648 unsigned int start_segno, end_segno; 1649 struct cp_control cpc; 1650 int err = 0; 1651 1652 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1653 return -EINVAL; 1654 1655 cpc.trimmed = 0; 1656 if (end <= MAIN_BLKADDR(sbi)) 1657 goto out; 1658 1659 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1660 f2fs_msg(sbi->sb, KERN_WARNING, 1661 "Found FS corruption, run fsck to fix."); 1662 goto out; 1663 } 1664 1665 /* start/end segment number in main_area */ 1666 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1667 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1668 GET_SEGNO(sbi, end); 1669 cpc.reason = CP_DISCARD; 1670 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1671 1672 /* do checkpoint to issue discard commands safely */ 1673 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1674 cpc.trim_start = start_segno; 1675 1676 if (sbi->discard_blks == 0) 1677 break; 1678 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1679 cpc.trim_end = end_segno; 1680 else 1681 cpc.trim_end = min_t(unsigned int, 1682 rounddown(start_segno + 1683 BATCHED_TRIM_SEGMENTS(sbi), 1684 sbi->segs_per_sec) - 1, end_segno); 1685 1686 mutex_lock(&sbi->gc_mutex); 1687 err = write_checkpoint(sbi, &cpc); 1688 mutex_unlock(&sbi->gc_mutex); 1689 if (err) 1690 break; 1691 1692 schedule(); 1693 } 1694 out: 1695 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1696 return err; 1697 } 1698 1699 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1700 { 1701 struct curseg_info *curseg = CURSEG_I(sbi, type); 1702 if (curseg->next_blkoff < sbi->blocks_per_seg) 1703 return true; 1704 return false; 1705 } 1706 1707 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1708 { 1709 if (p_type == DATA) 1710 return CURSEG_HOT_DATA; 1711 else 1712 return CURSEG_HOT_NODE; 1713 } 1714 1715 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1716 { 1717 if (p_type == DATA) { 1718 struct inode *inode = page->mapping->host; 1719 1720 if (S_ISDIR(inode->i_mode)) 1721 return CURSEG_HOT_DATA; 1722 else 1723 return CURSEG_COLD_DATA; 1724 } else { 1725 if (IS_DNODE(page) && is_cold_node(page)) 1726 return CURSEG_WARM_NODE; 1727 else 1728 return CURSEG_COLD_NODE; 1729 } 1730 } 1731 1732 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1733 { 1734 if (p_type == DATA) { 1735 struct inode *inode = page->mapping->host; 1736 1737 if (S_ISDIR(inode->i_mode)) 1738 return CURSEG_HOT_DATA; 1739 else if (is_cold_data(page) || file_is_cold(inode)) 1740 return CURSEG_COLD_DATA; 1741 else 1742 return CURSEG_WARM_DATA; 1743 } else { 1744 if (IS_DNODE(page)) 1745 return is_cold_node(page) ? CURSEG_WARM_NODE : 1746 CURSEG_HOT_NODE; 1747 else 1748 return CURSEG_COLD_NODE; 1749 } 1750 } 1751 1752 static int __get_segment_type(struct page *page, enum page_type p_type) 1753 { 1754 switch (F2FS_P_SB(page)->active_logs) { 1755 case 2: 1756 return __get_segment_type_2(page, p_type); 1757 case 4: 1758 return __get_segment_type_4(page, p_type); 1759 } 1760 /* NR_CURSEG_TYPE(6) logs by default */ 1761 f2fs_bug_on(F2FS_P_SB(page), 1762 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1763 return __get_segment_type_6(page, p_type); 1764 } 1765 1766 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1767 block_t old_blkaddr, block_t *new_blkaddr, 1768 struct f2fs_summary *sum, int type) 1769 { 1770 struct sit_info *sit_i = SIT_I(sbi); 1771 struct curseg_info *curseg = CURSEG_I(sbi, type); 1772 1773 mutex_lock(&curseg->curseg_mutex); 1774 mutex_lock(&sit_i->sentry_lock); 1775 1776 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1777 1778 f2fs_wait_discard_bio(sbi, *new_blkaddr); 1779 1780 /* 1781 * __add_sum_entry should be resided under the curseg_mutex 1782 * because, this function updates a summary entry in the 1783 * current summary block. 1784 */ 1785 __add_sum_entry(sbi, type, sum); 1786 1787 __refresh_next_blkoff(sbi, curseg); 1788 1789 stat_inc_block_count(sbi, curseg); 1790 1791 /* 1792 * SIT information should be updated before segment allocation, 1793 * since SSR needs latest valid block information. 1794 */ 1795 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1796 1797 if (!__has_curseg_space(sbi, type)) 1798 sit_i->s_ops->allocate_segment(sbi, type, false); 1799 1800 mutex_unlock(&sit_i->sentry_lock); 1801 1802 if (page && IS_NODESEG(type)) 1803 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1804 1805 mutex_unlock(&curseg->curseg_mutex); 1806 } 1807 1808 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1809 { 1810 int type = __get_segment_type(fio->page, fio->type); 1811 int err; 1812 1813 if (fio->type == NODE || fio->type == DATA) 1814 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1815 reallocate: 1816 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1817 &fio->new_blkaddr, sum, type); 1818 1819 /* writeout dirty page into bdev */ 1820 err = f2fs_submit_page_mbio(fio); 1821 if (err == -EAGAIN) { 1822 fio->old_blkaddr = fio->new_blkaddr; 1823 goto reallocate; 1824 } 1825 1826 if (fio->type == NODE || fio->type == DATA) 1827 