xref: /openbmc/linux/fs/f2fs/segment.c (revision 21f9cb44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	F2FS_I(inode)->atomic_write_task = NULL;
205 
206 	if (clean) {
207 		f2fs_i_size_write(inode, fi->original_i_size);
208 		fi->original_i_size = 0;
209 	}
210 	/* avoid stale dirty inode during eviction */
211 	sync_inode_metadata(inode, 0);
212 }
213 
214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215 			block_t new_addr, block_t *old_addr, bool recover)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 	struct dnode_of_data dn;
219 	struct node_info ni;
220 	int err;
221 
222 retry:
223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
224 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225 	if (err) {
226 		if (err == -ENOMEM) {
227 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 			goto retry;
229 		}
230 		return err;
231 	}
232 
233 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234 	if (err) {
235 		f2fs_put_dnode(&dn);
236 		return err;
237 	}
238 
239 	if (recover) {
240 		/* dn.data_blkaddr is always valid */
241 		if (!__is_valid_data_blkaddr(new_addr)) {
242 			if (new_addr == NULL_ADDR)
243 				dec_valid_block_count(sbi, inode, 1);
244 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245 			f2fs_update_data_blkaddr(&dn, new_addr);
246 		} else {
247 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248 				new_addr, ni.version, true, true);
249 		}
250 	} else {
251 		blkcnt_t count = 1;
252 
253 		err = inc_valid_block_count(sbi, inode, &count, true);
254 		if (err) {
255 			f2fs_put_dnode(&dn);
256 			return err;
257 		}
258 
259 		*old_addr = dn.data_blkaddr;
260 		f2fs_truncate_data_blocks_range(&dn, 1);
261 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
262 
263 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264 					ni.version, true, false);
265 	}
266 
267 	f2fs_put_dnode(&dn);
268 
269 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270 			index, old_addr ? *old_addr : 0, new_addr, recover);
271 	return 0;
272 }
273 
274 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275 					bool revoke)
276 {
277 	struct revoke_entry *cur, *tmp;
278 	pgoff_t start_index = 0;
279 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
280 
281 	list_for_each_entry_safe(cur, tmp, head, list) {
282 		if (revoke) {
283 			__replace_atomic_write_block(inode, cur->index,
284 						cur->old_addr, NULL, true);
285 		} else if (truncate) {
286 			f2fs_truncate_hole(inode, start_index, cur->index);
287 			start_index = cur->index + 1;
288 		}
289 
290 		list_del(&cur->list);
291 		kmem_cache_free(revoke_entry_slab, cur);
292 	}
293 
294 	if (!revoke && truncate)
295 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
296 }
297 
298 static int __f2fs_commit_atomic_write(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 	struct inode *cow_inode = fi->cow_inode;
303 	struct revoke_entry *new;
304 	struct list_head revoke_list;
305 	block_t blkaddr;
306 	struct dnode_of_data dn;
307 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308 	pgoff_t off = 0, blen, index;
309 	int ret = 0, i;
310 
311 	INIT_LIST_HEAD(&revoke_list);
312 
313 	while (len) {
314 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
315 
316 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318 		if (ret && ret != -ENOENT) {
319 			goto out;
320 		} else if (ret == -ENOENT) {
321 			ret = 0;
322 			if (dn.max_level == 0)
323 				goto out;
324 			goto next;
325 		}
326 
327 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328 				len);
329 		index = off;
330 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331 			blkaddr = f2fs_data_blkaddr(&dn);
332 
333 			if (!__is_valid_data_blkaddr(blkaddr)) {
334 				continue;
335 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336 					DATA_GENERIC_ENHANCE)) {
337 				f2fs_put_dnode(&dn);
338 				ret = -EFSCORRUPTED;
339 				f2fs_handle_error(sbi,
340 						ERROR_INVALID_BLKADDR);
341 				goto out;
342 			}
343 
344 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
345 							true, NULL);
346 
347 			ret = __replace_atomic_write_block(inode, index, blkaddr,
348 							&new->old_addr, false);
349 			if (ret) {
350 				f2fs_put_dnode(&dn);
351 				kmem_cache_free(revoke_entry_slab, new);
352 				goto out;
353 			}
354 
355 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
356 			new->index = index;
357 			list_add_tail(&new->list, &revoke_list);
358 		}
359 		f2fs_put_dnode(&dn);
360 next:
361 		off += blen;
362 		len -= blen;
363 	}
364 
365 out:
366 	if (ret) {
367 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
368 	} else {
369 		sbi->committed_atomic_block += fi->atomic_write_cnt;
370 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
371 	}
372 
373 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
374 
375 	return ret;
376 }
377 
378 int f2fs_commit_atomic_write(struct inode *inode)
379 {
380 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 	struct f2fs_inode_info *fi = F2FS_I(inode);
382 	int err;
383 
384 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
385 	if (err)
386 		return err;
387 
388 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
389 	f2fs_lock_op(sbi);
390 
391 	err = __f2fs_commit_atomic_write(inode);
392 
393 	f2fs_unlock_op(sbi);
394 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
395 
396 	return err;
397 }
398 
399 /*
400  * This function balances dirty node and dentry pages.
401  * In addition, it controls garbage collection.
402  */
403 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
404 {
405 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
406 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
407 
408 	/* balance_fs_bg is able to be pending */
409 	if (need && excess_cached_nats(sbi))
410 		f2fs_balance_fs_bg(sbi, false);
411 
412 	if (!f2fs_is_checkpoint_ready(sbi))
413 		return;
414 
415 	/*
416 	 * We should do GC or end up with checkpoint, if there are so many dirty
417 	 * dir/node pages without enough free segments.
418 	 */
419 	if (has_enough_free_secs(sbi, 0, 0))
420 		return;
421 
422 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
423 				sbi->gc_thread->f2fs_gc_task) {
424 		DEFINE_WAIT(wait);
425 
426 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
427 					TASK_UNINTERRUPTIBLE);
428 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
429 		io_schedule();
430 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
431 	} else {
432 		struct f2fs_gc_control gc_control = {
433 			.victim_segno = NULL_SEGNO,
434 			.init_gc_type = BG_GC,
435 			.no_bg_gc = true,
436 			.should_migrate_blocks = false,
437 			.err_gc_skipped = false,
438 			.nr_free_secs = 1 };
439 		f2fs_down_write(&sbi->gc_lock);
440 		stat_inc_gc_call_count(sbi, FOREGROUND);
441 		f2fs_gc(sbi, &gc_control);
442 	}
443 }
444 
445 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
446 {
447 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
448 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
449 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
450 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
451 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
452 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
453 	unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) <<
454 				sbi->log_blocks_per_seg;
455 	unsigned int global_threshold = threshold * 3 / 2;
456 
457 	if (dents >= threshold || qdata >= threshold ||
458 		nodes >= threshold || meta >= threshold ||
459 		imeta >= threshold)
460 		return true;
461 	return dents + qdata + nodes + meta + imeta >  global_threshold;
462 }
463 
464 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
465 {
466 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
467 		return;
468 
469 	/* try to shrink extent cache when there is no enough memory */
470 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
471 		f2fs_shrink_read_extent_tree(sbi,
472 				READ_EXTENT_CACHE_SHRINK_NUMBER);
473 
474 	/* try to shrink age extent cache when there is no enough memory */
475 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
476 		f2fs_shrink_age_extent_tree(sbi,
477 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
478 
479 	/* check the # of cached NAT entries */
480 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
481 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
482 
483 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
484 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
485 	else
486 		f2fs_build_free_nids(sbi, false, false);
487 
488 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
489 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
490 		goto do_sync;
491 
492 	/* there is background inflight IO or foreground operation recently */
493 	if (is_inflight_io(sbi, REQ_TIME) ||
494 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
495 		return;
496 
497 	/* exceed periodical checkpoint timeout threshold */
498 	if (f2fs_time_over(sbi, CP_TIME))
499 		goto do_sync;
500 
501 	/* checkpoint is the only way to shrink partial cached entries */
502 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
503 		f2fs_available_free_memory(sbi, INO_ENTRIES))
504 		return;
505 
506 do_sync:
507 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
508 		struct blk_plug plug;
509 
510 		mutex_lock(&sbi->flush_lock);
511 
512 		blk_start_plug(&plug);
513 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
514 		blk_finish_plug(&plug);
515 
516 		mutex_unlock(&sbi->flush_lock);
517 	}
518 	stat_inc_cp_call_count(sbi, BACKGROUND);
519 	f2fs_sync_fs(sbi->sb, 1);
520 }
521 
522 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
523 				struct block_device *bdev)
524 {
525 	int ret = blkdev_issue_flush(bdev);
526 
527 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
528 				test_opt(sbi, FLUSH_MERGE), ret);
529 	if (!ret)
530 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
531 	return ret;
532 }
533 
534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 	int ret = 0;
537 	int i;
538 
539 	if (!f2fs_is_multi_device(sbi))
540 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
541 
542 	for (i = 0; i < sbi->s_ndevs; i++) {
543 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
544 			continue;
545 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
546 		if (ret)
547 			break;
548 	}
549 	return ret;
550 }
551 
552 static int issue_flush_thread(void *data)
553 {
554 	struct f2fs_sb_info *sbi = data;
555 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
556 	wait_queue_head_t *q = &fcc->flush_wait_queue;
557 repeat:
558 	if (kthread_should_stop())
559 		return 0;
560 
561 	if (!llist_empty(&fcc->issue_list)) {
562 		struct flush_cmd *cmd, *next;
563 		int ret;
564 
565 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
566 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
567 
568 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
569 
570 		ret = submit_flush_wait(sbi, cmd->ino);
571 		atomic_inc(&fcc->issued_flush);
572 
573 		llist_for_each_entry_safe(cmd, next,
574 					  fcc->dispatch_list, llnode) {
575 			cmd->ret = ret;
576 			complete(&cmd->wait);
577 		}
578 		fcc->dispatch_list = NULL;
579 	}
580 
581 	wait_event_interruptible(*q,
582 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
583 	goto repeat;
584 }
585 
586 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
587 {
588 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
589 	struct flush_cmd cmd;
590 	int ret;
591 
592 	if (test_opt(sbi, NOBARRIER))
593 		return 0;
594 
595 	if (!test_opt(sbi, FLUSH_MERGE)) {
596 		atomic_inc(&fcc->queued_flush);
597 		ret = submit_flush_wait(sbi, ino);
598 		atomic_dec(&fcc->queued_flush);
599 		atomic_inc(&fcc->issued_flush);
600 		return ret;
601 	}
602 
603 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
604 	    f2fs_is_multi_device(sbi)) {
605 		ret = submit_flush_wait(sbi, ino);
606 		atomic_dec(&fcc->queued_flush);
607 
608 		atomic_inc(&fcc->issued_flush);
609 		return ret;
610 	}
611 
612 	cmd.ino = ino;
613 	init_completion(&cmd.wait);
614 
615 	llist_add(&cmd.llnode, &fcc->issue_list);
616 
617 	/*
618 	 * update issue_list before we wake up issue_flush thread, this
619 	 * smp_mb() pairs with another barrier in ___wait_event(), see
620 	 * more details in comments of waitqueue_active().
621 	 */
622 	smp_mb();
623 
624 	if (waitqueue_active(&fcc->flush_wait_queue))
625 		wake_up(&fcc->flush_wait_queue);
626 
627 	if (fcc->f2fs_issue_flush) {
628 		wait_for_completion(&cmd.wait);
629 		atomic_dec(&fcc->queued_flush);
630 	} else {
631 		struct llist_node *list;
632 
633 		list = llist_del_all(&fcc->issue_list);
634 		if (!list) {
635 			wait_for_completion(&cmd.wait);
636 			atomic_dec(&fcc->queued_flush);
637 		} else {
638 			struct flush_cmd *tmp, *next;
639 
640 			ret = submit_flush_wait(sbi, ino);
641 
642 			llist_for_each_entry_safe(tmp, next, list, llnode) {
643 				if (tmp == &cmd) {
644 					cmd.ret = ret;
645 					atomic_dec(&fcc->queued_flush);
646 					continue;
647 				}
648 				tmp->ret = ret;
649 				complete(&tmp->wait);
650 			}
651 		}
652 	}
653 
654 	return cmd.ret;
655 }
656 
657 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
658 {
659 	dev_t dev = sbi->sb->s_bdev->bd_dev;
660 	struct flush_cmd_control *fcc;
661 
662 	if (SM_I(sbi)->fcc_info) {
663 		fcc = SM_I(sbi)->fcc_info;
664 		if (fcc->f2fs_issue_flush)
665 			return 0;
666 		goto init_thread;
667 	}
668 
669 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
670 	if (!fcc)
671 		return -ENOMEM;
672 	atomic_set(&fcc->issued_flush, 0);
673 	atomic_set(&fcc->queued_flush, 0);
674 	init_waitqueue_head(&fcc->flush_wait_queue);
675 	init_llist_head(&fcc->issue_list);
676 	SM_I(sbi)->fcc_info = fcc;
677 	if (!test_opt(sbi, FLUSH_MERGE))
678 		return 0;
679 
680 init_thread:
681 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
682 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
683 	if (IS_ERR(fcc->f2fs_issue_flush)) {
684 		int err = PTR_ERR(fcc->f2fs_issue_flush);
685 
686 		fcc->f2fs_issue_flush = NULL;
687 		return err;
688 	}
689 
690 	return 0;
691 }
692 
693 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
694 {
695 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
696 
697 	if (fcc && fcc->f2fs_issue_flush) {
698 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
699 
700 		fcc->f2fs_issue_flush = NULL;
701 		kthread_stop(flush_thread);
702 	}
703 	if (free) {
704 		kfree(fcc);
705 		SM_I(sbi)->fcc_info = NULL;
706 	}
707 }
708 
709 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
710 {
711 	int ret = 0, i;
712 
713 	if (!f2fs_is_multi_device(sbi))
714 		return 0;
715 
716 	if (test_opt(sbi, NOBARRIER))
717 		return 0;
718 
719 	for (i = 1; i < sbi->s_ndevs; i++) {
720 		int count = DEFAULT_RETRY_IO_COUNT;
721 
722 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
723 			continue;
724 
725 		do {
726 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
727 			if (ret)
728 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
729 		} while (ret && --count);
730 
731 		if (ret) {
732 			f2fs_stop_checkpoint(sbi, false,
733 					STOP_CP_REASON_FLUSH_FAIL);
734 			break;
735 		}
736 
737 		spin_lock(&sbi->dev_lock);
738 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
739 		spin_unlock(&sbi->dev_lock);
740 	}
741 
742 	return ret;
743 }
744 
745 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 		enum dirty_type dirty_type)
747 {
748 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 
750 	/* need not be added */
751 	if (IS_CURSEG(sbi, segno))
752 		return;
753 
754 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
755 		dirty_i->nr_dirty[dirty_type]++;
756 
757 	if (dirty_type == DIRTY) {
758 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
759 		enum dirty_type t = sentry->type;
760 
761 		if (unlikely(t >= DIRTY)) {
762 			f2fs_bug_on(sbi, 1);
763 			return;
764 		}
765 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
766 			dirty_i->nr_dirty[t]++;
767 
768 		if (__is_large_section(sbi)) {
769 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
770 			block_t valid_blocks =
771 				get_valid_blocks(sbi, segno, true);
772 
773 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
774 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
775 
776 			if (!IS_CURSEC(sbi, secno))
777 				set_bit(secno, dirty_i->dirty_secmap);
778 		}
779 	}
780 }
781 
782 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
783 		enum dirty_type dirty_type)
784 {
785 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
786 	block_t valid_blocks;
787 
788 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
789 		dirty_i->nr_dirty[dirty_type]--;
790 
791 	if (dirty_type == DIRTY) {
792 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
793 		enum dirty_type t = sentry->type;
794 
795 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
796 			dirty_i->nr_dirty[t]--;
797 
798 		valid_blocks = get_valid_blocks(sbi, segno, true);
799 		if (valid_blocks == 0) {
800 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
801 						dirty_i->victim_secmap);
802 #ifdef CONFIG_F2FS_CHECK_FS
803 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
804 #endif
805 		}
806 		if (__is_large_section(sbi)) {
807 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
808 
809 			if (!valid_blocks ||
810 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
811 				clear_bit(secno, dirty_i->dirty_secmap);
812 				return;
813 			}
814 
815 			if (!IS_CURSEC(sbi, secno))
816 				set_bit(secno, dirty_i->dirty_secmap);
817 		}
818 	}
819 }
820 
821 /*
822  * Should not occur error such as -ENOMEM.
823  * Adding dirty entry into seglist is not critical operation.
824  * If a given segment is one of current working segments, it won't be added.
