1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 /* 33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 34 * MSB and LSB are reversed in a byte by f2fs_set_bit. 35 */ 36 static inline unsigned long __reverse_ffs(unsigned long word) 37 { 38 int num = 0; 39 40 #if BITS_PER_LONG == 64 41 if ((word & 0xffffffff) == 0) { 42 num += 32; 43 word >>= 32; 44 } 45 #endif 46 if ((word & 0xffff) == 0) { 47 num += 16; 48 word >>= 16; 49 } 50 if ((word & 0xff) == 0) { 51 num += 8; 52 word >>= 8; 53 } 54 if ((word & 0xf0) == 0) 55 num += 4; 56 else 57 word >>= 4; 58 if ((word & 0xc) == 0) 59 num += 2; 60 else 61 word >>= 2; 62 if ((word & 0x2) == 0) 63 num += 1; 64 return num; 65 } 66 67 /* 68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 69 * f2fs_set_bit makes MSB and LSB reversed in a byte. 70 * Example: 71 * LSB <--> MSB 72 * f2fs_set_bit(0, bitmap) => 0000 0001 73 * f2fs_set_bit(7, bitmap) => 1000 0000 74 */ 75 static unsigned long __find_rev_next_bit(const unsigned long *addr, 76 unsigned long size, unsigned long offset) 77 { 78 while (!f2fs_test_bit(offset, (unsigned char *)addr)) 79 offset++; 80 81 if (offset > size) 82 offset = size; 83 84 return offset; 85 #if 0 86 const unsigned long *p = addr + BIT_WORD(offset); 87 unsigned long result = offset & ~(BITS_PER_LONG - 1); 88 unsigned long tmp; 89 unsigned long mask, submask; 90 unsigned long quot, rest; 91 92 if (offset >= size) 93 return size; 94 95 size -= result; 96 offset %= BITS_PER_LONG; 97 if (!offset) 98 goto aligned; 99 100 tmp = *(p++); 101 quot = (offset >> 3) << 3; 102 rest = offset & 0x7; 103 mask = ~0UL << quot; 104 submask = (unsigned char)(0xff << rest) >> rest; 105 submask <<= quot; 106 mask &= submask; 107 tmp &= mask; 108 if (size < BITS_PER_LONG) 109 goto found_first; 110 if (tmp) 111 goto found_middle; 112 113 size -= BITS_PER_LONG; 114 result += BITS_PER_LONG; 115 aligned: 116 while (size & ~(BITS_PER_LONG-1)) { 117 tmp = *(p++); 118 if (tmp) 119 goto found_middle; 120 result += BITS_PER_LONG; 121 size -= BITS_PER_LONG; 122 } 123 if (!size) 124 return result; 125 tmp = *p; 126 found_first: 127 tmp &= (~0UL >> (BITS_PER_LONG - size)); 128 if (tmp == 0UL) /* Are any bits set? */ 129 return result + size; /* Nope. */ 130 found_middle: 131 return result + __reverse_ffs(tmp); 132 #endif 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 while (f2fs_test_bit(offset, (unsigned char *)addr)) 139 offset++; 140 141 if (offset > size) 142 offset = size; 143 144 return offset; 145 #if 0 146 const unsigned long *p = addr + BIT_WORD(offset); 147 unsigned long result = offset & ~(BITS_PER_LONG - 1); 148 unsigned long tmp; 149 unsigned long mask, submask; 150 unsigned long quot, rest; 151 152 if (offset >= size) 153 return size; 154 155 size -= result; 156 offset %= BITS_PER_LONG; 157 if (!offset) 158 goto aligned; 159 160 tmp = *(p++); 161 quot = (offset >> 3) << 3; 162 rest = offset & 0x7; 163 mask = ~(~0UL << quot); 164 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 165 submask <<= quot; 166 mask += submask; 167 tmp |= mask; 168 if (size < BITS_PER_LONG) 169 goto found_first; 170 if (~tmp) 171 goto found_middle; 172 173 size -= BITS_PER_LONG; 174 result += BITS_PER_LONG; 175 aligned: 176 while (size & ~(BITS_PER_LONG - 1)) { 177 tmp = *(p++); 178 if (~tmp) 179 goto found_middle; 180 result += BITS_PER_LONG; 181 size -= BITS_PER_LONG; 182 } 183 if (!size) 184 return result; 185 tmp = *p; 186 187 found_first: 188 tmp |= ~0UL << size; 189 if (tmp == ~0UL) /* Are any bits zero? */ 190 return result + size; /* Nope. */ 191 found_middle: 192 return result + __reverse_ffz(tmp); 193 #endif 194 } 195 196 void register_inmem_page(struct inode *inode, struct page *page) 197 { 198 struct f2fs_inode_info *fi = F2FS_I(inode); 199 struct inmem_pages *new; 200 int err; 201 202 SetPagePrivate(page); 203 f2fs_trace_pid(page); 204 205 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 206 207 /* add atomic page indices to the list */ 208 new->page = page; 209 INIT_LIST_HEAD(&new->list); 210 retry: 211 /* increase reference count with clean state */ 212 mutex_lock(&fi->inmem_lock); 213 err = radix_tree_insert(&fi->inmem_root, page->index, new); 214 if (err == -EEXIST) { 215 mutex_unlock(&fi->inmem_lock); 216 kmem_cache_free(inmem_entry_slab, new); 217 return; 218 } else if (err) { 219 mutex_unlock(&fi->inmem_lock); 220 goto retry; 221 } 222 get_page(page); 223 list_add_tail(&new->list, &fi->inmem_pages); 224 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 225 mutex_unlock(&fi->inmem_lock); 226 227 trace_f2fs_register_inmem_page(page, INMEM); 228 } 229 230 void commit_inmem_pages(struct inode *inode, bool abort) 231 { 232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 233 struct f2fs_inode_info *fi = F2FS_I(inode); 234 struct inmem_pages *cur, *tmp; 235 bool submit_bio = false; 236 struct f2fs_io_info fio = { 237 .sbi = sbi, 238 .type = DATA, 239 .rw = WRITE_SYNC | REQ_PRIO, 240 .encrypted_page = NULL, 241 }; 242 243 /* 244 * The abort is true only when f2fs_evict_inode is called. 