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1828 } 1829 1830 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1831 { 1832 struct f2fs_io_info fio = { 1833 .sbi = sbi, 1834 .type = META, 1835 .op = REQ_OP_WRITE, 1836 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1837 .old_blkaddr = page->index, 1838 .new_blkaddr = page->index, 1839 .page = page, 1840 .encrypted_page = NULL, 1841 }; 1842 1843 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1844 fio.op_flags &= ~REQ_META; 1845 1846 set_page_writeback(page); 1847 f2fs_submit_page_mbio(&fio); 1848 } 1849 1850 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1851 { 1852 struct f2fs_summary sum; 1853 1854 set_summary(&sum, nid, 0, 0); 1855 do_write_page(&sum, fio); 1856 } 1857 1858 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1859 { 1860 struct f2fs_sb_info *sbi = fio->sbi; 1861 struct f2fs_summary sum; 1862 struct node_info ni; 1863 1864 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1865 get_node_info(sbi, dn->nid, &ni); 1866 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1867 do_write_page(&sum, fio); 1868 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1869 } 1870 1871 void rewrite_data_page(struct f2fs_io_info *fio) 1872 { 1873 fio->new_blkaddr = fio->old_blkaddr; 1874 stat_inc_inplace_blocks(fio->sbi); 1875 f2fs_submit_page_mbio(fio); 1876 } 1877 1878 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1879 block_t old_blkaddr, block_t new_blkaddr, 1880 bool recover_curseg, bool recover_newaddr) 1881 { 1882 struct sit_info *sit_i = SIT_I(sbi); 1883 struct curseg_info *curseg; 1884 unsigned int segno, old_cursegno; 1885 struct seg_entry *se; 1886 int type; 1887 unsigned short old_blkoff; 1888 1889 segno = GET_SEGNO(sbi, new_blkaddr); 1890 se = get_seg_entry(sbi, segno); 1891 type = se->type; 1892 1893 if (!recover_curseg) { 1894 /* for recovery flow */ 1895 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1896 if (old_blkaddr == NULL_ADDR) 1897 type = CURSEG_COLD_DATA; 1898 else 1899 type = CURSEG_WARM_DATA; 1900 } 1901 } else { 1902 if (!IS_CURSEG(sbi, segno)) 1903 type = CURSEG_WARM_DATA; 1904 } 1905 1906 curseg = CURSEG_I(sbi, type); 1907 1908 mutex_lock(&curseg->curseg_mutex); 1909 mutex_lock(&sit_i->sentry_lock); 1910 1911 old_cursegno = curseg->segno; 1912 old_blkoff = curseg->next_blkoff; 1913 1914 /* change the current segment */ 1915 if (segno != curseg->segno) { 1916 curseg->next_segno = segno; 1917 change_curseg(sbi, type, true); 1918 } 1919 1920 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1921 __add_sum_entry(sbi, type, sum); 1922 1923 if (!recover_curseg || recover_newaddr) 1924 update_sit_entry(sbi, new_blkaddr, 1); 1925 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1926 update_sit_entry(sbi, old_blkaddr, -1); 1927 1928 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1929 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1930 1931 locate_dirty_segment(sbi, old_cursegno); 1932 1933 if (recover_curseg) { 1934 if (old_cursegno != curseg->segno) { 1935 curseg->next_segno = old_cursegno; 1936 change_curseg(sbi, type, true); 1937 } 1938 curseg->next_blkoff = old_blkoff; 1939 } 1940 1941 mutex_unlock(&sit_i->sentry_lock); 1942 mutex_unlock(&curseg->curseg_mutex); 1943 } 1944 1945 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1946 block_t old_addr, block_t new_addr, 1947 unsigned char version, bool recover_curseg, 1948 bool recover_newaddr) 1949 { 1950 struct f2fs_summary sum; 1951 1952 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1953 1954 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1955 recover_curseg, recover_newaddr); 1956 1957 f2fs_update_data_blkaddr(dn, new_addr); 1958 } 1959 1960 void f2fs_wait_on_page_writeback(struct page *page, 1961 enum page_type type, bool ordered) 1962 { 1963 if (PageWriteback(page)) { 1964 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1965 1966 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 1967 0, page->index, type, WRITE); 1968 if (ordered) 1969 wait_on_page_writeback(page); 1970 else 1971 wait_for_stable_page(page); 1972 } 1973 } 1974 1975 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1976 block_t blkaddr) 1977 { 1978 struct page *cpage; 1979 1980 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1981 return; 1982 1983 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1984 if (cpage) { 1985 f2fs_wait_on_page_writeback(cpage, DATA, true); 1986 f2fs_put_page(cpage, 1); 1987 } 1988 } 1989 1990 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1991 { 1992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1993 struct curseg_info *seg_i; 1994 unsigned char *kaddr; 1995 struct page *page; 1996 block_t start; 1997 int i, j, offset; 1998 1999 start = start_sum_block(sbi); 2000 2001 page = get_meta_page(sbi, start++); 2002 kaddr = (unsigned char *)page_address(page); 2003 2004 /* Step 1: restore nat cache */ 2005 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2006 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 2007 2008 /* Step 2: restore