825  */
826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
827 {
828 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
829 	unsigned short valid_blocks, ckpt_valid_blocks;
830 	unsigned int usable_blocks;
831 
832 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
833 		return;
834 
835 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
836 	mutex_lock(&dirty_i->seglist_lock);
837 
838 	valid_blocks = get_valid_blocks(sbi, segno, false);
839 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
840 
841 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
842 		ckpt_valid_blocks == usable_blocks)) {
843 		__locate_dirty_segment(sbi, segno, PRE);
844 		__remove_dirty_segment(sbi, segno, DIRTY);
845 	} else if (valid_blocks < usable_blocks) {
846 		__locate_dirty_segment(sbi, segno, DIRTY);
847 	} else {
848 		/* Recovery routine with SSR needs this */
849 		__remove_dirty_segment(sbi, segno, DIRTY);
850 	}
851 
852 	mutex_unlock(&dirty_i->seglist_lock);
853 }
854 
855 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
856 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
857 {
858 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
859 	unsigned int segno;
860 
861 	mutex_lock(&dirty_i->seglist_lock);
862 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
863 		if (get_valid_blocks(sbi, segno, false))
864 			continue;
865 		if (IS_CURSEG(sbi, segno))
866 			continue;
867 		__locate_dirty_segment(sbi, segno, PRE);
868 		__remove_dirty_segment(sbi, segno, DIRTY);
869 	}
870 	mutex_unlock(&dirty_i->seglist_lock);
871 }
872 
873 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
874 {
875 	int ovp_hole_segs =
876 		(overprovision_segments(sbi) - reserved_segments(sbi));
877 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
878 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
879 	block_t holes[2] = {0, 0};	/* DATA and NODE */
880 	block_t unusable;
881 	struct seg_entry *se;
882 	unsigned int segno;
883 
884 	mutex_lock(&dirty_i->seglist_lock);
885 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
886 		se = get_seg_entry(sbi, segno);
887 		if (IS_NODESEG(se->type))
888 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
889 							se->valid_blocks;
890 		else
891 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
892 							se->valid_blocks;
893 	}
894 	mutex_unlock(&dirty_i->seglist_lock);
895 
896 	unusable = max(holes[DATA], holes[NODE]);
897 	if (unusable > ovp_holes)
898 		return unusable - ovp_holes;
899 	return 0;
900 }
901 
902 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
903 {
904 	int ovp_hole_segs =
905 		(overprovision_segments(sbi) - reserved_segments(sbi));
906 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
907 		return -EAGAIN;
908 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
909 		dirty_segments(sbi) > ovp_hole_segs)
910 		return -EAGAIN;
911 	return 0;
912 }
913 
914 /* This is only used by SBI_CP_DISABLED */
915 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
916 {
917 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
918 	unsigned int segno = 0;
919 
920 	mutex_lock(&dirty_i->seglist_lock);
921 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
922 		if (get_valid_blocks(sbi, segno, false))
923 			continue;
924 		if (get_ckpt_valid_blocks(sbi, segno, false))
925 			continue;
926 		mutex_unlock(&dirty_i->seglist_lock);
927 		return segno;
928 	}
929 	mutex_unlock(&dirty_i->seglist_lock);
930 	return NULL_SEGNO;
931 }
932 
933 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
934 		struct block_device *bdev, block_t lstart,
935 		block_t start, block_t len)
936 {
937 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
938 	struct list_head *pend_list;
939 	struct discard_cmd *dc;
940 
941 	f2fs_bug_on(sbi, !len);
942 
943 	pend_list = &dcc->pend_list[plist_idx(len)];
944 
945 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
946 	INIT_LIST_HEAD(&dc->list);
947 	dc->bdev = bdev;
948 	dc->di.lstart = lstart;
949 	dc->di.start = start;
950 	dc->di.len = len;
951 	dc->ref = 0;
952 	dc->state = D_PREP;
953 	dc->queued = 0;
954 	dc->error = 0;
955 	init_completion(&dc->wait);
956 	list_add_tail(&dc->list, pend_list);
957 	spin_lock_init(&dc->lock);
958 	dc->bio_ref = 0;
959 	atomic_inc(&dcc->discard_cmd_cnt);
960 	dcc->undiscard_blks += len;
961 
962 	return dc;
963 }
964 
965 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
966 {
967 #ifdef CONFIG_F2FS_CHECK_FS
968 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
969 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
970 	struct discard_cmd *cur_dc, *next_dc;
971 
972 	while (cur) {
973 		next = rb_next(cur);
974 		if (!next)
975 			return true;
976 
977 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
978 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
979 
980 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
981 			f2fs_info(sbi, "broken discard_rbtree, "
982 				"cur(%u, %u) next(%u, %u)",
983 				cur_dc->di.lstart, cur_dc->di.len,
984 				next_dc->di.lstart, next_dc->di.len);
985 			return false;
986 		}
987 		cur = next;
988 	}
989 #endif
990 	return true;
991 }
992 
993 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
994 						block_t blkaddr)
995 {
996 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997 	struct rb_node *node = dcc->root.rb_root.rb_node;
998 	struct discard_cmd *dc;
999 
1000 	while (node) {
1001 		dc = rb_entry(node, struct discard_cmd, rb_node);
1002 
1003 		if (blkaddr < dc->di.lstart)
1004 			node = node->rb_left;
1005 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1006 			node = node->rb_right;
1007 		else
1008 			return dc;
1009 	}
1010 	return NULL;
1011 }
1012 
1013 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1014 				block_t blkaddr,
1015 				struct discard_cmd **prev_entry,
1016 				struct discard_cmd **next_entry,
1017 				struct rb_node ***insert_p,
1018 				struct rb_node **insert_parent)
1019 {
1020 	struct rb_node **pnode = &root->rb_root.rb_node;
1021 	struct rb_node *parent = NULL, *tmp_node;
1022 	struct discard_cmd *dc;
1023 
1024 	*insert_p = NULL;
1025 	*insert_parent = NULL;
1026 	*prev_entry = NULL;
1027 	*next_entry = NULL;
1028 
1029 	if (RB_EMPTY_ROOT(&root->rb_root))
1030 		return NULL;
1031 
1032 	while (*pnode) {
1033 		parent = *pnode;
1034 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1035 
1036 		if (blkaddr < dc->di.lstart)
1037 			pnode = &(*pnode)->rb_left;
1038 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1039 			pnode = &(*pnode)->rb_right;
1040 		else
1041 			goto lookup_neighbors;
1042 	}
1043 
1044 	*insert_p = pnode;
1045 	*insert_parent = parent;
1046 
1047 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1048 	tmp_node = parent;
1049 	if (parent && blkaddr > dc->di.lstart)
1050 		tmp_node = rb_next(parent);
1051 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1052 
1053 	tmp_node = parent;
1054 	if (parent && blkaddr < dc->di.lstart)
1055 		tmp_node = rb_prev(parent);
1056 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1057 	return NULL;
1058 
1059 lookup_neighbors:
1060 	/* lookup prev node for merging backward later */
1061 	tmp_node = rb_prev(&dc->rb_node);
1062 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1063 
1064 	/* lookup next node for merging frontward later */
1065 	tmp_node = rb_next(&dc->rb_node);
1066 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1067 	return dc;
1068 }
1069 
1070 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1071 							struct discard_cmd *dc)
1072 {
1073 	if (dc->state == D_DONE)
1074 		atomic_sub(dc->queued, &dcc->queued_discard);
1075 
1076 	list_del(&dc->list);
1077 	rb_erase_cached(&dc->rb_node, &dcc->root);
1078 	dcc->undiscard_blks -= dc->di.len;
1079 
1080 	kmem_cache_free(discard_cmd_slab, dc);
1081 
1082 	atomic_dec(&dcc->discard_cmd_cnt);
1083 }
1084 
1085 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1086 							struct discard_cmd *dc)
1087 {
1088 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 	unsigned long flags;
1090 
1091 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1092 
1093 	spin_lock_irqsave(&dc->lock, flags);
1094 	if (dc->bio_ref) {
1095 		spin_unlock_irqrestore(&dc->lock, flags);
1096 		return;
1097 	}
1098 	spin_unlock_irqrestore(&dc->lock, flags);
1099 
1100 	f2fs_bug_on(sbi, dc->ref);
1101 
1102 	if (dc->error == -EOPNOTSUPP)
1103 		dc->error = 0;
1104 
1105 	if (dc->error)
1106 		f2fs_info_ratelimited(sbi,
1107 			"Issue discard(%u, %u, %u) failed, ret: %d",
1108 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1109 	__detach_discard_cmd(dcc, dc);
1110 }
1111 
1112 static void f2fs_submit_discard_endio(struct bio *bio)
1113 {
1114 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1115 	unsigned long flags;
1116 
1117 	spin_lock_irqsave(&dc->lock, flags);
1118 	if (!dc->error)
1119 		dc->error = blk_status_to_errno(bio->bi_status);
1120 	dc->bio_ref--;
1121 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1122 		dc->state = D_DONE;
1123 		complete_all(&dc->wait);
1124 	}
1125 	spin_unlock_irqrestore(&dc->lock, flags);
1126 	bio_put(bio);
1127 }
1128 
1129 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1130 				block_t start, block_t end)
1131 {
1132 #ifdef CONFIG_F2FS_CHECK_FS
1133 	struct seg_entry *sentry;
1134 	unsigned int segno;
1135 	block_t blk = start;
1136 	unsigned long offset, size, *map;
1137 
1138 	while (blk < end) {
1139 		segno = GET_SEGNO(sbi, blk);
1140 		sentry = get_seg_entry(sbi, segno);
1141 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142 
1143 		if (end < START_BLOCK(sbi, segno + 1))
1144 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145 		else
1146 			size = BLKS_PER_SEG(sbi);
1147 		map = (unsigned long *)(sentry->cur_valid_map);
1148 		offset = __find_rev_next_bit(map, size, offset);
1149 		f2fs_bug_on(sbi, offset != size);
1150 		blk = START_BLOCK(sbi, segno + 1);
1151 	}
1152 #endif
1153 }
1154 
1155 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156 				struct discard_policy *dpolicy,
1157 				int discard_type, unsigned int granularity)
1158 {
1159 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160 
1161 	/* common policy */
1162 	dpolicy->type = discard_type;
1163 	dpolicy->sync = true;
1164 	dpolicy->ordered = false;
1165 	dpolicy->granularity = granularity;
1166 
1167 	dpolicy->max_requests = dcc->max_discard_request;
1168 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169 	dpolicy->timeout = false;
1170 
1171 	if (discard_type == DPOLICY_BG) {
1172 		dpolicy->min_interval = dcc->min_discard_issue_time;
1173 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174 		dpolicy->max_interval = dcc->max_discard_issue_time;
1175 		dpolicy->io_aware = true;
1176 		dpolicy->sync = false;
1177 		dpolicy->ordered = true;
1178 		if (utilization(sbi) > dcc->discard_urgent_util) {
1179 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1180 			if (atomic_read(&dcc->discard_cmd_cnt))
1181 				dpolicy->max_interval =
1182 					dcc->min_discard_issue_time;
1183 		}
1184 	} else if (discard_type == DPOLICY_FORCE) {
1185 		dpolicy->min_interval = dcc->min_discard_issue_time;
1186 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1187 		dpolicy->max_interval = dcc->max_discard_issue_time;
1188 		dpolicy->io_aware = false;
1189 	} else if (discard_type == DPOLICY_FSTRIM) {
1190 		dpolicy->io_aware = false;
1191 	} else if (discard_type == DPOLICY_UMOUNT) {
1192 		dpolicy->io_aware = false;
1193 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1194 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1195 		dpolicy->timeout = true;
1196 	}
1197 }
1198 
1199 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1200 				struct block_device *bdev, block_t lstart,
1201 				block_t start, block_t len);
1202 
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1205 				   struct discard_cmd *dc, blk_opf_t flag,
1206 				   struct list_head *wait_list,
1207 				   unsigned int *issued)
1208 {
1209 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1210 	struct block_device *bdev = dc->bdev;
1211 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1212 	unsigned long flags;
1213 
1214 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1215 
1216 	spin_lock_irqsave(&dc->lock, flags);
1217 	dc->state = D_SUBMIT;
1218 	dc->bio_ref++;
1219 	spin_unlock_irqrestore(&dc->lock, flags);
1220 
1221 	if (issued)
1222 		(*issued)++;
1223 
1224 	atomic_inc(&dcc->queued_discard);
1225 	dc->queued++;
1226 	list_move_tail(&dc->list, wait_list);
1227 
1228 	/* sanity check on discard range */
1229 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1230 
1231 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1232 	bio->bi_private = dc;
1233 	bio->bi_end_io = f2fs_submit_discard_endio;
1234 	submit_bio(bio);
1235 
1236 	atomic_inc(&dcc->issued_discard);
1237 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1238 }
1239 #endif
1240 
1241 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1242 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1243 				struct discard_policy *dpolicy,
1244 				struct discard_cmd *dc, int *issued)
1245 {
1246 	struct block_device *bdev = dc->bdev;
1247 	unsigned int max_discard_blocks =
1248 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1249 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1251 					&(dcc->fstrim_list) : &(dcc->wait_list);
1252 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1253 	block_t lstart, start, len, total_len;
1254 	int err = 0;
1255 
1256 	if (dc->state != D_PREP)
1257 		return 0;
1258 
1259 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1260 		return 0;
1261 
1262 #ifdef CONFIG_BLK_DEV_ZONED
1263 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1264 		int devi = f2fs_bdev_index(sbi, bdev);
1265 
1266 		if (devi < 0)
1267 			return -EINVAL;
1268 
1269 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1270 			__submit_zone_reset_cmd(sbi, dc, flag,
1271 						wait_list, issued);
1272 			return 0;
1273 		}
1274 	}
1275 #endif
1276 
1277 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1278 
1279 	lstart = dc->di.lstart;
1280 	start = dc->di.start;
1281 	len = dc->di.len;
1282 	total_len = len;
1283 
1284 	dc->di.len = 0;
1285 
1286 	while (total_len && *issued < dpolicy->max_requests && !err) {
1287 		struct bio *bio = NULL;
1288 		unsigned long flags;
1289 		bool last = true;
1290 
1291 		if (len > max_discard_blocks) {
1292 			len = max_discard_blocks;
1293 			last = false;
1294 		}
1295 
1296 		(*issued)++;
1297 		if (*issued == dpolicy->max_requests)
1298 			last = true;
1299 
1300 		dc->di.len += len;
1301 
1302 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1303 			err = -EIO;
1304 		} else {
1305 			err = __blkdev_issue_discard(bdev,
1306 					SECTOR_FROM_BLOCK(start),
1307 					SECTOR_FROM_BLOCK(len),
1308 					GFP_NOFS, &bio);
1309 		}
1310 		if (err) {
1311 			spin_lock_irqsave(&dc->lock, flags);
1312 			if (dc->state == D_PARTIAL)
1313 				dc->state = D_SUBMIT;
1314 			spin_unlock_irqrestore(&dc->lock, flags);
1315 
1316 			break;
1317 		}
1318 
1319 		f2fs_bug_on(sbi, !bio);
1320 
1321 		/*
1322 		 * should keep before submission to avoid D_DONE
1323 		 * right away
1324 		 */
1325 		spin_lock_irqsave(&dc->lock, flags);
1326 		if (last)
1327 			dc->state = D_SUBMIT;
1328 		else
1329 			dc->state = D_PARTIAL;
1330 		dc->bio_ref++;
1331 		spin_unlock_irqrestore(&dc->lock, flags);
1332 
1333 		atomic_inc(&dcc->queued_discard);
1334 		dc->queued++;
1335 		list_move_tail(&dc->list, wait_list);
1336 
1337 		/* sanity check on discard range */
1338 		__check_sit_bitmap(sbi, lstart, lstart + len);
1339 
1340 		bio->bi_private = dc;
1341 		bio->bi_end_io = f2fs_submit_discard_endio;
1342 		bio->bi_opf |= flag;
1343 		submit_bio(bio);
1344 
1345 		atomic_inc(&dcc->issued_discard);
1346 
1347 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1348 
1349 		lstart += len;
1350 		start += len;
1351 		total_len -= len;
1352 		len = total_len;
1353 	}
1354 
1355 	if (!err && len) {
1356 		dcc->undiscard_blks -= len;
1357 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1358 	}
1359 	return err;
1360 }
1361 
1362 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1363 				struct block_device *bdev, block_t lstart,
1364 				block_t start, block_t len)
1365 {
1366 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1367 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1368 	struct rb_node *parent = NULL;
1369 	struct discard_cmd *dc;
1370 	bool leftmost = true;
1371 
1372 	/* look up rb tree to find parent node */
1373 	while (*p) {
1374 		parent = *p;
1375 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1376 
1377 		if (lstart < dc->di.lstart) {
1378 			p = &(*p)->rb_left;
1379 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1380 			p = &(*p)->rb_right;
1381 			leftmost = false;
1382 		} else {
1383 			f2fs_bug_on(sbi, 1);
1384 		}
1385 	}
1386 
1387 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1388 
1389 	rb_link_node(&dc->rb_node, parent, p);
1390 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1391 }
1392 
1393 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1394 						struct discard_cmd *dc)
1395 {
1396 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1397 }
1398 
1399 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1400 				struct discard_cmd *dc, block_t blkaddr)
1401 {
1402 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1403 	struct discard_info di = dc->di;
1404 	bool modified = false;
1405 
1406 	if (dc->state == D_DONE || dc->di.len == 1) {
1407 		__remove_discard_cmd(sbi, dc);
1408 		return;
1409 	}
1410 
1411 	dcc->undiscard_blks -= di.len;
1412 
1413 	if (blkaddr > di.lstart) {
1414 		dc->di.len = blkaddr - dc->di.lstart;
1415 		dcc->undiscard_blks += dc->di.len;
1416 		__relocate_discard_cmd(dcc, dc);
1417 		modified = true;
1418 	}
1419 
1420 	if (blkaddr < di.lstart + di.len - 1) {
1421 		if (modified) {
1422 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1423 					di.start + blkaddr + 1 - di.lstart,
1424 					di.lstart + di.len - 1 - blkaddr);
1425 		} else {
1426 			dc->di.lstart++;
1427 			dc->di.len--;
1428 			dc->di.start++;
1429 			dcc->undiscard_blks += dc->di.len;
1430 			__relocate_discard_cmd(dcc, dc);
1431 		}
1432 	}
1433 }
1434 
1435 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1436 				struct block_device *bdev, block_t lstart,
1437 				block_t start, block_t len)
1438 {
1439 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1440 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1441 	struct discard_cmd *dc;
1442 	struct discard_info di = {0};
1443 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1444 	unsigned int max_discard_blocks =
1445 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1446 	block_t end = lstart + len;
1447 
1448 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1449 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1450 	if (dc)
1451 		prev_dc = dc;
1452 
1453 	if (!prev_dc) {
1454 		di.lstart = lstart;
1455 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1456 		di.len = min(di.len, len);
1457 		di.start = start;
1458 	}
1459 
1460 	while (1) {
1461 		struct rb_node *node;
1462 		bool merged = false;
1463 		struct discard_cmd *tdc = NULL;
1464 
1465 		if (prev_dc) {
1466 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1467 			if (di.lstart < lstart)
1468 				di.lstart = lstart;
1469 			if (di.lstart >= end)
1470 				break;
1471 
1472 			if (!next_dc || next_dc->di.lstart > end)
1473 				di.len = end - di.lstart;
1474 			else
1475 				di.len = next_dc->di.lstart - di.lstart;
1476 			di.start = start + di.lstart - lstart;
1477 		}
1478 
1479 		if (!di.len)
1480 			goto next;
1481 
1482 		if (prev_dc && prev_dc->state == D_PREP &&
1483 			prev_dc->bdev == bdev &&
1484 			__is_discard_back_mergeable(&di, &prev_dc->di,
1485 							max_discard_blocks)) {
1486 			prev_dc->di.len += di.len;
1487 			dcc->undiscard_blks += di.len;
1488 			__relocate_discard_cmd(dcc, prev_dc);
1489 			di = prev_dc->di;
1490 			tdc = prev_dc;
1491 			merged = true;
1492 		}
1493 
1494 		if (next_dc && next_dc->state == D_PREP &&
1495 			next_dc->bdev == bdev &&
1496 			__is_discard_front_mergeable(&di, &next_dc->di,
1497 							max_discard_blocks)) {
1498 			next_dc->di.lstart = di.lstart;
1499 			next_dc->di.len += di.len;
1500 			next_dc->di.start = di.start;
1501 			dcc->undiscard_blks += di.len;
1502 			__relocate_discard_cmd(dcc, next_dc);
1503 			if (tdc)
1504 				__remove_discard_cmd(sbi, tdc);
1505 			merged = true;
1506 		}
1507 
1508 		if (!merged)
1509 			__insert_discard_cmd(sbi, bdev,
1510 						di.lstart, di.start, di.len);
1511  next:
1512 		prev_dc = next_dc;
1513 		if (!prev_dc)
1514 			break;
1515 
1516 		node = rb_next(&prev_dc->rb_node);
1517 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1518 	}
1519 }
1520 
1521 #ifdef CONFIG_BLK_DEV_ZONED
1522 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1523 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1524 		block_t blklen)
1525 {
1526 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1527 
1528 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1529 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1530 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1531 }
1532 #endif
1533 
1534 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1535 		struct block_device *bdev, block_t blkstart, block_t blklen)
1536 {
1537 	block_t lblkstart = blkstart;
1538 
1539 	if (!f2fs_bdev_support_discard(bdev))
1540 		return;
1541 
1542 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1543 
1544 	if (f2fs_is_multi_device(sbi)) {
1545 		int devi = f2fs_target_device_index(sbi, blkstart);
1546 
1547 		blkstart -= FDEV(devi).start_blk;
1548 	}
1549 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1550 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1551 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1552 }
1553 
1554 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1555 		struct discard_policy *dpolicy, int *issued)
1556 {
1557 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1558 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1559 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1560 	struct discard_cmd *dc;
1561 	struct blk_plug plug;
1562 	bool io_interrupted = false;
1563 
1564 	mutex_lock(&dcc->cmd_lock);
1565 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1566 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1567 	if (!dc)
1568 		dc = next_dc;
1569 
1570 	blk_start_plug(&plug);
1571 
1572 	while (dc) {
1573 		struct rb_node *node;
1574 		int err = 0;