245 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 246 * that we don't need to call f2fs_balance_fs. 247 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 248 * inode becomes free by iget_locked in f2fs_iget. 249 */ 250 if (!abort) { 251 f2fs_balance_fs(sbi); 252 f2fs_lock_op(sbi); 253 } 254 255 mutex_lock(&fi->inmem_lock); 256 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 257 if (!abort) { 258 lock_page(cur->page); 259 if (cur->page->mapping == inode->i_mapping) { 260 f2fs_wait_on_page_writeback(cur->page, DATA); 261 if (clear_page_dirty_for_io(cur->page)) 262 inode_dec_dirty_pages(inode); 263 trace_f2fs_commit_inmem_page(cur->page, INMEM); 264 fio.page = cur->page; 265 do_write_data_page(&fio); 266 submit_bio = true; 267 } 268 f2fs_put_page(cur->page, 1); 269 } else { 270 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); 271 put_page(cur->page); 272 } 273 radix_tree_delete(&fi->inmem_root, cur->page->index); 274 list_del(&cur->list); 275 kmem_cache_free(inmem_entry_slab, cur); 276 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 277 } 278 mutex_unlock(&fi->inmem_lock); 279 280 if (!abort) { 281 f2fs_unlock_op(sbi); 282 if (submit_bio) 283 f2fs_submit_merged_bio(sbi, DATA, WRITE); 284 } 285 } 286 287 /* 288 * This function balances dirty node and dentry pages. 289 * In addition, it controls garbage collection. 290 */ 291 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 292 { 293 /* 294 * We should do GC or end up with checkpoint, if there are so many dirty 295 * dir/node pages without enough free segments. 296 */ 297 if (has_not_enough_free_secs(sbi, 0)) { 298 mutex_lock(&sbi->gc_mutex); 299 f2fs_gc(sbi); 300 } 301 } 302 303 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 304 { 305 /* try to shrink extent cache when there is no enough memory */ 306 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 307 308 /* check the # of cached NAT entries and prefree segments */ 309 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 310 excess_prefree_segs(sbi) || 311 !available_free_memory(sbi, INO_ENTRIES)) 312 f2fs_sync_fs(sbi->sb, true); 313 } 314 315 static int issue_flush_thread(void *data) 316 { 317 struct f2fs_sb_info *sbi = data; 318 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 319 wait_queue_head_t *q = &fcc->flush_wait_queue; 320 repeat: 321 if (kthread_should_stop()) 322 return 0; 323 324 if (!llist_empty(&fcc->issue_list)) { 325 struct bio *bio = bio_alloc(GFP_NOIO, 0); 326 struct flush_cmd *cmd, *next; 327 int ret; 328 329 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 330 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 331 332 bio->bi_bdev = sbi->sb->s_bdev; 333 ret = submit_bio_wait(WRITE_FLUSH, bio); 334 335 llist_for_each_entry_safe(cmd, next, 336 fcc->dispatch_list, llnode) { 337 cmd->ret = ret; 338 complete(&cmd->wait); 339 } 340 bio_put(bio); 341 fcc->dispatch_list = NULL; 342 } 343 344 wait_event_interruptible(*q, 345 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 346 goto repeat; 347 } 348 349 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 350 { 351 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 352 struct flush_cmd cmd; 353 354 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 355 test_opt(sbi, FLUSH_MERGE)); 356 357 if (test_opt(sbi, NOBARRIER)) 358 return 0; 359 360 if (!test_opt(sbi, FLUSH_MERGE)) 361 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 362 363 init_completion(&cmd.wait); 364 365 llist_add(&cmd.llnode, &fcc->issue_list); 366 367 if (!fcc->dispatch_list) 368 wake_up(&fcc->flush_wait_queue); 369 370 wait_for_completion(&cmd.wait); 371 372 return cmd.ret; 373 } 374 375 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 376 { 377 dev_t dev = sbi->sb->s_bdev->bd_dev; 378 struct flush_cmd_control *fcc; 379 int err = 0; 380 381 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 382 if (!fcc) 383 return -ENOMEM; 384 init_waitqueue_head(&fcc->flush_wait_queue); 385 init_llist_head(&fcc->issue_list); 386 SM_I(sbi)->cmd_control_info = fcc; 387 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 388 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 389 if (IS_ERR(fcc->f2fs_issue_flush)) { 390 err = PTR_ERR(fcc->f2fs_issue_flush); 391 kfree(fcc); 392 SM_I(sbi)->cmd_control_info = NULL; 393 return err; 394 } 395 396 return err; 397 } 398 399 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 400 { 401 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 402 403 if (fcc && fcc->f2fs_issue_flush) 404 kthread_stop(fcc->f2fs_issue_flush); 405 kfree(fcc); 406 SM_I(sbi)->cmd_control_info = NULL; 407 } 408 409 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 410 enum dirty_type dirty_type) 411 { 412 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 413 414 /* need not be added */ 415 if (IS_CURSEG(sbi, segno)) 416 return; 417 418 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 419 dirty_i->nr_dirty[dirty_type]++; 420 421 if (dirty_type == DIRTY) { 422 struct seg_entry *sentry = get_seg_entry(sbi, segno); 423 enum dirty_type t = sentry->type; 424 425 if (unlikely(t >= DIRTY)) { 426 f2fs_bug_on(sbi, 1); 427 return; 428 } 429 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 430 dirty_i->nr_dirty[t]++; 431 } 432 } 433 434 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 435 enum dirty_type dirty_type) 436 { 437 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 438 439 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 440 dirty_i->nr_dirty[dirty_type]--; 441 442 if (dirty_type == DIRTY) { 443 struct seg_entry *sentry = get_seg_entry(sbi, segno); 444 enum dirty_type t = sentry->type; 445 446 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 447 dirty_i->nr_dirty[t]--; 448 449 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 450 clear_bit(GET_SECNO(sbi, segno), 451 dirty_i->victim_secmap); 452 } 453 } 454 455 /* 456 * Should not occur error such as -ENOMEM. 457 * Adding dirty entry into seglist is not critical operation. 458 * If a given segment is one of current working segments, it won't be added. 459 */ 460 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 461 { 462 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 463 unsigned short valid_blocks; 464 465 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 466 return; 467 468 mutex_lock(&dirty_i->seglist_lock); 469 470 valid_blocks = get_valid_blocks(sbi, segno, 0); 471 472 if (valid_blocks == 0) { 473 __locate_dirty_segment(sbi, segno, PRE); 474 __remove_dirty_segment(sbi, segno, DIRTY); 475 } else if (valid_blocks < sbi->blocks_per_seg) { 476 __locate_dirty_segment(sbi, segno, DIRTY); 477 } else { 478 /* Recovery routine with SSR needs this */ 479 __remove_dirty_segment(sbi, segno, DIRTY); 480 } 481 482 mutex_unlock(&dirty_i->seglist_lock); 483 } 484 485 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 486 block_t blkstart, block_t blklen) 487 { 488 sector_t start = SECTOR_FROM_BLOCK(blkstart); 489 sector_t len = SECTOR_FROM_BLOCK(blklen); 490 struct seg_entry *se; 491 unsigned int offset; 492 block_t i; 493 494 for (i = blkstart; i < blkstart + blklen; i++) { 495 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 496 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 497 498 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 499 sbi->discard_blks--; 500 } 501 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 502 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 503 } 504 505 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 506 { 507 int err = -ENOTSUPP; 508 509 if (test_opt(sbi, DISCARD)) { 510 struct seg_entry *se = get_seg_entry(sbi, 511 GET_SEGNO(sbi, blkaddr)); 512 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 513 514 if (f2fs_test_bit(offset, se->discard_map)) 515 return; 516 517 err = f2fs_issue_discard(sbi, blkaddr, 1); 518 } 519 520 if (err) 521 update_meta_page(sbi, NULL, blkaddr); 522 } 523 524 static void __add_discard_entry(struct f2fs_sb_info *sbi, 525 struct cp_control *cpc, struct seg_entry *se, 526 unsigned int start, unsigned int end) 527 { 528 struct list_head *head = &SM_I(sbi)->discard_list; 529 struct discard_entry *new, *last; 530 531 if (!list_empty(head)) { 532 last = list_last_entry(head, struct discard_entry, list); 533 if (START_BLOCK(sbi, cpc->trim_start) + start == 534 last->blkaddr + last->len) { 535 last->len += end - start; 536 goto done; 537 } 538 } 539 540 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 541 INIT_LIST_HEAD(&new->list); 542 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 