sit cache */ 2009 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2010 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 2011 offset = 2 * SUM_JOURNAL_SIZE; 2012 2013 /* Step 3: restore summary entries */ 2014 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2015 unsigned short blk_off; 2016 unsigned int segno; 2017 2018 seg_i = CURSEG_I(sbi, i); 2019 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2020 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2021 seg_i->next_segno = segno; 2022 reset_curseg(sbi, i, 0); 2023 seg_i->alloc_type = ckpt->alloc_type[i]; 2024 seg_i->next_blkoff = blk_off; 2025 2026 if (seg_i->alloc_type == SSR) 2027 blk_off = sbi->blocks_per_seg; 2028 2029 for (j = 0; j < blk_off; j++) { 2030 struct f2fs_summary *s; 2031 s = (struct f2fs_summary *)(kaddr + offset); 2032 seg_i->sum_blk->entries[j] = *s; 2033 offset += SUMMARY_SIZE; 2034 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2035 SUM_FOOTER_SIZE) 2036 continue; 2037 2038 f2fs_put_page(page, 1); 2039 page = NULL; 2040 2041 page = get_meta_page(sbi, start++); 2042 kaddr = (unsigned char *)page_address(page); 2043 offset = 0; 2044 } 2045 } 2046 f2fs_put_page(page, 1); 2047 return 0; 2048 } 2049 2050 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2051 { 2052 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2053 struct f2fs_summary_block *sum; 2054 struct curseg_info *curseg; 2055 struct page *new; 2056 unsigned short blk_off; 2057 unsigned int segno = 0; 2058 block_t blk_addr = 0; 2059 2060 /* get segment number and block addr */ 2061 if (IS_DATASEG(type)) { 2062 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2063 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2064 CURSEG_HOT_DATA]); 2065 if (__exist_node_summaries(sbi)) 2066 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2067 else 2068 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2069 } else { 2070 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2071 CURSEG_HOT_NODE]); 2072 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2073 CURSEG_HOT_NODE]); 2074 if (__exist_node_summaries(sbi)) 2075 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2076 type - CURSEG_HOT_NODE); 2077 else 2078 blk_addr = GET_SUM_BLOCK(sbi, segno); 2079 } 2080 2081 new = get_meta_page(sbi, blk_addr); 2082 sum = (struct f2fs_summary_block *)page_address(new); 2083 2084 if (IS_NODESEG(type)) { 2085 if (__exist_node_summaries(sbi)) { 2086 struct f2fs_summary *ns = &sum->entries[0]; 2087 int i; 2088 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2089 ns->version = 0; 2090 ns->ofs_in_node = 0; 2091 } 2092 } else { 2093 int err; 2094 2095 err = restore_node_summary(sbi, segno, sum); 2096 if (err) { 2097 f2fs_put_page(new, 1); 2098 return err; 2099 } 2100 } 2101 } 2102 2103 /* set uncompleted segment to curseg */ 2104 curseg = CURSEG_I(sbi, type); 2105 mutex_lock(&curseg->curseg_mutex); 2106 2107 /* update journal info */ 2108 down_write(&curseg->journal_rwsem); 2109 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2110 up_write(&curseg->journal_rwsem); 2111 2112 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2113 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2114 curseg->next_segno = segno; 2115 reset_curseg(sbi, type, 0); 2116 curseg->alloc_type = ckpt->alloc_type[type]; 2117 curseg->next_blkoff = blk_off; 2118 mutex_unlock(&curseg->curseg_mutex); 2119 f2fs_put_page(new, 1); 2120 return 0; 2121 } 2122 2123 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2124 { 2125 int type = CURSEG_HOT_DATA; 2126 int err; 2127 2128 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2129 int npages = npages_for_summary_flush(sbi, true); 2130 2131 if (npages >= 2) 2132 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2133 META_CP, true); 2134 2135 /* restore for compacted data summary */ 2136 if (read_compacted_summaries(sbi)) 2137 return -EINVAL; 2138 type = CURSEG_HOT_NODE; 2139 } 2140 2141 if (__exist_node_summaries(sbi)) 2142 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2143 NR_CURSEG_TYPE - type, META_CP, true); 2144 2145 for (; type <= CURSEG_COLD_NODE; type++) { 2146 err = read_normal_summaries(sbi, type); 2147 if (err) 2148 return err; 2149 } 2150 2151 return 0; 2152 } 2153 2154 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 2155 { 2156 struct page *page; 2157 unsigned char *kaddr; 2158 struct f2fs_summary *summary; 2159 struct curseg_info *seg_i; 2160 int written_size = 0; 2161 int i, j; 2162 2163 page = grab_meta_page(sbi, blkaddr++); 2164 kaddr = (unsigned char *)page_address(page); 2165 2166 /* Step 1: write nat cache */ 2167 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2168 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 2169 written_size += SUM_JOURNAL_SIZE; 2170 2171 /* Step 2: write sit cache */ 2172 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2173 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 2174 written_size += SUM_JOURNAL_SIZE; 2175 2176 /* Step 3: write summary entries */ 2177 