1575 
1576 		if (dc->state != D_PREP)
1577 			goto next;
1578 
1579 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1580 			io_interrupted = true;
1581 			break;
1582 		}
1583 
1584 		dcc->next_pos = dc->di.lstart + dc->di.len;
1585 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1586 
1587 		if (*issued >= dpolicy->max_requests)
1588 			break;
1589 next:
1590 		node = rb_next(&dc->rb_node);
1591 		if (err)
1592 			__remove_discard_cmd(sbi, dc);
1593 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1594 	}
1595 
1596 	blk_finish_plug(&plug);
1597 
1598 	if (!dc)
1599 		dcc->next_pos = 0;
1600 
1601 	mutex_unlock(&dcc->cmd_lock);
1602 
1603 	if (!(*issued) && io_interrupted)
1604 		*issued = -1;
1605 }
1606 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1607 					struct discard_policy *dpolicy);
1608 
1609 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1610 					struct discard_policy *dpolicy)
1611 {
1612 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1613 	struct list_head *pend_list;
1614 	struct discard_cmd *dc, *tmp;
1615 	struct blk_plug plug;
1616 	int i, issued;
1617 	bool io_interrupted = false;
1618 
1619 	if (dpolicy->timeout)
1620 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1621 
1622 retry:
1623 	issued = 0;
1624 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1625 		if (dpolicy->timeout &&
1626 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1627 			break;
1628 
1629 		if (i + 1 < dpolicy->granularity)
1630 			break;
1631 
1632 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1633 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1634 			return issued;
1635 		}
1636 
1637 		pend_list = &dcc->pend_list[i];
1638 
1639 		mutex_lock(&dcc->cmd_lock);
1640 		if (list_empty(pend_list))
1641 			goto next;
1642 		if (unlikely(dcc->rbtree_check))
1643 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1644 		blk_start_plug(&plug);
1645 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1646 			f2fs_bug_on(sbi, dc->state != D_PREP);
1647 
1648 			if (dpolicy->timeout &&
1649 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1650 				break;
1651 
1652 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1653 						!is_idle(sbi, DISCARD_TIME)) {
1654 				io_interrupted = true;
1655 				break;
1656 			}
1657 
1658 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1659 
1660 			if (issued >= dpolicy->max_requests)
1661 				break;
1662 		}
1663 		blk_finish_plug(&plug);
1664 next:
1665 		mutex_unlock(&dcc->cmd_lock);
1666 
1667 		if (issued >= dpolicy->max_requests || io_interrupted)
1668 			break;
1669 	}
1670 
1671 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1672 		__wait_all_discard_cmd(sbi, dpolicy);
1673 		goto retry;
1674 	}
1675 
1676 	if (!issued && io_interrupted)
1677 		issued = -1;
1678 
1679 	return issued;
1680 }
1681 
1682 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1683 {
1684 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1685 	struct list_head *pend_list;
1686 	struct discard_cmd *dc, *tmp;
1687 	int i;
1688 	bool dropped = false;
1689 
1690 	mutex_lock(&dcc->cmd_lock);
1691 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1692 		pend_list = &dcc->pend_list[i];
1693 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1694 			f2fs_bug_on(sbi, dc->state != D_PREP);
1695 			__remove_discard_cmd(sbi, dc);
1696 			dropped = true;
1697 		}
1698 	}
1699 	mutex_unlock(&dcc->cmd_lock);
1700 
1701 	return dropped;
1702 }
1703 
1704 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1705 {
1706 	__drop_discard_cmd(sbi);
1707 }
1708 
1709 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1710 							struct discard_cmd *dc)
1711 {
1712 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1713 	unsigned int len = 0;
1714 
1715 	wait_for_completion_io(&dc->wait);
1716 	mutex_lock(&dcc->cmd_lock);
1717 	f2fs_bug_on(sbi, dc->state != D_DONE);
1718 	dc->ref--;
1719 	if (!dc->ref) {
1720 		if (!dc->error)
1721 			len = dc->di.len;
1722 		__remove_discard_cmd(sbi, dc);
1723 	}
1724 	mutex_unlock(&dcc->cmd_lock);
1725 
1726 	return len;
1727 }
1728 
1729 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1730 						struct discard_policy *dpolicy,
1731 						block_t start, block_t end)
1732 {
1733 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1734 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1735 					&(dcc->fstrim_list) : &(dcc->wait_list);
1736 	struct discard_cmd *dc = NULL, *iter, *tmp;
1737 	unsigned int trimmed = 0;
1738 
1739 next:
1740 	dc = NULL;
1741 
1742 	mutex_lock(&dcc->cmd_lock);
1743 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1744 		if (iter->di.lstart + iter->di.len <= start ||
1745 					end <= iter->di.lstart)
1746 			continue;
1747 		if (iter->di.len < dpolicy->granularity)
1748 			continue;
1749 		if (iter->state == D_DONE && !iter->ref) {
1750 			wait_for_completion_io(&iter->wait);
1751 			if (!iter->error)
1752 				trimmed += iter->di.len;
1753 			__remove_discard_cmd(sbi, iter);
1754 		} else {
1755 			iter->ref++;
1756 			dc = iter;
1757 			break;
1758 		}
1759 	}
1760 	mutex_unlock(&dcc->cmd_lock);
1761 
1762 	if (dc) {
1763 		trimmed += __wait_one_discard_bio(sbi, dc);
1764 		goto next;
1765 	}
1766 
1767 	return trimmed;
1768 }
1769 
1770 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1771 						struct discard_policy *dpolicy)
1772 {
1773 	struct discard_policy dp;
1774 	unsigned int discard_blks;
1775 
1776 	if (dpolicy)
1777 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1778 
1779 	/* wait all */
1780 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1781 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1782 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1783 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1784 
1785 	return discard_blks;
1786 }
1787 
1788 /* This should be covered by global mutex, &sit_i->sentry_lock */
1789 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1790 {
1791 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1792 	struct discard_cmd *dc;
1793 	bool need_wait = false;
1794 
1795 	mutex_lock(&dcc->cmd_lock);
1796 	dc = __lookup_discard_cmd(sbi, blkaddr);
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1799 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1800 
1801 		if (devi < 0) {
1802 			mutex_unlock(&dcc->cmd_lock);
1803 			return;
1804 		}
1805 
1806 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1807 			/* force submit zone reset */
1808 			if (dc->state == D_PREP)
1809 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1810 							&dcc->wait_list, NULL);
1811 			dc->ref++;
1812 			mutex_unlock(&dcc->cmd_lock);
1813 			/* wait zone reset */
1814 			__wait_one_discard_bio(sbi, dc);
1815 			return;
1816 		}
1817 	}
1818 #endif
1819 	if (dc) {
1820 		if (dc->state == D_PREP) {
1821 			__punch_discard_cmd(sbi, dc, blkaddr);
1822 		} else {
1823 			dc->ref++;
1824 			need_wait = true;
1825 		}
1826 	}
1827 	mutex_unlock(&dcc->cmd_lock);
1828 
1829 	if (need_wait)
1830 		__wait_one_discard_bio(sbi, dc);
1831 }
1832 
1833 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1834 {
1835 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1836 
1837 	if (dcc && dcc->f2fs_issue_discard) {
1838 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1839 
1840 		dcc->f2fs_issue_discard = NULL;
1841 		kthread_stop(discard_thread);
1842 	}
1843 }
1844 
1845 /**
1846  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1847  * @sbi: the f2fs_sb_info data for discard cmd to issue
1848  *
1849  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1850  *
1851  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1852  */
1853 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1854 {
1855 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1856 	struct discard_policy dpolicy;
1857 	bool dropped;
1858 
1859 	if (!atomic_read(&dcc->discard_cmd_cnt))
1860 		return true;
1861 
1862 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1863 					dcc->discard_granularity);
1864 	__issue_discard_cmd(sbi, &dpolicy);
1865 	dropped = __drop_discard_cmd(sbi);
1866 
1867 	/* just to make sure there is no pending discard commands */
1868 	__wait_all_discard_cmd(sbi, NULL);
1869 
1870 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1871 	return !dropped;
1872 }
1873 
1874 static int issue_discard_thread(void *data)
1875 {
1876 	struct f2fs_sb_info *sbi = data;
1877 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1878 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1879 	struct discard_policy dpolicy;
1880 	unsigned int wait_ms = dcc->min_discard_issue_time;
1881 	int issued;
1882 
1883 	set_freezable();
1884 
1885 	do {
1886 		wait_event_interruptible_timeout(*q,
1887 				kthread_should_stop() || freezing(current) ||
1888 				dcc->discard_wake,
1889 				msecs_to_jiffies(wait_ms));
1890 
1891 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1892 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1893 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1894 						MIN_DISCARD_GRANULARITY);
1895 		else
1896 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1897 						dcc->discard_granularity);
1898 
1899 		if (dcc->discard_wake)
1900 			dcc->discard_wake = false;
1901 
1902 		/* clean up pending candidates before going to sleep */
1903 		if (atomic_read(&dcc->queued_discard))
1904 			__wait_all_discard_cmd(sbi, NULL);
1905 
1906 		if (try_to_freeze())
1907 			continue;
1908 		if (f2fs_readonly(sbi->sb))
1909 			continue;
1910 		if (kthread_should_stop())
1911 			return 0;
1912 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1913 			!atomic_read(&dcc->discard_cmd_cnt)) {
1914 			wait_ms = dpolicy.max_interval;
1915 			continue;
1916 		}
1917 
1918 		sb_start_intwrite(sbi->sb);
1919 
1920 		issued = __issue_discard_cmd(sbi, &dpolicy);
1921 		if (issued > 0) {
1922 			__wait_all_discard_cmd(sbi, &dpolicy);
1923 			wait_ms = dpolicy.min_interval;
1924 		} else if (issued == -1) {
1925 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1926 			if (!wait_ms)
1927 				wait_ms = dpolicy.mid_interval;
1928 		} else {
1929 			wait_ms = dpolicy.max_interval;
1930 		}
1931 		if (!atomic_read(&dcc->discard_cmd_cnt))
1932 			wait_ms = dpolicy.max_interval;
1933 
1934 		sb_end_intwrite(sbi->sb);
1935 
1936 	} while (!kthread_should_stop());
1937 	return 0;
1938 }
1939 
1940 #ifdef CONFIG_BLK_DEV_ZONED
1941 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1942 		struct block_device *bdev, block_t blkstart, block_t blklen)
1943 {
1944 	sector_t sector, nr_sects;
1945 	block_t lblkstart = blkstart;
1946 	int devi = 0;
1947 	u64 remainder = 0;
1948 
1949 	if (f2fs_is_multi_device(sbi)) {
1950 		devi = f2fs_target_device_index(sbi, blkstart);
1951 		if (blkstart < FDEV(devi).start_blk ||
1952 		    blkstart > FDEV(devi).end_blk) {
1953 			f2fs_err(sbi, "Invalid block %x", blkstart);
1954 			return -EIO;
1955 		}
1956 		blkstart -= FDEV(devi).start_blk;
1957 	}
1958 
1959 	/* For sequential zones, reset the zone write pointer */
1960 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1961 		sector = SECTOR_FROM_BLOCK(blkstart);
1962 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1963 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1964 
1965 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1966 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1967 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1968 				 blkstart, blklen);
1969 			return -EIO;
1970 		}
1971 
1972 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1973 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1974 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1975 						sector, nr_sects, GFP_NOFS);
1976 		}
1977 
1978 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1979 		return 0;
1980 	}
1981 
1982 	/* For conventional zones, use regular discard if supported */
1983 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1984 	return 0;
1985 }
1986 #endif
1987 
1988 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1989 		struct block_device *bdev, block_t blkstart, block_t blklen)
1990 {
1991 #ifdef CONFIG_BLK_DEV_ZONED
1992 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1993 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1994 #endif
1995 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1996 	return 0;
1997 }
1998 
1999 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2000 				block_t blkstart, block_t blklen)
2001 {
2002 	sector_t start = blkstart, len = 0;
2003 	struct block_device *bdev;
2004 	struct seg_entry *se;
2005 	unsigned int offset;
2006 	block_t i;
2007 	int err = 0;
2008 
2009 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2010 
2011 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2012 		if (i != start) {
2013 			struct block_device *bdev2 =
2014 				f2fs_target_device(sbi, i, NULL);
2015 
2016 			if (bdev2 != bdev) {
2017 				err = __issue_discard_async(sbi, bdev,
2018 						start, len);
2019 				if (err)
2020 					return err;
2021 				bdev = bdev2;
2022 				start = i;
2023 				len = 0;
2024 			}
2025 		}
2026 
2027 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2028 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2029 
2030 		if (f2fs_block_unit_discard(sbi) &&
2031 				!f2fs_test_and_set_bit(offset, se->discard_map))
2032 			sbi->discard_blks--;
2033 	}
2034 
2035 	if (len)
2036 		err = __issue_discard_async(sbi, bdev, start, len);
2037 	return err;
2038 }
2039 
2040 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2041 							bool check_only)
2042 {
2043 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2044 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2045 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2046 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2047 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2048 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2049 	unsigned int start = 0, end = -1;
2050 	bool force = (cpc->reason & CP_DISCARD);
2051 	struct discard_entry *de = NULL;
2052 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2053 	int i;
2054 
2055 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2056 	    !f2fs_hw_support_discard(sbi) ||
2057 	    !f2fs_block_unit_discard(sbi))
2058 		return false;
2059 
2060 	if (!force) {
2061 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2062 			SM_I(sbi)->dcc_info->nr_discards >=
2063 				SM_I(sbi)->dcc_info->max_discards)
2064 			return false;
2065 	}
2066 
2067 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2068 	for (i = 0; i < entries; i++)
2069 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2070 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2071 
2072 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2073 				SM_I(sbi)->dcc_info->max_discards) {
2074 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2075 		if (start >= BLKS_PER_SEG(sbi))
2076 			break;
2077 
2078 		end = __find_rev_next_zero_bit(dmap,
2079 						BLKS_PER_SEG(sbi), start + 1);
2080 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2081 		    (end - start) < cpc->trim_minlen)
2082 			continue;
2083 
2084 		if (check_only)
2085 			return true;
2086 
2087 		if (!de) {
2088 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2089 						GFP_F2FS_ZERO, true, NULL);
2090 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2091 			list_add_tail(&de->list, head);
2092 		}
2093 
2094 		for (i = start; i < end; i++)
2095 			__set_bit_le(i, (void *)de->discard_map);
2096 
2097 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2098 	}
2099 	return false;
2100 }
2101 
2102 static void release_discard_addr(struct discard_entry *entry)
2103 {
2104 	list_del(&entry->list);
2105 	kmem_cache_free(discard_entry_slab, entry);
2106 }
2107 
2108 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2109 {
2110 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2111 	struct discard_entry *entry, *this;
2112 
2113 	/* drop caches */
2114 	list_for_each_entry_safe(entry, this, head, list)
2115 		release_discard_addr(entry);
2116 }
2117 
2118 /*
2119  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2120  */
2121 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2122 {
2123 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2124 	unsigned int segno;
2125 
2126 	mutex_lock(&dirty_i->seglist_lock);
2127 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2128 		__set_test_and_free(sbi, segno, false);
2129 	mutex_unlock(&dirty_i->seglist_lock);
2130 }
2131 
2132 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2133 						struct cp_control *cpc)
2134 {
2135 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2136 	struct list_head *head = &dcc->entry_list;
2137 	struct discard_entry *entry, *this;
2138 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2140 	unsigned int start = 0, end = -1;
2141 	unsigned int secno, start_segno;
2142 	bool force = (cpc->reason & CP_DISCARD);
2143 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2144 						DISCARD_UNIT_SECTION;
2145 
2146 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2147 		section_alignment = true;
2148 
2149 	mutex_lock(&dirty_i->seglist_lock);
2150 
2151 	while (1) {
2152 		int i;
2153 
2154 		if (section_alignment && end != -1)
2155 			end--;
2156 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2157 		if (start >= MAIN_SEGS(sbi))
2158 			break;
2159 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2160 								start + 1);
2161 
2162 		if (section_alignment) {
2163 			start = rounddown(start, SEGS_PER_SEC(sbi));
2164 			end = roundup(end, SEGS_PER_SEC(sbi));
2165 		}
2166 
2167 		for (i = start; i < end; i++) {
2168 			if (test_and_clear_bit(i, prefree_map))
2169 				dirty_i->nr_dirty[PRE]--;
2170 		}
2171 
2172 		if (!f2fs_realtime_discard_enable(sbi))
2173 			continue;
2174 
2175 		if (force && start >= cpc->trim_start &&
2176 					(end - 1) <= cpc->trim_end)
2177 			continue;
2178 
2179 		/* Should cover 2MB zoned device for zone-based reset */
2180 		if (!f2fs_sb_has_blkzoned(sbi) &&
2181 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2182 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2183 				(end - start) << sbi->log_blocks_per_seg);
2184 			continue;
2185 		}
2186 next:
2187 		secno = GET_SEC_FROM_SEG(sbi, start);
2188 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2189 		if (!IS_CURSEC(sbi, secno) &&
2190 			!get_valid_blocks(sbi, start, true))
2191 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2192 						BLKS_PER_SEC(sbi));
2193 
2194 		start = start_segno + SEGS_PER_SEC(sbi);
2195 		if (start < end)
2196 			goto next;
2197 		else
2198 			end = start - 1;
2199 	}
2200 	mutex_unlock(&dirty_i->seglist_lock);
2201 
2202 	if (!f2fs_block_unit_discard(sbi))
2203 		goto wakeup;
2204 
2205 	/* send small discards */
2206 	list_for_each_entry_safe(entry, this, head, list) {
2207 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2208 		bool is_valid = test_bit_le(0, entry->discard_map);
2209 
2210 find_next:
2211 		if (is_valid) {
2212 			next_pos = find_next_zero_bit_le(entry->discard_map,
2213 						BLKS_PER_SEG(sbi), cur_pos);
2214 			len = next_pos - cur_pos;
2215 
2216 			if (f2fs_sb_has_blkzoned(sbi) ||
2217 			    (force && len < cpc->trim_minlen))
2218 				goto skip;
2219 
2220 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2221 									len);
2222 			total_len += len;
2223 		} else {
2224 			next_pos = find_next_bit_le(entry->discard_map,
2225 						BLKS_PER_SEG(sbi), cur_pos);
2226 		}
2227 skip:
2228 		cur_pos = next_pos;
2229 		is_valid = !is_valid;
2230 
2231 		if (cur_pos < BLKS_PER_SEG(sbi))
2232 			goto find_next;
2233 
2234 		release_discard_addr(entry);
2235 		dcc->nr_discards -= total_len;
2236 	}
2237 
2238 wakeup:
2239 	wake_up_discard_thread(sbi, false);
2240 }
2241 
2242 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2243 {
2244 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2245 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2246 	int err = 0;
2247 
2248 	if (!f2fs_realtime_discard_enable(sbi))
2249 		return 0;
2250 
2251 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2252 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2253 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2254 		err = PTR_ERR(dcc->f2fs_issue_discard);
2255 		dcc->f2fs_issue_discard = NULL;
2256 	}
2257 
2258 	return err;
2259 }
2260 
2261 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2262 {
2263 	struct discard_cmd_control *dcc;
2264 	int err = 0, i;
2265 
2266 	if (SM_I(sbi)->dcc_info) {
2267 		dcc = SM_I(sbi)->dcc_info;
2268 		goto init_thread;
2269 	}
2270 
2271 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2272 	if (!dcc)
2273 		return -ENOMEM;
2274 
2275 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2276 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2277 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2278 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2279 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2280 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2281 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2282 
2283 	INIT_LIST_HEAD(&dcc->entry_list);
2284 	for (i = 0; i < MAX_PLIST_NUM; i++)
2285 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2286 	INIT_LIST_HEAD(&dcc->wait_list);
2287 	INIT_LIST_HEAD(&dcc->fstrim_list);
2288 	mutex_init(&dcc->cmd_lock);
2289 	atomic_set(&dcc->issued_discard, 0);
2290 	atomic_set(&dcc->queued_discard, 0);
2291 	atomic_set(&dcc->discard_cmd_cnt, 0);
2292 	dcc->nr_discards = 0;
2293 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2294 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2295 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2296 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2297 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2298 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2299 	dcc->undiscard_blks = 0;
2300 	dcc->next_pos = 0;
2301 	dcc->root = RB_ROOT_CACHED;
2302 	dcc->rbtree_check = false;
2303 
2304 	init_waitqueue_head(&dcc->discard_wait_queue);
2305 	SM_I(sbi)->dcc_info = dcc;
2306 init_thread:
2307 	err = f2fs_start_discard_thread(sbi);
2308 	if (err) {
2309 		kfree(dcc);
2310 		SM_I(sbi)->dcc_info = NULL;
2311 	}
2312 
2313 	return err;
2314 }
2315 
2316 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2317 {
2318 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2319 
2320 	if (!dcc)
2321 		return;
2322 
2323 	f2fs_stop_discard_thread(sbi);
2324 
2325 	/*
2326 	 * Recovery can cache discard commands, so in error path of
2327 	 * fill_super(), it needs to give a chance to handle them.