543 new->len = end - start; 544 list_add_tail(&new->list, head); 545 done: 546 SM_I(sbi)->nr_discards += end - start; 547 } 548 549 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 550 { 551 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 552 int max_blocks = sbi->blocks_per_seg; 553 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 554 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 555 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 556 unsigned long *discard_map = (unsigned long *)se->discard_map; 557 unsigned long *dmap = SIT_I(sbi)->tmp_map; 558 unsigned int start = 0, end = -1; 559 bool force = (cpc->reason == CP_DISCARD); 560 int i; 561 562 if (se->valid_blocks == max_blocks) 563 return; 564 565 if (!force) { 566 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 567 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 568 return; 569 } 570 571 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 572 for (i = 0; i < entries; i++) 573 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 574 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 575 576 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 577 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 578 if (start >= max_blocks) 579 break; 580 581 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 582 __add_discard_entry(sbi, cpc, se, start, end); 583 } 584 } 585 586 void release_discard_addrs(struct f2fs_sb_info *sbi) 587 { 588 struct list_head *head = &(SM_I(sbi)->discard_list); 589 struct discard_entry *entry, *this; 590 591 /* drop caches */ 592 list_for_each_entry_safe(entry, this, head, list) { 593 list_del(&entry->list); 594 kmem_cache_free(discard_entry_slab, entry); 595 } 596 } 597 598 /* 599 * Should call clear_prefree_segments after checkpoint is done. 600 */ 601 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 602 { 603 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 604 unsigned int segno; 605 606 mutex_lock(&dirty_i->seglist_lock); 607 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 608 __set_test_and_free(sbi, segno); 609 mutex_unlock(&dirty_i->seglist_lock); 610 } 611 612 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 613 { 614 struct list_head *head = &(SM_I(sbi)->discard_list); 615 struct discard_entry *entry, *this; 616 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 617 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 618 unsigned int start = 0, end = -1; 619 620 mutex_lock(&dirty_i->seglist_lock); 621 622 while (1) { 623 int i; 624 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 625 if (start >= MAIN_SEGS(sbi)) 626 break; 627 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 628 start + 1); 629 630 for (i = start; i < end; i++) 631 clear_bit(i, prefree_map); 632 633 dirty_i->nr_dirty[PRE] -= end - start; 634 635 if (!test_opt(sbi, DISCARD)) 636 continue; 637 638 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 639 (end - start) << sbi->log_blocks_per_seg); 640 } 641 mutex_unlock(&dirty_i->seglist_lock); 642 643 /* send small discards */ 644 list_for_each_entry_safe(entry, this, head, list) { 645 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 646 goto skip; 647 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 648 cpc->trimmed += entry->len; 649 skip: 650 list_del(&entry->list); 651 SM_I(sbi)->nr_discards -= entry->len; 652 kmem_cache_free(discard_entry_slab, entry); 653 } 654 } 655 656 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 657 { 658 struct sit_info *sit_i = SIT_I(sbi); 659 660 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 661 sit_i->dirty_sentries++; 662 return false; 663 } 664 665 return true; 666 } 667 668 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 669 unsigned int segno, int modified) 670 { 671 struct seg_entry *se = get_seg_entry(sbi, segno); 672 se->type = type; 673 if (modified) 674 __mark_sit_entry_dirty(sbi, segno); 675 } 676 677 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 678 { 679 struct seg_entry *se; 680 unsigned int segno, offset; 681 long int new_vblocks; 682 683 segno = GET_SEGNO(sbi, blkaddr); 684 685 se = get_seg_entry(sbi, segno); 686 new_vblocks = se->valid_blocks + del; 687 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 688 689 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 690 (new_vblocks > sbi->blocks_per_seg))); 691 692 se->valid_blocks = new_vblocks; 693 se->mtime = get_mtime(sbi); 694 SIT_I(sbi)->max_mtime = se->mtime; 695 696 /* Update valid block bitmap */ 697 if (del > 0) { 