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2178 unsigned short blkoff; 2179 seg_i = CURSEG_I(sbi, i); 2180 if (sbi->ckpt->alloc_type[i] == SSR) 2181 blkoff = sbi->blocks_per_seg; 2182 else 2183 blkoff = curseg_blkoff(sbi, i); 2184 2185 for (j = 0; j < blkoff; j++) { 2186 if (!page) { 2187 page = grab_meta_page(sbi, blkaddr++); 2188 kaddr = (unsigned char *)page_address(page); 2189 written_size = 0; 2190 } 2191 summary = (struct f2fs_summary *)(kaddr + written_size); 2192 *summary = seg_i->sum_blk->entries[j]; 2193 written_size += SUMMARY_SIZE; 2194 2195 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 2196 SUM_FOOTER_SIZE) 2197 continue; 2198 2199 set_page_dirty(page); 2200 f2fs_put_page(page, 1); 2201 page = NULL; 2202 } 2203 } 2204 if (page) { 2205 set_page_dirty(page); 2206 f2fs_put_page(page, 1); 2207 } 2208 } 2209 2210 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2211 block_t blkaddr, int type) 2212 { 2213 int i, end; 2214 if (IS_DATASEG(type)) 2215 end = type + NR_CURSEG_DATA_TYPE; 2216 else 2217 end = type + NR_CURSEG_NODE_TYPE; 2218 2219 for (i = type; i < end; i++) 2220 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2221 } 2222 2223 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2224 { 2225 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2226 write_compacted_summaries(sbi, start_blk); 2227 else 2228 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2229 } 2230 2231 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2232 { 2233 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2234 } 2235 2236 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2237 unsigned int val, int alloc) 2238 { 2239 int i; 2240 2241 if (type == NAT_JOURNAL) { 2242 for (i = 0; i < nats_in_cursum(journal); i++) { 2243 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2244 return i; 2245 } 2246 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2247 return update_nats_in_cursum(journal, 1); 2248 } else if (type == SIT_JOURNAL) { 2249 for (i = 0; i < sits_in_cursum(journal); i++) 2250 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2251 return i; 2252 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2253 return update_sits_in_cursum(journal, 1); 2254 } 2255 return -1; 2256 } 2257 2258 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2259 unsigned int segno) 2260 { 2261 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2262 } 2263 2264 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2265 unsigned int start) 2266 { 2267 struct sit_info *sit_i = SIT_I(sbi); 2268 struct page *src_page, *dst_page; 2269 pgoff_t src_off, dst_off; 2270 void *src_addr, *dst_addr; 2271 2272 src_off = current_sit_addr(sbi, start); 2273 dst_off = next_sit_addr(sbi, src_off); 2274 2275 /* get current sit block page without lock */ 2276 src_page = get_meta_page(sbi, src_off); 2277 dst_page = grab_meta_page(sbi, dst_off); 2278 f2fs_bug_on(sbi, PageDirty(src_page)); 2279 2280 src_addr = page_address(src_page); 2281 dst_addr = page_address(dst_page); 2282 memcpy(dst_addr, src_addr, PAGE_SIZE); 2283 2284 set_page_dirty(dst_page); 2285 f2fs_put_page(src_page, 1); 2286 2287 set_to_next_sit(sit_i, start); 2288 2289 return dst_page; 2290 } 2291 2292 static struct sit_entry_set *grab_sit_entry_set(void) 2293 { 2294 struct sit_entry_set *ses = 2295 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2296 2297 ses->entry_cnt = 0; 2298 INIT_LIST_HEAD(&ses->set_list); 2299 return ses; 2300 } 2301 2302 static void release_sit_entry_set(struct sit_entry_set *ses) 2303 { 2304 list_del(&ses->set_list); 2305 kmem_cache_free(sit_entry_set_slab, ses); 2306 } 2307 2308 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2309 struct list_head *head) 2310 { 2311 struct sit_entry_set *next = ses; 2312 2313 if (list_is_last(&ses->set_list, head)) 2314 return; 2315 2316 list_for_each_entry_continue(next, head, set_list) 2317 if (ses->entry_cnt <= next->entry_cnt) 2318 break; 2319 2320 list_move_tail(&ses->set_list, &next->set_list); 2321 } 2322 2323 static void add_sit_entry(unsigned int segno, struct list_head *head) 2324 { 2325 struct sit_entry_set *ses; 2326 unsigned int start_segno = START_SEGNO(segno); 2327 2328 list_for_each_entry(ses, head, set_list) { 2329 if (ses->start_segno == start_segno) { 2330 ses->entry_cnt++; 2331 adjust_sit_entry_set(ses, head); 2332 return; 2333 } 2334 } 2335 2336 ses = grab_sit_entry_set(); 2337 2338 ses->start_segno = start_segno; 2339 ses->entry_cnt++; 2340 list_add(&ses->set_list, head); 2341 } 2342 2343 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2344 { 2345 struct f2fs_sm_info *sm_info = SM_I(sbi); 2346 struct list_head *set_list = &sm_info->sit_entry_set; 2347 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2348 unsigned int segno; 2349 2350 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2351 add_sit_entry(segno, set_list); 2352 } 2353 2354 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2355 { 2356 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2357 struct f2fs_journal *journal = curseg->journal; 2358 