2328 	 */
2329 	f2fs_issue_discard_timeout(sbi);
2330 
2331 	kfree(dcc);
2332 	SM_I(sbi)->dcc_info = NULL;
2333 }
2334 
2335 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2336 {
2337 	struct sit_info *sit_i = SIT_I(sbi);
2338 
2339 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2340 		sit_i->dirty_sentries++;
2341 		return false;
2342 	}
2343 
2344 	return true;
2345 }
2346 
2347 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2348 					unsigned int segno, int modified)
2349 {
2350 	struct seg_entry *se = get_seg_entry(sbi, segno);
2351 
2352 	se->type = type;
2353 	if (modified)
2354 		__mark_sit_entry_dirty(sbi, segno);
2355 }
2356 
2357 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2358 								block_t blkaddr)
2359 {
2360 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2361 
2362 	if (segno == NULL_SEGNO)
2363 		return 0;
2364 	return get_seg_entry(sbi, segno)->mtime;
2365 }
2366 
2367 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2368 						unsigned long long old_mtime)
2369 {
2370 	struct seg_entry *se;
2371 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2372 	unsigned long long ctime = get_mtime(sbi, false);
2373 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2374 
2375 	if (segno == NULL_SEGNO)
2376 		return;
2377 
2378 	se = get_seg_entry(sbi, segno);
2379 
2380 	if (!se->mtime)
2381 		se->mtime = mtime;
2382 	else
2383 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2384 						se->valid_blocks + 1);
2385 
2386 	if (ctime > SIT_I(sbi)->max_mtime)
2387 		SIT_I(sbi)->max_mtime = ctime;
2388 }
2389 
2390 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2391 {
2392 	struct seg_entry *se;
2393 	unsigned int segno, offset;
2394 	long int new_vblocks;
2395 	bool exist;
2396 #ifdef CONFIG_F2FS_CHECK_FS
2397 	bool mir_exist;
2398 #endif
2399 
2400 	segno = GET_SEGNO(sbi, blkaddr);
2401 	if (segno == NULL_SEGNO)
2402 		return;
2403 
2404 	se = get_seg_entry(sbi, segno);
2405 	new_vblocks = se->valid_blocks + del;
2406 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2407 
2408 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2409 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2410 
2411 	se->valid_blocks = new_vblocks;
2412 
2413 	/* Update valid block bitmap */
2414 	if (del > 0) {
2415 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2416 #ifdef CONFIG_F2FS_CHECK_FS
2417 		mir_exist = f2fs_test_and_set_bit(offset,
2418 						se->cur_valid_map_mir);
2419 		if (unlikely(exist != mir_exist)) {
2420 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2421 				 blkaddr, exist);
2422 			f2fs_bug_on(sbi, 1);
2423 		}
2424 #endif
2425 		if (unlikely(exist)) {
2426 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2427 				 blkaddr);
2428 			f2fs_bug_on(sbi, 1);
2429 			se->valid_blocks--;
2430 			del = 0;
2431 		}
2432 
2433 		if (f2fs_block_unit_discard(sbi) &&
2434 				!f2fs_test_and_set_bit(offset, se->discard_map))
2435 			sbi->discard_blks--;
2436 
2437 		/*
2438 		 * SSR should never reuse block which is checkpointed
2439 		 * or newly invalidated.
2440 		 */
2441 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2442 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2443 				se->ckpt_valid_blocks++;
2444 		}
2445 	} else {
2446 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2447 #ifdef CONFIG_F2FS_CHECK_FS
2448 		mir_exist = f2fs_test_and_clear_bit(offset,
2449 						se->cur_valid_map_mir);
2450 		if (unlikely(exist != mir_exist)) {
2451 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2452 				 blkaddr, exist);
2453 			f2fs_bug_on(sbi, 1);
2454 		}
2455 #endif
2456 		if (unlikely(!exist)) {
2457 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2458 				 blkaddr);
2459 			f2fs_bug_on(sbi, 1);
2460 			se->valid_blocks++;
2461 			del = 0;
2462 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2463 			/*
2464 			 * If checkpoints are off, we must not reuse data that
2465 			 * was used in the previous checkpoint. If it was used
2466 			 * before, we must track that to know how much space we
2467 			 * really have.
2468 			 */
2469 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2470 				spin_lock(&sbi->stat_lock);
2471 				sbi->unusable_block_count++;
2472 				spin_unlock(&sbi->stat_lock);
2473 			}
2474 		}
2475 
2476 		if (f2fs_block_unit_discard(sbi) &&
2477 			f2fs_test_and_clear_bit(offset, se->discard_map))
2478 			sbi->discard_blks++;
2479 	}
2480 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2481 		se->ckpt_valid_blocks += del;
2482 
2483 	__mark_sit_entry_dirty(sbi, segno);
2484 
2485 	/* update total number of valid blocks to be written in ckpt area */
2486 	SIT_I(sbi)->written_valid_blocks += del;
2487 
2488 	if (__is_large_section(sbi))
2489 		get_sec_entry(sbi, segno)->valid_blocks += del;
2490 }
2491 
2492 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2493 {
2494 	unsigned int segno = GET_SEGNO(sbi, addr);
2495 	struct sit_info *sit_i = SIT_I(sbi);
2496 
2497 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2498 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2499 		return;
2500 
2501 	f2fs_invalidate_internal_cache(sbi, addr);
2502 
2503 	/* add it into sit main buffer */
2504 	down_write(&sit_i->sentry_lock);
2505 
2506 	update_segment_mtime(sbi, addr, 0);
2507 	update_sit_entry(sbi, addr, -1);
2508 
2509 	/* add it into dirty seglist */
2510 	locate_dirty_segment(sbi, segno);
2511 
2512 	up_write(&sit_i->sentry_lock);
2513 }
2514 
2515 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2516 {
2517 	struct sit_info *sit_i = SIT_I(sbi);
2518 	unsigned int segno, offset;
2519 	struct seg_entry *se;
2520 	bool is_cp = false;
2521 
2522 	if (!__is_valid_data_blkaddr(blkaddr))
2523 		return true;
2524 
2525 	down_read(&sit_i->sentry_lock);
2526 
2527 	segno = GET_SEGNO(sbi, blkaddr);
2528 	se = get_seg_entry(sbi, segno);
2529 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2530 
2531 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2532 		is_cp = true;
2533 
2534 	up_read(&sit_i->sentry_lock);
2535 
2536 	return is_cp;
2537 }
2538 
2539 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2540 {
2541 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2542 
2543 	if (sbi->ckpt->alloc_type[type] == SSR)
2544 		return BLKS_PER_SEG(sbi);
2545 	return curseg->next_blkoff;
2546 }
2547 
2548 /*
2549  * Calculate the number of current summary pages for writing
2550  */
2551 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2552 {
2553 	int valid_sum_count = 0;
2554 	int i, sum_in_page;
2555 
2556 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2557 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2558 			valid_sum_count +=
2559 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2560 		else
2561 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2562 	}
2563 
2564 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2565 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2566 	if (valid_sum_count <= sum_in_page)
2567 		return 1;
2568 	else if ((valid_sum_count - sum_in_page) <=
2569 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2570 		return 2;
2571 	return 3;
2572 }
2573 
2574 /*
2575  * Caller should put this summary page
2576  */
2577 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2578 {
2579 	if (unlikely(f2fs_cp_error(sbi)))
2580 		return ERR_PTR(-EIO);
2581 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2582 }
2583 
2584 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2585 					void *src, block_t blk_addr)
2586 {
2587 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2588 
2589 	memcpy(page_address(page), src, PAGE_SIZE);
2590 	set_page_dirty(page);
2591 	f2fs_put_page(page, 1);
2592 }
2593 
2594 static void write_sum_page(struct f2fs_sb_info *sbi,
2595 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2596 {
2597 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2598 }
2599 
2600 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2601 						int type, block_t blk_addr)
2602 {
2603 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2604 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2605 	struct f2fs_summary_block *src = curseg->sum_blk;
2606 	struct f2fs_summary_block *dst;
2607 
2608 	dst = (struct f2fs_summary_block *)page_address(page);
2609 	memset(dst, 0, PAGE_SIZE);
2610 
2611 	mutex_lock(&curseg->curseg_mutex);
2612 
2613 	down_read(&curseg->journal_rwsem);
2614 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2615 	up_read(&curseg->journal_rwsem);
2616 
2617 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2618 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2619 
2620 	mutex_unlock(&curseg->curseg_mutex);
2621 
2622 	set_page_dirty(page);
2623 	f2fs_put_page(page, 1);
2624 }
2625 
2626 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2627 				struct curseg_info *curseg, int type)
2628 {
2629 	unsigned int segno = curseg->segno + 1;
2630 	struct free_segmap_info *free_i = FREE_I(sbi);
2631 
2632 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2633 		return !test_bit(segno, free_i->free_segmap);
2634 	return 0;
2635 }
2636 
2637 /*
2638  * Find a new segment from the free segments bitmap to right order
2639  * This function should be returned with success, otherwise BUG
2640  */
2641 static void get_new_segment(struct f2fs_sb_info *sbi,
2642 			unsigned int *newseg, bool new_sec, bool pinning)
2643 {
2644 	struct free_segmap_info *free_i = FREE_I(sbi);
2645 	unsigned int segno, secno, zoneno;
2646 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2647 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2648 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2649 	bool init = true;
2650 	int i;
2651 	int ret = 0;
2652 
2653 	spin_lock(&free_i->segmap_lock);
2654 
2655 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2656 		segno = find_next_zero_bit(free_i->free_segmap,
2657 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2658 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2659 			goto got_it;
2660 	}
2661 
2662 	/*
2663 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2664 	 * from beginning of the storage, which should be a conventional one.
2665 	 */
2666 	if (f2fs_sb_has_blkzoned(sbi)) {
2667 		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2668 		hint = GET_SEC_FROM_SEG(sbi, segno);
2669 	}
2670 
2671 find_other_zone:
2672 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2673 	if (secno >= MAIN_SECS(sbi)) {
2674 		secno = find_first_zero_bit(free_i->free_secmap,
2675 							MAIN_SECS(sbi));
2676 		if (secno >= MAIN_SECS(sbi)) {
2677 			ret = -ENOSPC;
2678 			goto out_unlock;
2679 		}
2680 	}
2681 	segno = GET_SEG_FROM_SEC(sbi, secno);
2682 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2683 
2684 	/* give up on finding another zone */
2685 	if (!init)
2686 		goto got_it;
2687 	if (sbi->secs_per_zone == 1)
2688 		goto got_it;
2689 	if (zoneno == old_zoneno)
2690 		goto got_it;
2691 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2692 		if (CURSEG_I(sbi, i)->zone == zoneno)
2693 			break;
2694 
2695 	if (i < NR_CURSEG_TYPE) {
2696 		/* zone is in user, try another */
2697 		if (zoneno + 1 >= total_zones)
2698 			hint = 0;
2699 		else
2700 			hint = (zoneno + 1) * sbi->secs_per_zone;
2701 		init = false;
2702 		goto find_other_zone;
2703 	}
2704 got_it:
2705 	/* set it as dirty segment in free segmap */
2706 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2707 	__set_inuse(sbi, segno);
2708 	*newseg = segno;
2709 out_unlock:
2710 	spin_unlock(&free_i->segmap_lock);
2711 
2712 	if (ret) {
2713 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2714 		f2fs_bug_on(sbi, 1);
2715 	}
2716 }
2717 
2718 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2719 {
2720 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2721 	struct summary_footer *sum_footer;
2722 	unsigned short seg_type = curseg->seg_type;
2723 
2724 	curseg->inited = true;
2725 	curseg->segno = curseg->next_segno;
2726 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2727 	curseg->next_blkoff = 0;
2728 	curseg->next_segno = NULL_SEGNO;
2729 
2730 	sum_footer = &(curseg->sum_blk->footer);
2731 	memset(sum_footer, 0, sizeof(struct summary_footer));
2732 
2733 	sanity_check_seg_type(sbi, seg_type);
2734 
2735 	if (IS_DATASEG(seg_type))
2736 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2737 	if (IS_NODESEG(seg_type))
2738 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2739 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2740 }
2741 
2742 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2743 {
2744 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2745 	unsigned short seg_type = curseg->seg_type;
2746 
2747 	sanity_check_seg_type(sbi, seg_type);
2748 	if (f2fs_need_rand_seg(sbi))
2749 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2750 
2751 	if (__is_large_section(sbi))
2752 		return curseg->segno;
2753 
2754 	/* inmem log may not locate on any segment after mount */
2755 	if (!curseg->inited)
2756 		return 0;
2757 
2758 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2759 		return 0;
2760 
2761 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2762 		return 0;
2763 
2764 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2765 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2766 
2767 	/* find segments from 0 to reuse freed segments */
2768 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2769 		return 0;
2770 
2771 	return curseg->segno;
2772 }
2773 
2774 /*
2775  * Allocate a current working segment.
2776  * This function always allocates a free segment in LFS manner.
2777  */
2778 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2779 {
2780 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2781 	unsigned int segno = curseg->segno;
2782 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2783 
2784 	if (curseg->inited)
2785 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2786 
2787 	segno = __get_next_segno(sbi, type);
2788 	get_new_segment(sbi, &segno, new_sec, pinning);
2789 	if (new_sec && pinning &&
2790 	    !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2791 		__set_free(sbi, segno);
2792 		return -EAGAIN;
2793 	}
2794 
2795 	curseg->next_segno = segno;
2796 	reset_curseg(sbi, type, 1);
2797 	curseg->alloc_type = LFS;
2798 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2799 		curseg->fragment_remained_chunk =
2800 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2801 	return 0;
2802 }
2803 
2804 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2805 					int segno, block_t start)
2806 {
2807 	struct seg_entry *se = get_seg_entry(sbi, segno);
2808 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2809 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2810 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2811 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2812 	int i;
2813 
2814 	for (i = 0; i < entries; i++)
2815 		target_map[i] = ckpt_map[i] | cur_map[i];
2816 
2817 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2818 }
2819 
2820 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2821 		struct curseg_info *seg)
2822 {
2823 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2824 }
2825 
2826 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2827 {
2828 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2829 }
2830 
2831 /*
2832  * This function always allocates a used segment(from dirty seglist) by SSR
2833  * manner, so it should recover the existing segment information of valid blocks
2834  */
2835 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2836 {
2837 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2838 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2839 	unsigned int new_segno = curseg->next_segno;
2840 	struct f2fs_summary_block *sum_node;
2841 	struct page *sum_page;
2842 
2843 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2844 
2845 	__set_test_and_inuse(sbi, new_segno);
2846 
2847 	mutex_lock(&dirty_i->seglist_lock);
2848 	__remove_dirty_segment(sbi, new_segno, PRE);
2849 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2850 	mutex_unlock(&dirty_i->seglist_lock);
2851 
2852 	reset_curseg(sbi, type, 1);
2853 	curseg->alloc_type = SSR;
2854 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2855 
2856 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2857 	if (IS_ERR(sum_page)) {
2858 		/* GC won't be able to use stale summary pages by cp_error */
2859 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2860 		return;
2861 	}
2862 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2863 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2864 	f2fs_put_page(sum_page, 1);
2865 }
2866 
2867 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2868 				int alloc_mode, unsigned long long age);
2869 
2870 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2871 					int target_type, int alloc_mode,
2872 					unsigned long long age)
2873 {
2874 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2875 
2876 	curseg->seg_type = target_type;
2877 
2878 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2879 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2880 
2881 		curseg->seg_type = se->type;
2882 		change_curseg(sbi, type);
2883 	} else {
2884 		/* allocate cold segment by default */
2885 		curseg->seg_type = CURSEG_COLD_DATA;
2886 		new_curseg(sbi, type, true);
2887 	}
2888 	stat_inc_seg_type(sbi, curseg);
2889 }
2890 
2891 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2892 {
2893 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2894 
2895 	if (!sbi->am.atgc_enabled)
2896 		return;
2897 
2898 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2899 
2900 	mutex_lock(&curseg->curseg_mutex);
2901 	down_write(&SIT_I(sbi)->sentry_lock);
2902 
2903 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2904 
2905 	up_write(&SIT_I(sbi)->sentry_lock);
2906 	mutex_unlock(&curseg->curseg_mutex);
2907 
2908 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2909 
2910 }
2911 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2912 {
2913 	__f2fs_init_atgc_curseg(sbi);
2914 }
2915 
2916 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2917 {
2918 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2919 
2920 	mutex_lock(&curseg->curseg_mutex);
2921 	if (!curseg->inited)
2922 		goto out;
2923 
2924 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2925 		write_sum_page(sbi, curseg->sum_blk,
2926 				GET_SUM_BLOCK(sbi, curseg->segno));
2927 	} else {
2928 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2929 		__set_test_and_free(sbi, curseg->segno, true);
2930 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2931 	}
2932 out:
2933 	mutex_unlock(&curseg->curseg_mutex);
2934 }
2935 
2936 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2937 {
2938 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2939 
2940 	if (sbi->am.atgc_enabled)
2941 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2942 }
2943 
2944 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2945 {
2946 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2947 
2948 	mutex_lock(&curseg->curseg_mutex);
2949 	if (!curseg->inited)
2950 		goto out;
2951 	if (get_valid_blocks(sbi, curseg->segno, false))
2952 		goto out;
2953 
2954 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2955 	__set_test_and_inuse(sbi, curseg->segno);
2956 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2957 out:
2958 	mutex_unlock(&curseg->curseg_mutex);
2959 }
2960 
2961 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2962 {
2963 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2964 
2965 	if (sbi->am.atgc_enabled)
2966 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2967 }
2968 
2969 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2970 				int alloc_mode, unsigned long long age)
2971 {
2972 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2973 	unsigned segno = NULL_SEGNO;
2974 	unsigned short seg_type = curseg->seg_type;
2975 	int i, cnt;
2976 	bool reversed = false;
2977 
2978 	sanity_check_seg_type(sbi, seg_type);
2979 
2980 	/* f2fs_need_SSR() already forces to do this */
2981 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2982 		curseg->next_segno = segno;
2983 		return 1;
2984 	}
2985 
2986 	/* For node segments, let's do SSR more intensively */
2987 	if (IS_NODESEG(seg_type)) {
2988 		if (seg_type >= CURSEG_WARM_NODE) {
2989 			reversed = true;
2990 			i = CURSEG_COLD_NODE;
2991 		} else {
2992 			i = CURSEG_HOT_NODE;
2993 		}
2994 		cnt = NR_CURSEG_NODE_TYPE;
2995 	} else {
2996 		if (seg_type >= CURSEG_WARM_DATA) {
2997 			reversed = true;
2998 			i = CURSEG_COLD_DATA;
2999 		} else {
3000 			i = CURSEG_HOT_DATA;
3001 		}
3002 		cnt = NR_CURSEG_DATA_TYPE;
3003 	}
3004 
3005 	for (; cnt-- > 0; reversed ? i-- : i++) {
3006 		if (i == seg_type)
3007 			continue;
3008 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3009 			curseg->next_segno = segno;
3010 			return 1;
3011 		}
3012 	}
3013 
3014 	/* find valid_blocks=0 in dirty list */
3015 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3016 		segno = get_free_segment(sbi);
3017 		if (segno != NULL_SEGNO) {
3018 			curseg->next_segno = segno;
3019 			return 1;
3020 		}
3021 	}
3022 	return 0;
3023 }
3024 
3025 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3026 {
3027 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3028 
3029 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3030 	    curseg->seg_type == CURSEG_WARM_NODE)
3031 		return true;
3032 	if (curseg->alloc_type == LFS &&
3033 	    is_next_segment_free(sbi, curseg, type) &&
3034 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3035 		return true;
3036 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3037 		return true;
3038 	return false;
3039 }
3040 
3041 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3042 					unsigned int start, unsigned int end)
3043 {
3044 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3045 	unsigned int segno;
3046 
3047 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3048 	mutex_lock(&curseg->curseg_mutex);
3049 	down_write(&SIT_I(sbi)->sentry_lock);
3050 
3051 	segno = CURSEG_I(sbi, type)->segno;
3052 	if (segno < start || segno > end)
3053 		goto unlock;
3054 
3055 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3056 		change_curseg(sbi, type);
3057 	else
3058 		new_curseg(sbi, type, true);
3059 
3060 	stat_inc_seg_type(sbi, curseg);
3061 
3062 	locate_dirty_segment(sbi, segno);
3063 unlock:
3064 	up_write(&SIT_I(sbi)->sentry_lock);
3065 
3066 	if (segno != curseg->segno)
3067 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3068 			    type, segno, curseg->segno);
3069 
3070 	mutex_unlock(&curseg->curseg_mutex);
3071 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3072 }
3073 
3074 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3075 						bool new_sec, bool force)
3076 {
3077 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3078 	unsigned int old_segno;
3079 
3080 	if (!force && curseg->inited &&
3081 	    !curseg->next_blkoff &&
3082 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3083 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3084 		return 0;
3085 
3086 	old_segno = curseg->segno;
3087 	if (new_curseg(sbi, type, true))
3088 		return -EAGAIN;
3089 	stat_inc_seg_type(sbi, curseg);
3090 	locate_dirty_segment(sbi, old_segno);
3091 	return 0;
3092 }
3093 
3094 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3095 {
3096 	int ret;
3097 
3098 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3099 	down_write(&SIT_I(sbi)->sentry_lock);
3100 	ret = __allocate_new_segment(sbi, type, true, force);
3101 	up_write(&SIT_I(sbi)->sentry_lock);
3102 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3103 
3104 	return ret;
3105 }
3106 
3107 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3108 {
3109 	int err;
3110 	bool gc_required = true;
3111 
3112 retry:
3113 	f2fs_lock_op(sbi);
3114 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3115 	f2fs_unlock_op(sbi);
3116 
3117 	if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) {
3118 		f2fs_down_write(&sbi->gc_lock);
3119 		f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3120 		f2fs_up_write(&sbi->gc_lock);
3121 
3122 		gc_required = false;
3123 		goto retry;
3124 	}
3125 
3126 	return err;
3127 }
3128 
3129 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3130 {
3131 	int i;
3132 
3133 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3134 	down_write(&SIT_I(sbi)->sentry_lock);
3135 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3136 		__allocate_new_segment(sbi, i, false, false);
3137 	up_write(&SIT_I(sbi)->sentry_lock);
3138 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3139 }
3140 
3141 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3142 						struct cp_control *cpc)
3143 {
3144 	__u64 trim_start = cpc->trim_start;
3145 	bool has_candidate = false;
3146 
3147 	down_write(&SIT_I(sbi)->sentry_lock);
3148 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3149 		if (add_discard_addrs(sbi, cpc, true)) {
3150 			has_candidate = true;
3151 			break;
3152 		}
3153 	}
3154 	up_write(&SIT_I(sbi)->sentry_lock);
3155 
3156 	cpc->trim_start = trim_start;
3157 	return has_candidate;
3158 }
3159 
3160 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3161 					struct discard_policy *dpolicy,
3162 					unsigned int start, unsigned int end)
3163 {
3164 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3165 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3166 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3167 	struct discard_cmd *dc;
3168 	struct blk_plug plug;
3169 	int issued;
3170 	unsigned int trimmed = 0;
3171 
3172 next:
3173 	issued = 0;
3174 
3175 	mutex_lock(&dcc->cmd_lock);
3176 	if (unlikely(dcc->rbtree_check))
3177 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3178 
3179 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3180 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3181 	if (!dc)
3182 		dc = next_dc;
3183 
3184 	blk_start_plug(&plug);
3185 
3186 	while (dc && dc->di.lstart <= end) {
3187 		struct rb_node *node;
3188 		int err = 0;
3189 
3190 		if (dc->di.len < dpolicy->granularity)
3191 			goto skip;
3192 
3193 		if (dc->state != D_PREP) {
3194 			list_move_tail(&dc->list, &dcc->fstrim_list);
3195 			goto skip;
3196 		}
3197 
3198 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3199 
3200 		if (issued >= dpolicy->max_requests) {
3201 			start = dc->di.lstart + dc->di.len;
3202 
3203 			if (err)
3204 				__remove_discard_cmd(sbi, dc);
3205 
3206 			blk_finish_plug(&plug);
3207 			mutex_unlock(&dcc->cmd_lock);
3208 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3209 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3210 			goto next;
3211 		}
3212 skip:
3213 		node = rb_next(&dc->rb_node);
3214 		if (err)
3215 			__remove_discard_cmd(sbi, dc);
3216 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3217 
3218 		if (fatal_signal_pending(current))
3219 			break;
3220 	}
3221 
3222 	blk_finish_plug(&plug);
3223 	mutex_unlock(&dcc->cmd_lock);
3224 
3225 	return trimmed;
3226 }
3227 
3228 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3229 {
3230 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3231 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3232 	unsigned int start_segno, end_segno;
3233 	block_t start_block, end_block;
3234 	struct cp_control cpc;
3235 	struct discard_policy dpolicy;
3236 	unsigned long long trimmed = 0;
3237 	int err = 0;
3238 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3239 
3240 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3241 		return -EINVAL;
3242 
3243 	if (end < MAIN_BLKADDR(sbi))
3244 		goto out;
3245 
3246 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3247 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3248 		return -EFSCORRUPTED;
3249 	}
3250 
3251 	/* start/end segment number in main_area */
3252 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3253 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3254 						GET_SEGNO(sbi, end);
3255 	if (need_align) {
3256 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3257 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3258 	}
3259 
3260 	cpc.reason = CP_DISCARD;
3261 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3262 	cpc.trim_start = start_segno;
3263 	cpc.trim_end = end_segno;
3264 
3265 	if (sbi->discard_blks == 0)
3266 		goto out;
3267 
3268 	f2fs_down_write(&sbi->gc_lock);
3269 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3270 	err = f2fs_write_checkpoint(sbi, &cpc);
3271 	f2fs_up_write(&sbi->gc_lock);
3272 	if (err)
3273 		goto out;
3274 
3275 	/*
3276 	 * We filed discard candidates, but actually we don't need to wait for
3277 	 * all of them, since they'll be issued in idle time along with runtime
3278 	 * discard option. User configuration looks like using runtime discard
3279 	 * or periodic fstrim instead of it.
3280 	 */
3281 	if (f2fs_realtime_discard_enable(sbi))
3282 		goto out;
3283 
3284 	start_block = START_BLOCK(sbi, start_segno);
3285 	end_block = START_BLOCK(sbi, end_segno + 1);
3286 
3287 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3288 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3289 					start_block, end_block);
3290 
3291 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3292 					start_block, end_block);
3293 out:
3294 	if (!err)
3295 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3296 	return err;
3297 }
3298 
3299 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3300 {
3301 	switch (hint) {
3302 	case WRITE_LIFE_SHORT:
3303 		return CURSEG_HOT_DATA;
3304 	case WRITE_LIFE_EXTREME:
3305 		return CURSEG_COLD_DATA;
3306 	default:
3307 		return CURSEG_WARM_DATA;
3308 	}
3309 }
3310 
3311 static int __get_segment_type_2(struct f2fs_io_info *fio)
3312 {
3313 	if (fio->type == DATA)
3314 		return CURSEG_HOT_DATA;
3315 	else
3316 		return CURSEG_HOT_NODE;
3317 }
3318 
3319 static int __get_segment_type_4(struct f2fs_io_info *fio)
3320 {
3321 	if (fio->type == DATA) {
3322 		struct inode *inode = fio->page->mapping->host;
3323 
3324 		if (S_ISDIR(inode->i_mode))
3325 			return CURSEG_HOT_DATA;
3326 		else
3327 			return CURSEG_COLD_DATA;
3328 	} else {
3329 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3330 			return CURSEG_WARM_NODE;
3331 		else
3332 			return CURSEG_COLD_NODE;
3333 	}
3334 }
3335 
3336 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3337 {
3338 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3339 	struct extent_info ei = {};
3340 
3341 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3342 		if (!ei.age)
3343 			return NO_CHECK_TYPE;
3344 		if (ei.age <= sbi->hot_data_age_threshold)
3345 			return CURSEG_HOT_DATA;
3346 		if (ei.age <= sbi->warm_data_age_threshold)
3347 			return CURSEG_WARM_DATA;
3348 		return CURSEG_COLD_DATA;
3349 	}
3350 	return NO_CHECK_TYPE;
3351 }
3352 
3353 static int __get_segment_type_6(struct f2fs_io_info *fio)
3354 {
3355 	if (fio->type == DATA) {
3356 		struct inode *inode = fio->page->mapping->host;
3357 		int type;
3358 
3359 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3360 			return CURSEG_COLD_DATA_PINNED;
3361 
3362 		if (page_private_gcing(fio->page)) {
3363 			if (fio->sbi->am.atgc_enabled &&
3364 				(fio->io_type == FS_DATA_IO) &&
3365 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3366 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3367 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3368 				return CURSEG_ALL_DATA_ATGC;
3369 			else
3370 				return CURSEG_COLD_DATA;
3371 		}
3372 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3373 			return CURSEG_COLD_DATA;
3374 
3375 		type = __get_age_segment_type(inode, fio->page->index);
3376 		if (type != NO_CHECK_TYPE)
3377 			return type;
3378 
3379 		if (file_is_hot(inode) ||
3380 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3381 				f2fs_is_cow_file(inode))
3382 			return CURSEG_HOT_DATA;
3383 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3384 	} else {
3385 		if (IS_DNODE(fio->page))
3386 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3387 						CURSEG_HOT_NODE;
3388 		return CURSEG_COLD_NODE;
3389 	}
3390 }
3391 
3392 static int __get_segment_type(struct f2fs_io_info *fio)
3393 {
3394 	int type = 0;
3395 
3396 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3397 	case 2:
3398 		type = __get_segment_type_2(fio);
3399 		break;
3400 	case 4:
3401 		type = __get_segment_type_4(fio);
3402 		break;
3403 	case 6:
3404 		type = __get_segment_type_6(fio);
3405 		break;
3406 	default:
3407 		f2fs_bug_on(fio->sbi, true);
3408 	}
3409 
3410 	if (IS_HOT(type))
3411 		fio->temp = HOT;
3412 	else if (IS_WARM(type))
3413 		fio->temp = WARM;
3414 	else
3415 		fio->temp = COLD;
3416 	return type;
3417 }
3418 
3419 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3420 		struct curseg_info *seg)
3421 {
3422 	/* To allocate block chunks in different sizes, use random number */
3423 	if (--seg->fragment_remained_chunk > 0)
3424 		return;
3425 
3426 	seg->fragment_remained_chunk =
3427 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3428 	seg->next_blkoff +=
3429 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3430 }
3431 
3432 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3433 		block_t old_blkaddr, block_t *new_blkaddr,
3434 		struct f2fs_summary *sum, int type,
3435 		struct f2fs_io_info *fio)
3436 {
3437 	struct sit_info *sit_i = SIT_I(sbi);
3438 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3439 	unsigned long long old_mtime;
3440 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3441 	struct seg_entry *se = NULL;
3442 	bool segment_full = false;
3443 
3444 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3445 
3446 	mutex_lock(&curseg->curseg_mutex);
3447 	down_write(&sit_i->sentry_lock);
3448 
3449 	if (from_gc) {
3450 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3451 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3452 		sanity_check_seg_type(sbi, se->type);
3453 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3454 	}
3455 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3456 
3457 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3458 
3459 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3460 
3461 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3462 	if (curseg->alloc_type == SSR) {
3463 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3464 	} else {
3465 		curseg->next_blkoff++;
3466 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3467 			f2fs_randomize_chunk(sbi, curseg);
3468 	}
3469 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3470 		segment_full = true;
3471 	stat_inc_block_count(sbi, curseg);
3472 
3473 	if (from_gc) {
3474 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3475 	} else {
3476 		update_segment_mtime(sbi, old_blkaddr, 0);
3477 		old_mtime = 0;
3478 	}
3479 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3480 
3481 	/*
3482 	 * SIT information should be updated before segment allocation,
3483 	 * since SSR needs latest valid block information.
3484 	 */
3485 	update_sit_entry(sbi, *new_blkaddr, 1);
3486 	update_sit_entry(sbi, old_blkaddr, -1);
3487 
3488 	/*
3489 	 * If the current segment is full, flush it out and replace it with a
3490 	 * new segment.
3491 	 */
3492 	if (segment_full) {
3493 		if (type == CURSEG_COLD_DATA_PINNED &&
3494 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3495 			write_sum_page(sbi, curseg->sum_blk,
3496 					GET_SUM_BLOCK(sbi, curseg->segno));
3497 			goto skip_new_segment;
3498 		}
3499 
3500 		if (from_gc) {
3501 			get_atssr_segment(sbi, type, se->type,
3502 						AT_SSR, se->mtime);
3503 		} else {
3504 			if (need_new_seg(sbi, type))
3505 				new_curseg(sbi, type, false);
3506 			else
3507 				change_curseg(sbi, type);
3508 			stat_inc_seg_type(sbi, curseg);
3509 		}
3510 	}
3511 
3512 skip_new_segment:
3513 	/*
3514 	 * segment dirty status should be updated after segment allocation,
3515 	 * so we just need to update status only one time after previous
3516 	 * segment being closed.