int i; 2359 2360 down_write(&curseg->journal_rwsem); 2361 for (i = 0; i < sits_in_cursum(journal); i++) { 2362 unsigned int segno; 2363 bool dirtied; 2364 2365 segno = le32_to_cpu(segno_in_journal(journal, i)); 2366 dirtied = __mark_sit_entry_dirty(sbi, segno); 2367 2368 if (!dirtied) 2369 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2370 } 2371 update_sits_in_cursum(journal, -i); 2372 up_write(&curseg->journal_rwsem); 2373 } 2374 2375 /* 2376 * CP calls this function, which flushes SIT entries including sit_journal, 2377 * and moves prefree segs to free segs. 2378 */ 2379 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2380 { 2381 struct sit_info *sit_i = SIT_I(sbi); 2382 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2383 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2384 struct f2fs_journal *journal = curseg->journal; 2385 struct sit_entry_set *ses, *tmp; 2386 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2387 bool to_journal = true; 2388 struct seg_entry *se; 2389 2390 mutex_lock(&sit_i->sentry_lock); 2391 2392 if (!sit_i->dirty_sentries) 2393 goto out; 2394 2395 /* 2396 * add and account sit entries of dirty bitmap in sit entry 2397 * set temporarily 2398 */ 2399 add_sits_in_set(sbi); 2400 2401 /* 2402 * if there are no enough space in journal to store dirty sit 2403 * entries, remove all entries from journal and add and account 2404 * them in sit entry set. 2405 */ 2406 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2407 remove_sits_in_journal(sbi); 2408 2409 /* 2410 * there are two steps to flush sit entries: 2411 * #1, flush sit entries to journal in current cold data summary block. 2412 * #2, flush sit entries to sit page. 2413 */ 2414 list_for_each_entry_safe(ses, tmp, head, set_list) { 2415 struct page *page = NULL; 2416 struct f2fs_sit_block *raw_sit = NULL; 2417 unsigned int start_segno = ses->start_segno; 2418 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2419 (unsigned long)MAIN_SEGS(sbi)); 2420 unsigned int segno = start_segno; 2421 2422 if (to_journal && 2423 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2424 to_journal = false; 2425 2426 if (to_journal) { 2427 down_write(&curseg->journal_rwsem); 2428 } else { 2429 page = get_next_sit_page(sbi, start_segno); 2430 raw_sit = page_address(page); 2431 } 2432 2433 /* flush dirty sit entries in region of current sit set */ 2434 for_each_set_bit_from(segno, bitmap, end) { 2435 int offset, sit_offset; 2436 2437 se = get_seg_entry(sbi, segno); 2438 2439 /* add discard candidates */ 2440 if (cpc->reason != CP_DISCARD) { 2441 cpc->trim_start = segno; 2442 add_discard_addrs(sbi, cpc, false); 2443 } 2444 2445 if (to_journal) { 2446 offset = lookup_journal_in_cursum(journal, 2447 SIT_JOURNAL, segno, 1); 2448 f2fs_bug_on(sbi, offset < 0); 2449 segno_in_journal(journal, offset) = 2450 cpu_to_le32(segno); 2451 seg_info_to_raw_sit(se, 2452 &sit_in_journal(journal, offset)); 2453 } else { 2454 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2455 seg_info_to_raw_sit(se, 2456 &raw_sit->entries[sit_offset]); 2457 } 2458 2459 __clear_bit(segno, bitmap); 2460 sit_i->dirty_sentries--; 2461 ses->entry_cnt--; 2462 } 2463 2464 if (to_journal) 2465 up_write(&curseg->journal_rwsem); 2466 else 2467 f2fs_put_page(page, 1); 2468 2469 f2fs_bug_on(sbi, ses->entry_cnt); 2470 release_sit_entry_set(ses); 2471 } 2472 2473 f2fs_bug_on(sbi, !list_empty(head)); 2474 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2475 out: 2476 if (cpc->reason == CP_DISCARD) { 2477 __u64 trim_start = cpc->trim_start; 2478 2479 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2480 add_discard_addrs(sbi, cpc, false); 2481 2482 cpc->trim_start = trim_start; 2483 } 2484 mutex_unlock(&sit_i->sentry_lock); 2485 2486 set_prefree_as_free_segments(sbi); 2487 } 2488 2489 static int build_sit_info(struct f2fs_sb_info *sbi) 2490 { 2491 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2492 struct sit_info *sit_i; 2493 unsigned int sit_segs, start; 2494 char *src_bitmap; 2495 unsigned int bitmap_size; 2496 2497 /* allocate memory for SIT information */ 2498 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2499 if (!sit_i) 2500 return -ENOMEM; 2501 2502 SM_I(sbi)->sit_info = sit_i; 2503 2504 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2505 sizeof(struct seg_entry), GFP_KERNEL); 2506 if (!sit_i->sentries) 2507 return -ENOMEM; 2508 2509 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2510 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2511 if (!sit_i->dirty_sentries_bitmap) 2512 return -ENOMEM; 2513 2514 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2515 sit_i->sentries[start].cur_valid_map 2516 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2517 sit_i->sentries[start].ckpt_valid_map 2518 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2519 if (!sit_i->sentries[start].cur_valid_map || 2520 !sit_i->sentries[start].ckpt_valid_map) 2521 return -ENOMEM; 2522 2523 #ifdef CONFIG_F2FS_CHECK_FS 2524 sit_i->sentries[start].cur_valid_map_mir 2525 