3517 	 */
3518 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3519 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3520 
3521 	if (IS_DATASEG(curseg->seg_type))
3522 		atomic64_inc(&sbi->allocated_data_blocks);
3523 
3524 	up_write(&sit_i->sentry_lock);
3525 
3526 	if (page && IS_NODESEG(curseg->seg_type)) {
3527 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3528 
3529 		f2fs_inode_chksum_set(sbi, page);
3530 	}
3531 
3532 	if (fio) {
3533 		struct f2fs_bio_info *io;
3534 
3535 		INIT_LIST_HEAD(&fio->list);
3536 		fio->in_list = 1;
3537 		io = sbi->write_io[fio->type] + fio->temp;
3538 		spin_lock(&io->io_lock);
3539 		list_add_tail(&fio->list, &io->io_list);
3540 		spin_unlock(&io->io_lock);
3541 	}
3542 
3543 	mutex_unlock(&curseg->curseg_mutex);
3544 
3545 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3546 }
3547 
3548 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3549 					block_t blkaddr, unsigned int blkcnt)
3550 {
3551 	if (!f2fs_is_multi_device(sbi))
3552 		return;
3553 
3554 	while (1) {
3555 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3556 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3557 
3558 		/* update device state for fsync */
3559 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3560 
3561 		/* update device state for checkpoint */
3562 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3563 			spin_lock(&sbi->dev_lock);
3564 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3565 			spin_unlock(&sbi->dev_lock);
3566 		}
3567 
3568 		if (blkcnt <= blks)
3569 			break;
3570 		blkcnt -= blks;
3571 		blkaddr += blks;
3572 	}
3573 }
3574 
3575 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3576 {
3577 	int type = __get_segment_type(fio);
3578 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3579 
3580 	if (keep_order)
3581 		f2fs_down_read(&fio->sbi->io_order_lock);
3582 
3583 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3584 			&fio->new_blkaddr, sum, type, fio);
3585 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3586 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3587 
3588 	/* writeout dirty page into bdev */
3589 	f2fs_submit_page_write(fio);
3590 
3591 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3592 
3593 	if (keep_order)
3594 		f2fs_up_read(&fio->sbi->io_order_lock);
3595 }
3596 
3597 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3598 					enum iostat_type io_type)
3599 {
3600 	struct f2fs_io_info fio = {
3601 		.sbi = sbi,
3602 		.type = META,
3603 		.temp = HOT,
3604 		.op = REQ_OP_WRITE,
3605 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3606 		.old_blkaddr = page->index,
3607 		.new_blkaddr = page->index,
3608 		.page = page,
3609 		.encrypted_page = NULL,
3610 		.in_list = 0,
3611 	};
3612 
3613 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3614 		fio.op_flags &= ~REQ_META;
3615 
3616 	set_page_writeback(page);
3617 	f2fs_submit_page_write(&fio);
3618 
3619 	stat_inc_meta_count(sbi, page->index);
3620 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3621 }
3622 
3623 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3624 {
3625 	struct f2fs_summary sum;
3626 
3627 	set_summary(&sum, nid, 0, 0);
3628 	do_write_page(&sum, fio);
3629 
3630 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3631 }
3632 
3633 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3634 					struct f2fs_io_info *fio)
3635 {
3636 	struct f2fs_sb_info *sbi = fio->sbi;
3637 	struct f2fs_summary sum;
3638 
3639 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3640 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3641 		f2fs_update_age_extent_cache(dn);
3642 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3643 	do_write_page(&sum, fio);
3644 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3645 
3646 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3647 }
3648 
3649 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3650 {
3651 	int err;
3652 	struct f2fs_sb_info *sbi = fio->sbi;
3653 	unsigned int segno;
3654 
3655 	fio->new_blkaddr = fio->old_blkaddr;
3656 	/* i/o temperature is needed for passing down write hints */
3657 	__get_segment_type(fio);
3658 
3659 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3660 
3661 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3662 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3663 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3664 			  __func__, segno);
3665 		err = -EFSCORRUPTED;
3666 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3667 		goto drop_bio;
3668 	}
3669 
3670 	if (f2fs_cp_error(sbi)) {
3671 		err = -EIO;
3672 		goto drop_bio;
3673 	}
3674 
3675 	if (fio->meta_gc)
3676 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3677 
3678 	stat_inc_inplace_blocks(fio->sbi);
3679 
3680 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3681 		err = f2fs_merge_page_bio(fio);
3682 	else
3683 		err = f2fs_submit_page_bio(fio);
3684 	if (!err) {
3685 		f2fs_update_device_state(fio->sbi, fio->ino,
3686 						fio->new_blkaddr, 1);
3687 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3688 						fio->io_type, F2FS_BLKSIZE);
3689 	}
3690 
3691 	return err;
3692 drop_bio:
3693 	if (fio->bio && *(fio->bio)) {
3694 		struct bio *bio = *(fio->bio);
3695 
3696 		bio->bi_status = BLK_STS_IOERR;
3697 		bio_endio(bio);
3698 		*(fio->bio) = NULL;
3699 	}
3700 	return err;
3701 }
3702 
3703 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3704 						unsigned int segno)
3705 {
3706 	int i;
3707 
3708 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3709 		if (CURSEG_I(sbi, i)->segno == segno)
3710 			break;
3711 	}
3712 	return i;
3713 }
3714 
3715 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3716 				block_t old_blkaddr, block_t new_blkaddr,
3717 				bool recover_curseg, bool recover_newaddr,
3718 				bool from_gc)
3719 {
3720 	struct sit_info *sit_i = SIT_I(sbi);
3721 	struct curseg_info *curseg;
3722 	unsigned int segno, old_cursegno;
3723 	struct seg_entry *se;
3724 	int type;
3725 	unsigned short old_blkoff;
3726 	unsigned char old_alloc_type;
3727 
3728 	segno = GET_SEGNO(sbi, new_blkaddr);
3729 	se = get_seg_entry(sbi, segno);
3730 	type = se->type;
3731 
3732 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3733 
3734 	if (!recover_curseg) {
3735 		/* for recovery flow */
3736 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3737 			if (old_blkaddr == NULL_ADDR)
3738 				type = CURSEG_COLD_DATA;
3739 			else
3740 				type = CURSEG_WARM_DATA;
3741 		}
3742 	} else {
3743 		if (IS_CURSEG(sbi, segno)) {
3744 			/* se->type is volatile as SSR allocation */
3745 			type = __f2fs_get_curseg(sbi, segno);
3746 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3747 		} else {
3748 			type = CURSEG_WARM_DATA;
3749 		}
3750 	}
3751 
3752 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3753 	curseg = CURSEG_I(sbi, type);
3754 
3755 	mutex_lock(&curseg->curseg_mutex);
3756 	down_write(&sit_i->sentry_lock);
3757 
3758 	old_cursegno = curseg->segno;
3759 	old_blkoff = curseg->next_blkoff;
3760 	old_alloc_type = curseg->alloc_type;
3761 
3762 	/* change the current segment */
3763 	if (segno != curseg->segno) {
3764 		curseg->next_segno = segno;
3765 		change_curseg(sbi, type);
3766 	}
3767 
3768 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3769 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3770 
3771 	if (!recover_curseg || recover_newaddr) {
3772 		if (!from_gc)
3773 			update_segment_mtime(sbi, new_blkaddr, 0);
3774 		update_sit_entry(sbi, new_blkaddr, 1);
3775 	}
3776 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3777 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3778 		if (!from_gc)
3779 			update_segment_mtime(sbi, old_blkaddr, 0);
3780 		update_sit_entry(sbi, old_blkaddr, -1);
3781 	}
3782 
3783 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3784 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3785 
3786 	locate_dirty_segment(sbi, old_cursegno);
3787 
3788 	if (recover_curseg) {
3789 		if (old_cursegno != curseg->segno) {
3790 			curseg->next_segno = old_cursegno;
3791 			change_curseg(sbi, type);
3792 		}
3793 		curseg->next_blkoff = old_blkoff;
3794 		curseg->alloc_type = old_alloc_type;
3795 	}
3796 
3797 	up_write(&sit_i->sentry_lock);
3798 	mutex_unlock(&curseg->curseg_mutex);
3799 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3800 }
3801 
3802 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3803 				block_t old_addr, block_t new_addr,
3804 				unsigned char version, bool recover_curseg,
3805 				bool recover_newaddr)
3806 {
3807 	struct f2fs_summary sum;
3808 
3809 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3810 
3811 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3812 					recover_curseg, recover_newaddr, false);
3813 
3814 	f2fs_update_data_blkaddr(dn, new_addr);
3815 }
3816 
3817 void f2fs_wait_on_page_writeback(struct page *page,
3818 				enum page_type type, bool ordered, bool locked)
3819 {
3820 	if (PageWriteback(page)) {
3821 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3822 
3823 		/* submit cached LFS IO */
3824 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3825 		/* submit cached IPU IO */
3826 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3827 		if (ordered) {
3828 			wait_on_page_writeback(page);
3829 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3830 		} else {
3831 			wait_for_stable_page(page);
3832 		}
3833 	}
3834 }
3835 
3836 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3837 {
3838 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839 	struct page *cpage;
3840 
3841 	if (!f2fs_meta_inode_gc_required(inode))
3842 		return;
3843 
3844 	if (!__is_valid_data_blkaddr(blkaddr))
3845 		return;
3846 
3847 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3848 	if (cpage) {
3849 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3850 		f2fs_put_page(cpage, 1);
3851 	}
3852 }
3853 
3854 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3855 								block_t len)
3856 {
3857 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3858 	block_t i;
3859 
3860 	if (!f2fs_meta_inode_gc_required(inode))
3861 		return;
3862 
3863 	for (i = 0; i < len; i++)
3864 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3865 
3866 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3867 }
3868 
3869 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3870 {
3871 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3872 	struct curseg_info *seg_i;
3873 	unsigned char *kaddr;
3874 	struct page *page;
3875 	block_t start;
3876 	int i, j, offset;
3877 
3878 	start = start_sum_block(sbi);
3879 
3880 	page = f2fs_get_meta_page(sbi, start++);
3881 	if (IS_ERR(page))
3882 		return PTR_ERR(page);
3883 	kaddr = (unsigned char *)page_address(page);
3884 
3885 	/* Step 1: restore nat cache */
3886 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3887 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3888 
3889 	/* Step 2: restore sit cache */
3890 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3891 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3892 	offset = 2 * SUM_JOURNAL_SIZE;
3893 
3894 	/* Step 3: restore summary entries */
3895 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3896 		unsigned short blk_off;
3897 		unsigned int segno;
3898 
3899 		seg_i = CURSEG_I(sbi, i);
3900 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3901 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3902 		seg_i->next_segno = segno;
3903 		reset_curseg(sbi, i, 0);
3904 		seg_i->alloc_type = ckpt->alloc_type[i];
3905 		seg_i->next_blkoff = blk_off;
3906 
3907 		if (seg_i->alloc_type == SSR)
3908 			blk_off = BLKS_PER_SEG(sbi);
3909 
3910 		for (j = 0; j < blk_off; j++) {
3911 			struct f2fs_summary *s;
3912 
3913 			s = (struct f2fs_summary *)(kaddr + offset);
3914 			seg_i->sum_blk->entries[j] = *s;
3915 			offset += SUMMARY_SIZE;
3916 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3917 						SUM_FOOTER_SIZE)
3918 				continue;
3919 
3920 			f2fs_put_page(page, 1);
3921 			page = NULL;
3922 
3923 			page = f2fs_get_meta_page(sbi, start++);
3924 			if (IS_ERR(page))
3925 				return PTR_ERR(page);
3926 			kaddr = (unsigned char *)page_address(page);
3927 			offset = 0;
3928 		}
3929 	}
3930 	f2fs_put_page(page, 1);
3931 	return 0;
3932 }
3933 
3934 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3935 {
3936 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3937 	struct f2fs_summary_block *sum;
3938 	struct curseg_info *curseg;
3939 	struct page *new;
3940 	unsigned short blk_off;
3941 	unsigned int segno = 0;
3942 	block_t blk_addr = 0;
3943 	int err = 0;
3944 
3945 	/* get segment number and block addr */
3946 	if (IS_DATASEG(type)) {
3947 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3948 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3949 							CURSEG_HOT_DATA]);
3950 		if (__exist_node_summaries(sbi))
3951 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3952 		else
3953 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3954 	} else {
3955 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3956 							CURSEG_HOT_NODE]);
3957 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3958 							CURSEG_HOT_NODE]);
3959 		if (__exist_node_summaries(sbi))
3960 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3961 							type - CURSEG_HOT_NODE);
3962 		else
3963 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3964 	}
3965 
3966 	new = f2fs_get_meta_page(sbi, blk_addr);
3967 	if (IS_ERR(new))
3968 		return PTR_ERR(new);
3969 	sum = (struct f2fs_summary_block *)page_address(new);
3970 
3971 	if (IS_NODESEG(type)) {
3972 		if (__exist_node_summaries(sbi)) {
3973 			struct f2fs_summary *ns = &sum->entries[0];
3974 			int i;
3975 
3976 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
3977 				ns->version = 0;
3978 				ns->ofs_in_node = 0;
3979 			}
3980 		} else {
3981 			err = f2fs_restore_node_summary(sbi, segno, sum);
3982 			if (err)
3983 				goto out;
3984 		}
3985 	}
3986 
3987 	/* set uncompleted segment to curseg */
3988 	curseg = CURSEG_I(sbi, type);
3989 	mutex_lock(&curseg->curseg_mutex);
3990 
3991 	/* update journal info */
3992 	down_write(&curseg->journal_rwsem);
3993 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3994 	up_write(&curseg->journal_rwsem);
3995 
3996 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3997 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3998 	curseg->next_segno = segno;
3999 	reset_curseg(sbi, type, 0);
4000 	curseg->alloc_type = ckpt->alloc_type[type];
4001 	curseg->next_blkoff = blk_off;
4002 	mutex_unlock(&curseg->curseg_mutex);
4003 out:
4004 	f2fs_put_page(new, 1);
4005 	return err;
4006 }
4007 
4008 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4009 {
4010 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4011 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4012 	int type = CURSEG_HOT_DATA;
4013 	int err;
4014 
4015 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4016 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4017 
4018 		if (npages >= 2)
4019 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4020 							META_CP, true);
4021 
4022 		/* restore for compacted data summary */
4023 		err = read_compacted_summaries(sbi);
4024 		if (err)
4025 			return err;
4026 		type = CURSEG_HOT_NODE;
4027 	}
4028 
4029 	if (__exist_node_summaries(sbi))
4030 		f2fs_ra_meta_pages(sbi,
4031 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4032 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4033 
4034 	for (; type <= CURSEG_COLD_NODE; type++) {
4035 		err = read_normal_summaries(sbi, type);
4036 		if (err)
4037 			return err;
4038 	}
4039 
4040 	/* sanity check for summary blocks */
4041 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4042 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4043 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4044 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4045 		return -EINVAL;
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4052 {
4053 	struct page *page;
4054 	unsigned char *kaddr;
4055 	struct f2fs_summary *summary;
4056 	struct curseg_info *seg_i;
4057 	int written_size = 0;
4058 	int i, j;
4059 
4060 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4061 	kaddr = (unsigned char *)page_address(page);
4062 	memset(kaddr, 0, PAGE_SIZE);
4063 
4064 	/* Step 1: write nat cache */
4065 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4066 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4067 	written_size += SUM_JOURNAL_SIZE;
4068 
4069 	/* Step 2: write sit cache */
4070 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4071 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4072 	written_size += SUM_JOURNAL_SIZE;
4073 
4074 	/* Step 3: write summary entries */
4075 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4076 		seg_i = CURSEG_I(sbi, i);
4077 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4078 			if (!page) {
4079 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4080 				kaddr = (unsigned char *)page_address(page);
4081 				memset(kaddr, 0, PAGE_SIZE);
4082 				written_size = 0;
4083 			}
4084 			summary = (struct f2fs_summary *)(kaddr + written_size);
4085 			*summary = seg_i->sum_blk->entries[j];
4086 			written_size += SUMMARY_SIZE;
4087 
4088 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4089 							SUM_FOOTER_SIZE)
4090 				continue;
4091 
4092 			set_page_dirty(page);
4093 			f2fs_put_page(page, 1);
4094 			page = NULL;
4095 		}
4096 	}
4097 	if (page) {
4098 		set_page_dirty(page);
4099 		f2fs_put_page(page, 1);
4100 	}
4101 }
4102 
4103 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4104 					block_t blkaddr, int type)
4105 {
4106 	int i, end;
4107 
4108 	if (IS_DATASEG(type))
4109 		end = type + NR_CURSEG_DATA_TYPE;
4110 	else
4111 		end = type + NR_CURSEG_NODE_TYPE;
4112 
4113 	for (i = type; i < end; i++)
4114 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4115 }
4116 
4117 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4118 {
4119 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4120 		write_compacted_summaries(sbi, start_blk);
4121 	else
4122 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4123 }
4124 
4125 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4126 {
4127 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4128 }
4129 
4130 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4131 					unsigned int val, int alloc)
4132 {
4133 	int i;
4134 
4135 	if (type == NAT_JOURNAL) {
4136 		for (i = 0; i < nats_in_cursum(journal); i++) {
4137 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4138 				return i;
4139 		}
4140 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4141 			return update_nats_in_cursum(journal, 1);
4142 	} else if (type == SIT_JOURNAL) {
4143 		for (i = 0; i < sits_in_cursum(journal); i++)
4144 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4145 				return i;
4146 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4147 			return update_sits_in_cursum(journal, 1);
4148 	}
4149 	return -1;
4150 }
4151 
4152 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4153 					unsigned int segno)
4154 {
4155 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4156 }
4157 
4158 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4159 					unsigned int start)
4160 {
4161 	struct sit_info *sit_i = SIT_I(sbi);
4162 	struct page *page;
4163 	pgoff_t src_off, dst_off;
4164 
4165 	src_off = current_sit_addr(sbi, start);
4166 	dst_off = next_sit_addr(sbi, src_off);
4167 
4168 	page = f2fs_grab_meta_page(sbi, dst_off);
4169 	seg_info_to_sit_page(sbi, page, start);
4170 
4171 	set_page_dirty(page);
4172 	set_to_next_sit(sit_i, start);
4173 
4174 	return page;
4175 }
4176 
4177 static struct sit_entry_set *grab_sit_entry_set(void)
4178 {
4179 	struct sit_entry_set *ses =
4180 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4181 						GFP_NOFS, true, NULL);
4182 
4183 	ses->entry_cnt = 0;
4184 	INIT_LIST_HEAD(&ses->set_list);
4185 	return ses;
4186 }
4187 
4188 static void release_sit_entry_set(struct sit_entry_set *ses)
4189 {
4190 	list_del(&ses->set_list);
4191 	kmem_cache_free(sit_entry_set_slab, ses);
4192 }
4193 
4194 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4195 						struct list_head *head)
4196 {
4197 	struct sit_entry_set *next = ses;
4198 
4199 	if (list_is_last(&ses->set_list, head))
4200 		return;
4201 
4202 	list_for_each_entry_continue(next, head, set_list)
4203 		if (ses->entry_cnt <= next->entry_cnt) {
4204 			list_move_tail(&ses->set_list, &next->set_list);
4205 			return;
4206 		}
4207 
4208 	list_move_tail(&ses->set_list, head);
4209 }
4210 
4211 static void add_sit_entry(unsigned int segno, struct list_head *head)
4212 {
4213 	struct sit_entry_set *ses;
4214 	unsigned int start_segno = START_SEGNO(segno);
4215 
4216 	list_for_each_entry(ses, head, set_list) {
4217 		if (ses->start_segno == start_segno) {
4218 			ses->entry_cnt++;
4219 			adjust_sit_entry_set(ses, head);
4220 			return;
4221 		}
4222 	}
4223 
4224 	ses = grab_sit_entry_set();
4225 
4226 	ses->start_segno = start_segno;
4227 	ses->entry_cnt++;
4228 	list_add(&ses->set_list, head);
4229 }
4230 
4231 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4232 {
4233 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4234 	struct list_head *set_list = &sm_info->sit_entry_set;
4235 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4236 	unsigned int segno;
4237 
4238 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4239 		add_sit_entry(segno, set_list);
4240 }
4241 
4242 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4243 {
4244 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4245 	struct f2fs_journal *journal = curseg->journal;
4246 	int i;
4247 
4248 	down_write(&curseg->journal_rwsem);
4249 	for (i = 0; i < sits_in_cursum(journal); i++) {
4250 		unsigned int segno;
4251 		bool dirtied;
4252 
4253 		segno = le32_to_cpu(segno_in_journal(journal, i));
4254 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4255 
4256 		if (!dirtied)
4257 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4258 	}
4259 	update_sits_in_cursum(journal, -i);
4260 	up_write(&curseg->journal_rwsem);
4261 }
4262 
4263 /*
4264  * CP calls this function, which flushes SIT entries including sit_journal,
4265  * and moves prefree segs to free segs.
4266  */
4267 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4268 {
4269 	struct sit_info *sit_i = SIT_I(sbi);
4270 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4271 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4272 	struct f2fs_journal *journal = curseg->journal;
4273 	struct sit_entry_set *ses, *tmp;
4274 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4275 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4276 	struct seg_entry *se;
4277 
4278 	down_write(&sit_i->sentry_lock);
4279 
4280 	if (!sit_i->dirty_sentries)
4281 		goto out;
4282 
4283 	/*
4284 	 * add and account sit entries of dirty bitmap in sit entry
4285 	 * set temporarily
4286 	 */
4287 	add_sits_in_set(sbi);
4288 
4289 	/*
4290 	 * if there are no enough space in journal to store dirty sit
4291 	 * entries, remove all entries from journal and add and account
4292 	 * them in sit entry set.
4293 	 */
4294 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4295 								!to_journal)
4296 		remove_sits_in_journal(sbi);
4297 
4298 	/*
4299 	 * there are two steps to flush sit entries:
4300 	 * #1, flush sit entries to journal in current cold data summary block.
4301 	 * #2, flush sit entries to sit page.
4302 	 */
4303 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4304 		struct page *page = NULL;
4305 		struct f2fs_sit_block *raw_sit = NULL;
4306 		unsigned int start_segno = ses->start_segno;
4307 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4308 						(unsigned long)MAIN_SEGS(sbi));
4309 		unsigned int segno = start_segno;
4310 
4311 		if (to_journal &&
4312 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4313 			to_journal = false;
4314 
4315 		if (to_journal) {
4316 			down_write(&curseg->journal_rwsem);
4317 		} else {
4318 			page = get_next_sit_page(sbi, start_segno);
4319 			raw_sit = page_address(page);
4320 		}
4321 
4322 		/* flush dirty sit entries in region of current sit set */
4323 		for_each_set_bit_from(segno, bitmap, end) {
4324 			int offset, sit_offset;
4325 
4326 			se = get_seg_entry(sbi, segno);
4327 #ifdef CONFIG_F2FS_CHECK_FS
4328 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4329 						SIT_VBLOCK_MAP_SIZE))
4330 				f2fs_bug_on(sbi, 1);
4331 #endif
4332 
4333 			/* add discard candidates */
4334 			if (!(cpc->reason & CP_DISCARD)) {
4335 				cpc->trim_start = segno;
4336 				add_discard_addrs(sbi, cpc, false);
4337 			}
4338 
4339 			if (to_journal) {
4340 				offset = f2fs_lookup_journal_in_cursum(journal,
4341 							SIT_JOURNAL, segno, 1);
4342 				f2fs_bug_on(sbi, offset < 0);
4343 				segno_in_journal(journal, offset) =
4344 							cpu_to_le32(segno);
4345 				seg_info_to_raw_sit(se,
4346 					&sit_in_journal(journal, offset));
4347 				check_block_count(sbi, segno,
4348 					&sit_in_journal(journal, offset));
4349 			} else {
4350 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4351 				seg_info_to_raw_sit(se,
4352 						&raw_sit->entries[sit_offset]);
4353 				check_block_count(sbi, segno,
4354 						&raw_sit->entries[sit_offset]);
4355 			}
4356 
4357 			__clear_bit(segno, bitmap);
4358 			sit_i->dirty_sentries--;
4359 			ses->entry_cnt--;
4360 		}
4361 
4362 		if (to_journal)
4363 			up_write(&curseg->journal_rwsem);
4364 		else
4365 			f2fs_put_page(page, 1);
4366 
4367 		f2fs_bug_on(sbi, ses->entry_cnt);
4368 		release_sit_entry_set(ses);
4369 	}
4370 
4371 	f2fs_bug_on(sbi, !list_empty(head));
4372 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4373 out:
4374 	if (cpc->reason & CP_DISCARD) {
4375 		__u64 trim_start = cpc->trim_start;
4376 
4377 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4378 			add_discard_addrs(sbi, cpc, false);
4379 
4380 		cpc->trim_start = trim_start;
4381 	}
4382 	up_write(&sit_i->sentry_lock);
4383 
4384 	set_prefree_as_free_segments(sbi);
4385 }
4386 
4387 static int build_sit_info(struct f2fs_sb_info *sbi)
4388 {
4389 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4390 	struct sit_info *sit_i;
4391 	unsigned int sit_segs, start;
4392 	char *src_bitmap, *bitmap;
4393 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4394 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4395 
4396 	/* allocate memory for SIT information */
4397 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4398 	if (!sit_i)
4399 		return -ENOMEM;
4400 
4401 	SM_I(sbi)->sit_info = sit_i;
4402 
4403 	sit_i->sentries =
4404 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4405 					      MAIN_SEGS(sbi)),
4406 			      GFP_KERNEL);
4407 	if (!sit_i->sentries)
4408 		return -ENOMEM;
4409 
4410 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4411 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4412 								GFP_KERNEL);
4413 	if (!sit_i->dirty_sentries_bitmap)
4414 		return -ENOMEM;
4415 
4416 #ifdef CONFIG_F2FS_CHECK_FS
4417 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4418 #else
4419 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4420 #endif
4421 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4422 	if (!sit_i->bitmap)
4423 		return -ENOMEM;
4424 
4425 	bitmap = sit_i->bitmap;
4426 
4427 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4428 		sit_i->sentries[start].cur_valid_map = bitmap;
4429 		bitmap += SIT_VBLOCK_MAP_SIZE;
4430 
4431 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4432 		bitmap += SIT_VBLOCK_MAP_SIZE;
4433 
4434 #ifdef CONFIG_F2FS_CHECK_FS
4435 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4436 		bitmap += SIT_VBLOCK_MAP_SIZE;
4437 #endif
4438 
4439 		if (discard_map) {
4440 			sit_i->sentries[start].discard_map = bitmap;
4441 			bitmap += SIT_VBLOCK_MAP_SIZE;
4442 		}
4443 	}
4444 
4445 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4446 	if (!sit_i->tmp_map)
4447 		return -ENOMEM;
4448 
4449 	if (__is_large_section(sbi)) {
4450 		sit_i->sec_entries =
4451 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4452 						      MAIN_SECS(sbi)),
4453 				      GFP_KERNEL);
4454 		if (!sit_i->sec_entries)
4455 			return -ENOMEM;
4456 	}
4457 
4458 	/* get information related with SIT */
4459 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4460 
4461 	/* setup SIT bitmap from ckeckpoint pack */
4462 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4463 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4464 
4465 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4466 	if (!sit_i->sit_bitmap)
4467 		return -ENOMEM;
4468 
4469 #ifdef CONFIG_F2FS_CHECK_FS
4470 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4471 					sit_bitmap_size, GFP_KERNEL);
4472 	if (!sit_i->sit_bitmap_mir)
4473 		return -ENOMEM;
4474 
4475 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4476 					main_bitmap_size, GFP_KERNEL);
4477 	if (!sit_i->invalid_segmap)
4478 		return -ENOMEM;
4479 #endif
4480 
4481 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4482 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4483 	sit_i->written_valid_blocks = 0;
4484 	sit_i->bitmap_size = sit_bitmap_size;
4485 	sit_i->dirty_sentries = 0;
4486 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4487 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4488 	sit_i->mounted_time = ktime_get_boottime_seconds();
4489 	init_rwsem(&sit_i->sentry_lock);
4490 	return 0;
4491 }
4492 
4493 static int build_free_segmap(struct f2fs_sb_info *sbi)
4494 {
4495 	struct free_segmap_info *free_i;
4496 	unsigned int bitmap_size, sec_bitmap_size;
4497 
4498 	/* allocate memory for free segmap information */
4499 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4500 	if (!free_i)
4501 		return -ENOMEM;
4502 
4503 	SM_I(sbi)->free_info = free_i;
4504 
4505 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4506 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4507 	if (!free_i->free_segmap)
4508 		return -ENOMEM;
4509 
4510 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4511 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4512 	if (!free_i->free_secmap)
4513 		return -ENOMEM;
4514 
4515 	/* set all segments as dirty temporarily */
4516 	memset(free_i->free_segmap, 0xff, bitmap_size);
4517 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4518 
4519 	/* init free segmap information */
4520 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4521 	free_i->free_segments = 0;
4522 	free_i->free_sections = 0;
4523 	spin_lock_init(&free_i->segmap_lock);
4524 	return 0;
4525 }
4526 
4527 static int build_curseg(struct f2fs_sb_info *sbi)
4528 {
4529 	struct curseg_info *array;
4530 	int i;
4531 
4532 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4533 					sizeof(*array)), GFP_KERNEL);
4534 	if (!array)
4535 		return -ENOMEM;
4536 
4537 	SM_I(sbi)->curseg_array = array;
4538 
4539 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4540 		mutex_init(&array[i].curseg_mutex);
4541 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4542 		if (!array[i].sum_blk)
4543 			return -ENOMEM;
4544 		init_rwsem(&array[i].journal_rwsem);
4545 		array[i].journal = f2fs_kzalloc(sbi,
4546 				sizeof(struct f2fs_journal), GFP_KERNEL);
4547 		if (!array[i].journal)
4548 			return -ENOMEM;
4549 		if (i < NR_PERSISTENT_LOG)
4550 			array[i].seg_type = CURSEG_HOT_DATA + i;
4551 		else if (i == CURSEG_COLD_DATA_PINNED)
4552 			array[i].seg_type = CURSEG_COLD_DATA;
4553 		else if (i == CURSEG_ALL_DATA_ATGC)
4554 			array[i].seg_type = CURSEG_COLD_DATA;
4555 		array[i].segno = NULL_SEGNO;
4556 		array[i].next_blkoff = 0;
4557 		array[i].inited = false;
4558 	}
4559 	return restore_curseg_summaries(sbi);
4560 }
4561 
4562 static int build_sit_entries(struct f2fs_sb_info *sbi)
4563 {
4564 	struct sit_info *sit_i = SIT_I(sbi);
4565 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4566 	struct f2fs_journal *journal = curseg->journal;
4567 	struct seg_entry *se;
4568 	struct f2fs_sit_entry sit;
4569 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4570 	unsigned int i, start, end;
4571 	unsigned int readed, start_blk = 0;
4572 	int err = 0;
4573 	block_t sit_valid_blocks[2] = {0, 0};
4574 
4575 	do {
4576 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4577 							META_SIT, true);
4578 
4579 		start = start_blk * sit_i->sents_per_block;
4580 		end = (start_blk + readed) * sit_i->sents_per_block;
4581 
4582 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4583 			struct f2fs_sit_block *sit_blk;
4584 			struct page *page;
4585 
4586 			se = &sit_i->sentries[start];
4587 			page = get_current_sit_page(sbi, start);
4588 			if (IS_ERR(page))
4589 				return PTR_ERR(page);
4590 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4591 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4592 			f2fs_put_page(page, 1);
4593 
4594 			err = check_block_count(sbi, start, &sit);
4595 			if (err)
4596 				return err;
4597 			seg_info_from_raw_sit(se, &sit);
4598 
4599 			if (se->type >= NR_PERSISTENT_LOG) {
4600 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4601 							se->type, start);
4602 				f2fs_handle_error(sbi,
4603 						ERROR_INCONSISTENT_SUM_TYPE);
4604 				return -EFSCORRUPTED;
4605 			}
4606 
4607 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4608 
4609 			if (!f2fs_block_unit_discard(sbi))
4610 				goto init_discard_map_done;
4611 
4612 			/* build discard map only one time */
4613 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4614 				memset(se->discard_map, 0xff,
4615 						SIT_VBLOCK_MAP_SIZE);
4616 				goto init_discard_map_done;
4617 			}
4618 			memcpy(se->discard_map, se->cur_valid_map,
4619 						SIT_VBLOCK_MAP_SIZE);
4620 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4621 						se->valid_blocks;
4622 init_discard_map_done:
4623 			if (__is_large_section(sbi))
4624 				get_sec_entry(sbi, start)->valid_blocks +=
4625 							se->valid_blocks;
4626 		}
4627 		start_blk += readed;
4628 	} while (start_blk < sit_blk_cnt);
4629 
4630 	down_read(&curseg->journal_rwsem);
4631 	for (i = 0; i < sits_in_cursum(journal); i++) {
4632 		unsigned int old_valid_blocks;
4633 
4634 		start = le32_to_cpu(segno_in_journal(journal, i));
4635 		if (start >= MAIN_SEGS(sbi)) {
4636 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4637 				 start);
4638 			err = -EFSCORRUPTED;
4639 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4640 			break;
4641 		}
4642 
4643 		se = &sit_i->sentries[start];
4644 		sit = sit_in_journal(journal, i);
4645 
4646 		old_valid_blocks = se->valid_blocks;
4647 
4648 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4649 
4650 		err = check_block_count(sbi, start, &sit);
4651 		if (err)
4652 			break;
4653 		seg_info_from_raw_sit(se, &sit);
4654 
4655 		if (se->type >= NR_PERSISTENT_LOG) {
4656 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4657 							se->type, start);
4658 			err = -EFSCORRUPTED;
4659 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4660 			break;
4661 		}
4662 
4663 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4664 
4665 		if (f2fs_block_unit_discard(sbi)) {
4666 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4667 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4668 			} else {
4669 				memcpy(se->discard_map, se->cur_valid_map,
4670 							SIT_VBLOCK_MAP_SIZE);
4671 				sbi->discard_blks += old_valid_blocks;
4672 				sbi->discard_blks -= se->valid_blocks;
4673 			}
4674 		}
4675 
4676 		if (__is_large_section(sbi)) {
4677 			get_sec_entry(sbi, start)->valid_blocks +=
4678 							se->valid_blocks;
4679 			get_sec_entry(sbi, start)->valid_blocks -=
4680 							old_valid_blocks;
4681 		}
4682 	}
4683 	up_read(&curseg->journal_rwsem);
4684 
4685 	if (err)
4686 		return err;
4687 
4688 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4689 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4690 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4691 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4692 		return -EFSCORRUPTED;
4693 	}
4694 
4695 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4696 				valid_user_blocks(sbi)) {
4697 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4698 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4699 			 valid_user_blocks(sbi));
4700 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4701 		return -EFSCORRUPTED;
4702 	}
4703 
4704 	return 0;
4705 }
4706 
4707 static void init_free_segmap(struct f2fs_sb_info *sbi)
4708 {
4709 	unsigned int start;
4710 	int type;
4711 	struct seg_entry *sentry;
4712 
4713 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4714 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4715 			continue;
4716 		sentry = get_seg_entry(sbi, start);
4717 		if (!sentry->valid_blocks)
4718 			__set_free(sbi, start);
4719 		else
4720 			SIT_I(sbi)->written_valid_blocks +=
4721 						sentry->valid_blocks;
4722 	}
4723 
4724 	/* set use the current segments */
4725 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4726 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4727 
4728 		__set_test_and_inuse(sbi, curseg_t->segno);
4729 	}
4730 }
4731 
4732 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4733 {
4734 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4735 	struct free_segmap_info *free_i = FREE_I(sbi);
4736 	unsigned int segno = 0, offset = 0, secno;
4737 	block_t valid_blocks, usable_blks_in_seg;
4738 
4739 	while (1) {
4740 		/* find dirty segment based on free segmap */
4741 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4742 		if (segno >= MAIN_SEGS(sbi))
4743 			break;
4744 		offset = segno + 1;
4745 		valid_blocks = get_valid_blocks(sbi, segno, false);
4746 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4747 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4748 			continue;
4749 		if (valid_blocks > usable_blks_in_seg) {
4750 			f2fs_bug_on(sbi, 1);
4751 			continue;
4752 		}
4753 		mutex_lock(&dirty_i->seglist_lock);
4754 		__locate_dirty_segment(sbi, segno, DIRTY);
4755 		mutex_unlock(&dirty_i->seglist_lock);
4756 	}
4757 
4758 	if (!__is_large_section(sbi))
4759 		return;
4760 
4761 	mutex_lock(&dirty_i->seglist_lock);
4762 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4763 		valid_blocks = get_valid_blocks(sbi, segno, true);
4764 		secno = GET_SEC_FROM_SEG(sbi, segno);
4765 
4766 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4767 			continue;
4768 		if (IS_CURSEC(sbi, secno))
4769 			continue;
4770 		set_bit(secno, dirty_i->dirty_secmap);
4771 	}
4772 	mutex_unlock(&dirty_i->seglist_lock);
4773 }
4774 
4775 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4776 {
4777 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4778 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4779 
4780 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4781 	if (!dirty_i->victim_secmap)
4782 		return -ENOMEM;
4783 
4784 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4785 	if (!dirty_i->pinned_secmap)
4786 		return -ENOMEM;
4787 
4788 	dirty_i->pinned_secmap_cnt = 0;
4789 	dirty_i->enable_pin_section = true;
4790 	return 0;
4791 }
4792 
4793 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4794 {
4795 	struct dirty_seglist_info *dirty_i;
4796 	unsigned int bitmap_size, i;
4797 
4798 	/* allocate memory for dirty segments list information */
4799 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4800 								GFP_KERNEL);
4801 	if (!dirty_i)
4802 		return -ENOMEM;
4803 
4804 	SM_I(sbi)->dirty_info = dirty_i;
4805 	mutex_init(&dirty_i->seglist_lock);
4806 
4807 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4808 
4809 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4810 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4811 								GFP_KERNEL);
4812 		if (!dirty_i->dirty_segmap[i])
4813 			return -ENOMEM;
4814 	}
4815 
4816 	if (__is_large_section(sbi)) {
4817 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4818 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4819 						bitmap_size, GFP_KERNEL);
4820 		if (!dirty_i->dirty_secmap)
4821 			return -ENOMEM;
4822 	}
4823 
4824 	init_dirty_segmap(sbi);
4825 	return init_victim_secmap(sbi);
4826 }
4827 
4828 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4829 {
4830 	int i;
4831 
4832 	/*
4833 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4834 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4835 	 */
4836 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4837 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4838 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4839 		unsigned int blkofs = curseg->next_blkoff;
4840 
4841 		if (f2fs_sb_has_readonly(sbi) &&
4842 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4843 			continue;
4844 
4845 		sanity_check_seg_type(sbi, curseg->seg_type);
4846 
4847 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4848 			f2fs_err(sbi,
4849 				 "Current segment has invalid alloc_type:%d",
4850 				 curseg->alloc_type);
4851 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4852 			return -EFSCORRUPTED;
4853 		}
4854 
4855 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4856 			goto out;
4857 
4858 		if (curseg->alloc_type == SSR)
4859 			continue;
4860 
4861 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4862 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4863 				continue;
4864 out:
4865 			f2fs_err(sbi,
4866 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4867 				 i, curseg->segno, curseg->alloc_type,
4868 				 curseg->next_blkoff, blkofs);
4869 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4870 			return -EFSCORRUPTED;
4871 		}
4872 	}
4873 	return 0;
4874 }
4875 
4876 #ifdef CONFIG_BLK_DEV_ZONED
4877 
4878 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4879 				    struct f2fs_dev_info *fdev,
4880 				    struct blk_zone *zone)
4881 {
4882 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4883 	block_t zone_block, wp_block, last_valid_block;
4884 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4885 	int i, s, b, ret;
4886 	struct seg_entry *se;
4887 
4888 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4889 		return 0;
4890 
4891 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4892 	wp_segno = GET_SEGNO(sbi, wp_block);
4893 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4894 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4895 	zone_segno = GET_SEGNO(sbi, zone_block);
4896 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4897 
4898 	if (zone_segno >= MAIN_SEGS(sbi))
4899 		return 0;
4900 
4901 	/*
4902 	 * Skip check of zones cursegs point to, since
4903 	 * fix_curseg_write_pointer() checks them.