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2526 if (!sit_i->sentries[start].cur_valid_map_mir) 2527 return -ENOMEM; 2528 #endif 2529 2530 if (f2fs_discard_en(sbi)) { 2531 sit_i->sentries[start].discard_map 2532 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2533 if (!sit_i->sentries[start].discard_map) 2534 return -ENOMEM; 2535 } 2536 } 2537 2538 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2539 if (!sit_i->tmp_map) 2540 return -ENOMEM; 2541 2542 if (sbi->segs_per_sec > 1) { 2543 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2544 sizeof(struct sec_entry), GFP_KERNEL); 2545 if (!sit_i->sec_entries) 2546 return -ENOMEM; 2547 } 2548 2549 /* get information related with SIT */ 2550 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2551 2552 /* setup SIT bitmap from ckeckpoint pack */ 2553 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2554 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2555 2556 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2557 if (!sit_i->sit_bitmap) 2558 return -ENOMEM; 2559 2560 #ifdef CONFIG_F2FS_CHECK_FS 2561 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2562 if (!sit_i->sit_bitmap_mir) 2563 return -ENOMEM; 2564 #endif 2565 2566 /* init SIT information */ 2567 sit_i->s_ops = &default_salloc_ops; 2568 2569 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2570 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2571 sit_i->written_valid_blocks = 0; 2572 sit_i->bitmap_size = bitmap_size; 2573 sit_i->dirty_sentries = 0; 2574 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2575 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2576 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2577 mutex_init(&sit_i->sentry_lock); 2578 return 0; 2579 } 2580 2581 static int build_free_segmap(struct f2fs_sb_info *sbi) 2582 { 2583 struct free_segmap_info *free_i; 2584 unsigned int bitmap_size, sec_bitmap_size; 2585 2586 /* allocate memory for free segmap information */ 2587 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2588 if (!free_i) 2589 return -ENOMEM; 2590 2591 SM_I(sbi)->free_info = free_i; 2592 2593 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2594 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2595 if (!free_i->free_segmap) 2596 return -ENOMEM; 2597 2598 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2599 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2600 if (!free_i->free_secmap) 2601 return -ENOMEM; 2602 2603 /* set all segments as dirty temporarily */ 2604 memset(free_i->free_segmap, 0xff, bitmap_size); 2605 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2606 2607 /* init free segmap information */ 2608 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2609 free_i->free_segments = 0; 2610 free_i->free_sections = 0; 2611 spin_lock_init(&free_i->segmap_lock); 2612 return 0; 2613 } 2614 2615 static int build_curseg(struct f2fs_sb_info *sbi) 2616 { 2617 struct curseg_info *array; 2618 int i; 2619 2620 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2621 if (!array) 2622 return -ENOMEM; 2623 2624 SM_I(sbi)->curseg_array = array; 2625 2626 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2627 mutex_init(&array[i].curseg_mutex); 2628 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2629 if (!array[i].sum_blk) 2630 return -ENOMEM; 2631 init_rwsem(&array[i].journal_rwsem); 2632 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2633 GFP_KERNEL); 2634 if (!array[i].journal) 2635 return -ENOMEM; 2636 array[i].segno = NULL_SEGNO; 2637 array[i].next_blkoff = 0; 2638 } 2639 return restore_curseg_summaries(sbi); 2640 } 2641 2642 static void build_sit_entries(struct f2fs_sb_info *sbi) 2643 { 2644 struct sit_info *sit_i = SIT_I(sbi); 2645 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2646 struct f2fs_journal *journal = curseg->journal; 2647 struct seg_entry *se; 2648 struct f2fs_sit_entry sit; 2649 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2650 unsigned int i, start, end; 2651 unsigned int readed, start_blk = 0; 2652 2653 do { 2654 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2655 META_SIT, true); 2656 2657 start = start_blk * sit_i->sents_per_block; 2658 end = (start_blk + readed) * sit_i->sents_per_block; 2659 2660 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2661 struct f2fs_sit_block *sit_blk; 2662 struct page *page; 2663 2664 se = &sit_i->sentries[start]; 2665 page = get_current_sit_page(sbi, start); 2666 sit_blk = (struct f2fs_sit_block *)page_address(page); 2667 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2668 f2fs_put_page(page, 1); 2669 2670 check_block_count(sbi, start, &sit); 2671 seg_info_from_raw_sit(se, &sit); 2672 2673 /* build discard map only one time */ 2674 if (f2fs_discard_en(sbi)) { 2675 memcpy(se->discard_map, se->cur_valid_map, 2676 SIT_VBLOCK_MAP_SIZE); 2677 sbi->discard_blks += sbi->blocks_per_seg - 2678 se->valid_blocks; 2679 } 2680 2681 if (sbi->segs_per_sec > 1) 2682 get_sec_entry(sbi, start)->valid_blocks += 2683 se->valid_blocks; 2684 } 2685 start_blk += readed; 2686 } while (start_blk < sit_blk_cnt); 2687 2688 down_read(&curseg->journal_rwsem); 2689 for (i = 0; i < sits_in_cursum(journal); i++) { 2690 unsigned int old_valid_blocks; 2691 2692 start = le32_to_cpu(segno_in_journal(journal, i)); 2693 se = &sit_i->sentries[start]; 2694 sit = sit_in_journal(journal, i); 2695 2696 old_valid_blocks = se->valid_blocks; 2697 2698 check_block_count(sbi, start, &sit); 2699 seg_info_from_raw_sit(se, &sit); 2700 2701 if (f2fs_discard_en(sbi)) { 2702 memcpy(se->discard_map, se->cur_valid_map, 2703 SIT_VBLOCK_MAP_SIZE); 2704 sbi->discard_blks += old_valid_blocks - 2705 se->valid_blocks; 2706 } 2707 2708 if (sbi->segs_per_sec > 1) 2709 get_sec_entry(sbi, start)->valid_blocks += 2710 se->valid_blocks - old_valid_blocks; 2711 } 2712 up_read(&curseg->journal_rwsem); 2713 } 2714 2715 static void init_free_segmap(struct f2fs_sb_info *sbi) 2716 { 2717 unsigned int start; 2718 int type; 2719 2720 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2721 struct seg_entry *sentry = get_seg_entry(sbi, start); 2722 if (!sentry->valid_blocks) 2723 __set_free(sbi, start); 2724 else 2725 SIT_I(sbi)->written_valid_blocks += 2726 sentry->valid_blocks; 2727 } 2728 2729 /* set use the current segments */ 2730 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2731 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2732 __set_test_and_inuse(sbi, curseg_t->segno); 2733 } 2734 } 2735 2736 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2737 { 2738 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2739 struct free_segmap_info *free_i = FREE_I(sbi); 2740 unsigned int segno = 0, offset = 0; 2741 unsigned short valid_blocks; 2742 2743 while (1) { 2744 /* find dirty segment based on free segmap */ 2745 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2746 if (segno >= MAIN_SEGS(sbi)) 2747 break; 2748 offset = segno + 1; 2749 valid_blocks = get_valid_blocks(sbi, segno, 0); 2750 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2751 continue; 2752 if (valid_blocks > sbi->blocks_per_seg) { 2753 f2fs_bug_on(sbi, 1); 2754 continue; 2755 } 2756 mutex_lock(&dirty_i->seglist_lock); 2757 __locate_dirty_segment(sbi, segno, DIRTY); 2758 mutex_unlock(&dirty_i->seglist_lock); 2759 } 2760 } 2761 2762 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2763 { 2764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2765 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2766 2767 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2768 if (!dirty_i->victim_secmap) 2769 return -ENOMEM; 2770 return 0; 2771 } 2772 2773 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2774 { 2775 struct dirty_seglist_info *dirty_i; 2776 unsigned int bitmap_size, i; 2777 2778 /* allocate memory for dirty segments list information */ 2779 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2780 if (!dirty_i) 2781 return -ENOMEM; 2782 2783 SM_I(sbi)->dirty_info = dirty_i; 2784 mutex_init(&dirty_i->seglist_lock); 2785 2786 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2787 2788 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2789 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2790 if (!dirty_i->dirty_segmap[i]) 2791 return -ENOMEM; 2792 } 2793 2794 init_dirty_segmap(sbi); 2795 return init_victim_secmap(sbi); 2796 } 2797 2798 /* 2799 * Update min, max modified time for cost-benefit GC algorithm 2800 */ 2801 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2802 { 2803 struct sit_info *sit_i = SIT_I(sbi); 2804 unsigned int segno; 2805 2806 mutex_lock(&sit_i->sentry_lock); 2807 2808 sit_i->min_mtime = LLONG_MAX; 2809 2810 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2811 unsigned int i; 2812 unsigned long long mtime = 0; 2813 2814 for (i = 0; i < sbi->segs_per_sec; i++) 2815 mtime += get_seg_entry(sbi, segno + i)->mtime; 2816 2817 mtime = div_u64(mtime, sbi->segs_per_sec); 2818 2819 if (sit_i->min_mtime > mtime) 2820 sit_i->min_mtime = mtime; 2821 } 2822 sit_i->max_mtime = get_mtime(sbi); 2823 mutex_unlock(&sit_i->sentry_lock); 2824 } 2825 2826 int build_segment_manager(struct f2fs_sb_info *sbi) 2827 { 2828 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2829 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2830 struct f2fs_sm_info *sm_info; 2831 int err; 2832 2833 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2834 if (!sm_info) 2835 return -ENOMEM; 2836 2837 /* init sm info */ 2838 sbi->sm_info = sm_info; 2839 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2840 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2841 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2842 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2843 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2844 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2845 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2846 sm_info->rec_prefree_segments = sm_info->main_segments * 2847 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2848 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2849 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2850 2851 if (!test_opt(sbi, LFS)) 2852 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2853 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2854 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2855 2856 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2857 2858 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2859 2860 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2861 err = create_flush_cmd_control(sbi); 2862 if (err) 2863 return err; 2864 } 2865 2866 err = create_discard_cmd_control(sbi); 2867 if (err) 2868 return err; 2869 2870 err = build_sit_info(sbi); 2871 if (err) 2872 return err; 2873 err = build_free_segmap(sbi); 2874 if (err) 2875 return err; 2876 err = build_curseg(sbi); 2877 if (err) 2878 return err; 2879 2880 /* reinit free segmap based on SIT */ 2881 build_sit_entries(sbi); 2882 2883 init_free_segmap(sbi); 2884 err = build_dirty_segmap(sbi); 2885 if (err) 2886 return err; 2887 2888 init_min_max_mtime(sbi); 2889 return 0; 2890 } 2891 2892 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2893 enum dirty_type dirty_type) 2894 { 2895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2896 2897 mutex_lock(&dirty_i->seglist_lock); 2898 kvfree(dirty_i->dirty_segmap[dirty_type]); 2899 dirty_i->nr_dirty[dirty_type] = 0; 2900 mutex_unlock(&dirty_i->seglist_lock); 2901 } 2902 2903 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2904 { 2905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2906 kvfree(dirty_i->victim_secmap); 2907 } 2908 2909 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2910 { 2911 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2912 int i; 2913 2914 if (!dirty_i) 2915 return; 2916 2917 /* discard pre-free/dirty segments list */ 2918 for (i = 0; i < NR_DIRTY_TYPE; i++) 2919 discard_dirty_segmap(sbi, i); 2920 2921 destroy_victim_secmap(sbi); 2922 SM_I(sbi)->dirty_info = NULL; 2923 kfree(dirty_i); 2924 } 2925 2926 static void destroy_curseg(struct f2fs_sb_info *sbi) 2927 { 2928 struct curseg_info *array = SM_I(sbi)->curseg_array; 2929 int i; 2930 2931 if (!array) 2932 return; 2933 SM_I(sbi)->curseg_array = NULL; 2934 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2935 kfree(array[i].sum_blk); 2936 kfree(array[i].journal); 2937 } 2938 kfree(array); 2939 } 2940 2941 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2942 { 2943 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2944 if (!free_i) 2945 return; 2946 SM_I(sbi)->free_info = NULL; 2947 kvfree(free_i->free_segmap); 2948 kvfree(free_i->free_secmap); 2949 kfree(free_i); 2950 } 2951 2952 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2953 { 2954 struct sit_info *sit_i = SIT_I(sbi); 2955 unsigned int start; 2956 2957 if (!sit_i) 2958 return; 2959 2960 if (sit_i->sentries) { 2961 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2962 kfree(sit_i->sentries[start].cur_valid_map); 2963 #ifdef CONFIG_F2FS_CHECK_FS 2964 kfree(sit_i->sentries[start].cur_valid_map_mir); 2965 #endif 2966 kfree(sit_i->sentries[start].ckpt_valid_map); 2967 kfree(sit_i->sentries[start].discard_map); 2968 } 2969 } 2970 kfree(sit_i->tmp_map); 2971 2972 kvfree(sit_i->sentries); 2973 kvfree(sit_i->sec_entries); 2974 kvfree(sit_i->dirty_sentries_bitmap); 2975 2976 SM_I(sbi)->sit_info = NULL; 2977 kfree(sit_i->sit_bitmap); 2978 #ifdef CONFIG_F2FS_CHECK_FS 2979 kfree(sit_i->sit_bitmap_mir); 2980 #endif 2981 kfree(sit_i); 2982 } 2983 2984 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2985 { 2986 struct f2fs_sm_info *sm_info = SM_I(sbi); 2987 2988 if (!sm_info) 2989 return; 2990 destroy_flush_cmd_control(sbi, true); 2991 destroy_discard_cmd_control(sbi, true); 2992 destroy_dirty_segmap(sbi); 2993 destroy_curseg(sbi); 2994 destroy_free_segmap(sbi); 2995 destroy_sit_info(sbi); 2996 sbi->sm_info = NULL; 2997 kfree(sm_info); 2998 } 2999 3000 int __init create_segment_manager_caches(void) 3001 { 3002 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 3003 sizeof(struct discard_entry)); 3004 if (!discard_entry_slab) 3005 goto fail; 3006 3007 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 3008 sizeof(struct discard_cmd)); 3009 if (!discard_cmd_slab) 3010 goto destroy_discard_entry; 3011 3012 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 3013 sizeof(struct sit_entry_set)); 3014 if (!sit_entry_set_slab) 3015 goto destroy_discard_cmd; 3016 3017 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 3018 sizeof(struct inmem_pages)); 3019 if (!inmem_entry_slab) 3020 goto destroy_sit_entry_set; 3021 return 0; 3022 3023 destroy_sit_entry_set: 3024 kmem_cache_destroy(sit_entry_set_slab); 3025 destroy_discard_cmd: 3026 kmem_cache_destroy(discard_cmd_slab); 3027 destroy_discard_entry: 3028 kmem_cache_destroy(discard_entry_slab); 3029 fail: 3030 return -ENOMEM; 3031 } 3032 3033 void destroy_segment_manager_caches(void) 3034 { 3035 kmem_cache_destroy(sit_entry_set_slab); 3036 kmem_cache_destroy(discard_cmd_slab); 3037 kmem_cache_destroy(discard_entry_slab); 3038 kmem_cache_destroy(inmem_entry_slab); 3039 } 3040