4904 	 */
4905 	for (i = 0; i < NO_CHECK_TYPE; i++)
4906 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4907 						   CURSEG_I(sbi, i)->segno))
4908 			return 0;
4909 
4910 	/*
4911 	 * Get last valid block of the zone.
4912 	 */
4913 	last_valid_block = zone_block - 1;
4914 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4915 		segno = zone_segno + s;
4916 		se = get_seg_entry(sbi, segno);
4917 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4918 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4919 				last_valid_block = START_BLOCK(sbi, segno) + b;
4920 				break;
4921 			}
4922 		if (last_valid_block >= zone_block)
4923 			break;
4924 	}
4925 
4926 	/*
4927 	 * The write pointer matches with the valid blocks or
4928 	 * already points to the end of the zone.
4929 	 */
4930 	if ((last_valid_block + 1 == wp_block) ||
4931 			(zone->wp == zone->start + zone->len))
4932 		return 0;
4933 
4934 	if (last_valid_block + 1 == zone_block) {
4935 		/*
4936 		 * If there is no valid block in the zone and if write pointer
4937 		 * is not at zone start, reset the write pointer.
4938 		 */
4939 		f2fs_notice(sbi,
4940 			    "Zone without valid block has non-zero write "
4941 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4942 			    wp_segno, wp_blkoff);
4943 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4944 					zone->len >> log_sectors_per_block);
4945 		if (ret)
4946 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4947 				 fdev->path, ret);
4948 
4949 		return ret;
4950 	}
4951 
4952 	/*
4953 	 * If there are valid blocks and the write pointer doesn't
4954 	 * match with them, we need to report the inconsistency and
4955 	 * fill the zone till the end to close the zone. This inconsistency
4956 	 * does not cause write error because the zone will not be selected
4957 	 * for write operation until it get discarded.
4958 	 */
4959 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4960 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4961 		    GET_SEGNO(sbi, last_valid_block),
4962 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4963 		    wp_segno, wp_blkoff);
4964 
4965 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4966 				zone->start, zone->len, GFP_NOFS);
4967 	if (ret == -EOPNOTSUPP) {
4968 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4969 					zone->len - (zone->wp - zone->start),
4970 					GFP_NOFS, 0);
4971 		if (ret)
4972 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4973 					fdev->path, ret);
4974 	} else if (ret) {
4975 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4976 				fdev->path, ret);
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4983 						  block_t zone_blkaddr)
4984 {
4985 	int i;
4986 
4987 	for (i = 0; i < sbi->s_ndevs; i++) {
4988 		if (!bdev_is_zoned(FDEV(i).bdev))
4989 			continue;
4990 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4991 				zone_blkaddr <= FDEV(i).end_blk))
4992 			return &FDEV(i);
4993 	}
4994 
4995 	return NULL;
4996 }
4997 
4998 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4999 			      void *data)
5000 {
5001 	memcpy(data, zone, sizeof(struct blk_zone));
5002 	return 0;
5003 }
5004 
5005 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5006 {
5007 	struct curseg_info *cs = CURSEG_I(sbi, type);
5008 	struct f2fs_dev_info *zbd;
5009 	struct blk_zone zone;
5010 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5011 	block_t cs_zone_block, wp_block;
5012 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5013 	sector_t zone_sector;
5014 	int err;
5015 
5016 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5017 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5018 
5019 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5020 	if (!zbd)
5021 		return 0;
5022 
5023 	/* report zone for the sector the curseg points to */
5024 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5025 		<< log_sectors_per_block;
5026 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5027 				  report_one_zone_cb, &zone);
5028 	if (err != 1) {
5029 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5030 			 zbd->path, err);
5031 		return err;
5032 	}
5033 
5034 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5035 		return 0;
5036 
5037 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5038 	wp_segno = GET_SEGNO(sbi, wp_block);
5039 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5040 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5041 
5042 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5043 		wp_sector_off == 0)
5044 		return 0;
5045 
5046 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5047 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5048 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5049 
5050 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5051 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5052 
5053 	f2fs_allocate_new_section(sbi, type, true);
5054 
5055 	/* check consistency of the zone curseg pointed to */
5056 	if (check_zone_write_pointer(sbi, zbd, &zone))
5057 		return -EIO;
5058 
5059 	/* check newly assigned zone */
5060 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5061 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5062 
5063 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5064 	if (!zbd)
5065 		return 0;
5066 
5067 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5068 		<< log_sectors_per_block;
5069 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5070 				  report_one_zone_cb, &zone);
5071 	if (err != 1) {
5072 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5073 			 zbd->path, err);
5074 		return err;
5075 	}
5076 
5077 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5078 		return 0;
5079 
5080 	if (zone.wp != zone.start) {
5081 		f2fs_notice(sbi,
5082 			    "New zone for curseg[%d] is not yet discarded. "
5083 			    "Reset the zone: curseg[0x%x,0x%x]",
5084 			    type, cs->segno, cs->next_blkoff);
5085 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5086 					zone.len >> log_sectors_per_block);
5087 		if (err) {
5088 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5089 				 zbd->path, err);
5090 			return err;
5091 		}
5092 	}
5093 
5094 	return 0;
5095 }
5096 
5097 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5098 {
5099 	int i, ret;
5100 
5101 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5102 		ret = fix_curseg_write_pointer(sbi, i);
5103 		if (ret)
5104 			return ret;
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 struct check_zone_write_pointer_args {
5111 	struct f2fs_sb_info *sbi;
5112 	struct f2fs_dev_info *fdev;
5113 };
5114 
5115 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5116 				      void *data)
5117 {
5118 	struct check_zone_write_pointer_args *args;
5119 
5120 	args = (struct check_zone_write_pointer_args *)data;
5121 
5122 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5123 }
5124 
5125 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5126 {
5127 	int i, ret;
5128 	struct check_zone_write_pointer_args args;
5129 
5130 	for (i = 0; i < sbi->s_ndevs; i++) {
5131 		if (!bdev_is_zoned(FDEV(i).bdev))
5132 			continue;
5133 
5134 		args.sbi = sbi;
5135 		args.fdev = &FDEV(i);
5136 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5137 					  check_zone_write_pointer_cb, &args);
5138 		if (ret < 0)
5139 			return ret;
5140 	}
5141 
5142 	return 0;
5143 }
5144 
5145 /*
5146  * Return the number of usable blocks in a segment. The number of blocks
5147  * returned is always equal to the number of blocks in a segment for
5148  * segments fully contained within a sequential zone capacity or a
5149  * conventional zone. For segments partially contained in a sequential
5150  * zone capacity, the number of usable blocks up to the zone capacity
5151  * is returned. 0 is returned in all other cases.
5152  */
5153 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5154 			struct f2fs_sb_info *sbi, unsigned int segno)
5155 {
5156 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5157 	unsigned int secno;
5158 
5159 	if (!sbi->unusable_blocks_per_sec)
5160 		return BLKS_PER_SEG(sbi);
5161 
5162 	secno = GET_SEC_FROM_SEG(sbi, segno);
5163 	seg_start = START_BLOCK(sbi, segno);
5164 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5165 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5166 
5167 	/*
5168 	 * If segment starts before zone capacity and spans beyond
5169 	 * zone capacity, then usable blocks are from seg start to
5170 	 * zone capacity. If the segment starts after the zone capacity,
5171 	 * then there are no usable blocks.
5172 	 */
5173 	if (seg_start >= sec_cap_blkaddr)
5174 		return 0;
5175 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5176 		return sec_cap_blkaddr - seg_start;
5177 
5178 	return BLKS_PER_SEG(sbi);
5179 }
5180 #else
5181 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5182 {
5183 	return 0;
5184 }
5185 
5186 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5187 {
5188 	return 0;
5189 }
5190 
5191 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5192 							unsigned int segno)
5193 {
5194 	return 0;
5195 }
5196 
5197 #endif
5198 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5199 					unsigned int segno)
5200 {
5201 	if (f2fs_sb_has_blkzoned(sbi))
5202 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5203 
5204 	return BLKS_PER_SEG(sbi);
5205 }
5206 
5207 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5208 					unsigned int segno)
5209 {
5210 	if (f2fs_sb_has_blkzoned(sbi))
5211 		return CAP_SEGS_PER_SEC(sbi);
5212 
5213 	return SEGS_PER_SEC(sbi);
5214 }
5215 
5216 /*
5217  * Update min, max modified time for cost-benefit GC algorithm
5218  */
5219 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5220 {
5221 	struct sit_info *sit_i = SIT_I(sbi);
5222 	unsigned int segno;
5223 
5224 	down_write(&sit_i->sentry_lock);
5225 
5226 	sit_i->min_mtime = ULLONG_MAX;
5227 
5228 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5229 		unsigned int i;
5230 		unsigned long long mtime = 0;
5231 
5232 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5233 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5234 
5235 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5236 
5237 		if (sit_i->min_mtime > mtime)
5238 			sit_i->min_mtime = mtime;
5239 	}
5240 	sit_i->max_mtime = get_mtime(sbi, false);
5241 	sit_i->dirty_max_mtime = 0;
5242 	up_write(&sit_i->sentry_lock);
5243 }
5244 
5245 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5246 {
5247 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5248 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5249 	struct f2fs_sm_info *sm_info;
5250 	int err;
5251 
5252 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5253 	if (!sm_info)
5254 		return -ENOMEM;
5255 
5256 	/* init sm info */
5257 	sbi->sm_info = sm_info;
5258 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5259 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5260 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5261 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5262 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5263 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5264 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5265 	sm_info->rec_prefree_segments = sm_info->main_segments *
5266 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5267 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5268 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5269 
5270 	if (!f2fs_lfs_mode(sbi))
5271 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5272 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5273 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5274 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5275 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5276 	sm_info->min_ssr_sections = reserved_sections(sbi);
5277 
5278 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5279 
5280 	init_f2fs_rwsem(&sm_info->curseg_lock);
5281 
5282 	err = f2fs_create_flush_cmd_control(sbi);
5283 	if (err)
5284 		return err;
5285 
5286 	err = create_discard_cmd_control(sbi);
5287 	if (err)
5288 		return err;
5289 
5290 	err = build_sit_info(sbi);
5291 	if (err)
5292 		return err;
5293 	err = build_free_segmap(sbi);
5294 	if (err)
5295 		return err;
5296 	err = build_curseg(sbi);
5297 	if (err)
5298 		return err;
5299 
5300 	/* reinit free segmap based on SIT */
5301 	err = build_sit_entries(sbi);
5302 	if (err)
5303 		return err;
5304 
5305 	init_free_segmap(sbi);
5306 	err = build_dirty_segmap(sbi);
5307 	if (err)
5308 		return err;
5309 
5310 	err = sanity_check_curseg(sbi);
5311 	if (err)
5312 		return err;
5313 
5314 	init_min_max_mtime(sbi);
5315 	return 0;
5316 }
5317 
5318 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5319 		enum dirty_type dirty_type)
5320 {
5321 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5322 
5323 	mutex_lock(&dirty_i->seglist_lock);
5324 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5325 	dirty_i->nr_dirty[dirty_type] = 0;
5326 	mutex_unlock(&dirty_i->seglist_lock);
5327 }
5328 
5329 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5330 {
5331 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5332 
5333 	kvfree(dirty_i->pinned_secmap);
5334 	kvfree(dirty_i->victim_secmap);
5335 }
5336 
5337 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5338 {
5339 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5340 	int i;
5341 
5342 	if (!dirty_i)
5343 		return;
5344 
5345 	/* discard pre-free/dirty segments list */
5346 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5347 		discard_dirty_segmap(sbi, i);
5348 
5349 	if (__is_large_section(sbi)) {
5350 		mutex_lock(&dirty_i->seglist_lock);
5351 		kvfree(dirty_i->dirty_secmap);
5352 		mutex_unlock(&dirty_i->seglist_lock);
5353 	}
5354 
5355 	destroy_victim_secmap(sbi);
5356 	SM_I(sbi)->dirty_info = NULL;
5357 	kfree(dirty_i);
5358 }
5359 
5360 static void destroy_curseg(struct f2fs_sb_info *sbi)
5361 {
5362 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5363 	int i;
5364 
5365 	if (!array)
5366 		return;
5367 	SM_I(sbi)->curseg_array = NULL;
5368 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5369 		kfree(array[i].sum_blk);
5370 		kfree(array[i].journal);
5371 	}
5372 	kfree(array);
5373 }
5374 
5375 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5376 {
5377 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5378 
5379 	if (!free_i)
5380 		return;
5381 	SM_I(sbi)->free_info = NULL;
5382 	kvfree(free_i->free_segmap);
5383 	kvfree(free_i->free_secmap);
5384 	kfree(free_i);
5385 }
5386 
5387 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5388 {
5389 	struct sit_info *sit_i = SIT_I(sbi);
5390 
5391 	if (!sit_i)
5392 		return;
5393 
5394 	if (sit_i->sentries)
5395 		kvfree(sit_i->bitmap);
5396 	kfree(sit_i->tmp_map);
5397 
5398 	kvfree(sit_i->sentries);
5399 	kvfree(sit_i->sec_entries);
5400 	kvfree(sit_i->dirty_sentries_bitmap);
5401 
5402 	SM_I(sbi)->sit_info = NULL;
5403 	kvfree(sit_i->sit_bitmap);
5404 #ifdef CONFIG_F2FS_CHECK_FS
5405 	kvfree(sit_i->sit_bitmap_mir);
5406 	kvfree(sit_i->invalid_segmap);
5407 #endif
5408 	kfree(sit_i);
5409 }
5410 
5411 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5412 {
5413 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5414 
5415 	if (!sm_info)
5416 		return;
5417 	f2fs_destroy_flush_cmd_control(sbi, true);
5418 	destroy_discard_cmd_control(sbi);
5419 	destroy_dirty_segmap(sbi);
5420 	destroy_curseg(sbi);
5421 	destroy_free_segmap(sbi);
5422 	destroy_sit_info(sbi);
5423 	sbi->sm_info = NULL;
5424 	kfree(sm_info);
5425 }
5426 
5427 int __init f2fs_create_segment_manager_caches(void)
5428 {
5429 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5430 			sizeof(struct discard_entry));
5431 	if (!discard_entry_slab)
5432 		goto fail;
5433 
5434 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5435 			sizeof(struct discard_cmd));
5436 	if (!discard_cmd_slab)
5437 		goto destroy_discard_entry;
5438 
5439 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5440 			sizeof(struct sit_entry_set));
5441 	if (!sit_entry_set_slab)
5442 		goto destroy_discard_cmd;
5443 
5444 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5445 			sizeof(struct revoke_entry));
5446 	if (!revoke_entry_slab)
5447 		goto destroy_sit_entry_set;
5448 	return 0;
5449 
5450 destroy_sit_entry_set:
5451 	kmem_cache_destroy(sit_entry_set_slab);
5452 destroy_discard_cmd:
5453 	kmem_cache_destroy(discard_cmd_slab);
5454 destroy_discard_entry:
5455 	kmem_cache_destroy(discard_entry_slab);
5456 fail:
5457 	return -ENOMEM;
5458 }
5459 
5460 void f2fs_destroy_segment_manager_caches(void)
5461 {
5462 	kmem_cache_destroy(sit_entry_set_slab);
5463 	kmem_cache_destroy(discard_cmd_slab);
5464 	kmem_cache_destroy(discard_entry_slab);
5465 	kmem_cache_destroy(revoke_entry_slab);
5466 }
5467