698 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 699 f2fs_bug_on(sbi, 1); 700 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 701 sbi->discard_blks--; 702 } else { 703 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 704 f2fs_bug_on(sbi, 1); 705 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 706 sbi->discard_blks++; 707 } 708 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 709 se->ckpt_valid_blocks += del; 710 711 __mark_sit_entry_dirty(sbi, segno); 712 713 /* update total number of valid blocks to be written in ckpt area */ 714 SIT_I(sbi)->written_valid_blocks += del; 715 716 if (sbi->segs_per_sec > 1) 717 get_sec_entry(sbi, segno)->valid_blocks += del; 718 } 719 720 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 721 { 722 update_sit_entry(sbi, new, 1); 723 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 724 update_sit_entry(sbi, old, -1); 725 726 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 727 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 728 } 729 730 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 731 { 732 unsigned int segno = GET_SEGNO(sbi, addr); 733 struct sit_info *sit_i = SIT_I(sbi); 734 735 f2fs_bug_on(sbi, addr == NULL_ADDR); 736 if (addr == NEW_ADDR) 737 return; 738 739 /* add it into sit main buffer */ 740 mutex_lock(&sit_i->sentry_lock); 741 742 update_sit_entry(sbi, addr, -1); 743 744 /* add it into dirty seglist */ 745 locate_dirty_segment(sbi, segno); 746 747 mutex_unlock(&sit_i->sentry_lock); 748 } 749 750 /* 751 * This function should be resided under the curseg_mutex lock 752 */ 753 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 754 struct f2fs_summary *sum) 755 { 756 struct curseg_info *curseg = CURSEG_I(sbi, type); 757 void *addr = curseg->sum_blk; 758 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 759 memcpy(addr, sum, sizeof(struct f2fs_summary)); 760 } 761 762 /* 763 * Calculate the number of current summary pages for writing 764 */ 765 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 766 { 767 int valid_sum_count = 0; 768 int i, sum_in_page; 769 770 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 771 if (sbi->ckpt->alloc_type[i] == SSR) 772 valid_sum_count += sbi->blocks_per_seg; 773 else { 774 if (for_ra) 775 valid_sum_count += le16_to_cpu( 776 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 777 else 778 valid_sum_count += curseg_blkoff(sbi, i); 779 } 780 } 781 782 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 783 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 784 if (valid_sum_count <= sum_in_page) 785 return 1; 786 else if ((valid_sum_count - sum_in_page) <= 787 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 788 return 2; 789 return 3; 790 } 791 792 /* 793 * Caller should put this summary page 794 */ 795 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 796 { 797 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 798 } 799 800 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 801 { 802 struct page *page = grab_meta_page(sbi, blk_addr); 803 void *dst = page_address(page); 804 805 if (src) 806 memcpy(dst, src, PAGE_CACHE_SIZE); 807 else 808 memset(dst, 0, PAGE_CACHE_SIZE); 809 set_page_dirty(page); 810 f2fs_put_page(page, 1); 811 } 812 813 static void write_sum_page(struct f2fs_sb_info *sbi, 814 struct f2fs_summary_block *sum_blk, block_t blk_addr) 815 { 816 update_meta_page(sbi, (void *)sum_blk, blk_addr); 817 } 818 819 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 820 { 821 struct curseg_info *curseg = CURSEG_I(sbi, type); 822 unsigned int segno = curseg->segno + 1; 823 struct free_segmap_info *free_i = FREE_I(sbi); 824 825 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 826 return !test_bit(segno, free_i->free_segmap); 827 return 0; 828 } 829 830 /* 831 * Find a new segment from the free segments bitmap to right order 832 * This function should be returned with success, otherwise BUG 833 */ 834 static void get_new_segment(struct f2fs_sb_info *sbi, 835 unsigned int *newseg, bool new_sec, int dir) 836 { 837 struct free_segmap_info *free_i = FREE_I(sbi); 838 unsigned int segno, secno, zoneno; 839 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 840 unsigned int hint = *newseg / sbi->segs_per_sec; 841 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 842 unsigned int left_start = hint; 843 bool init = true; 844 int go_left = 0; 845 int i; 846 847 spin_lock(&free_i->segmap_lock); 848 849 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 850 segno = find_next_zero_bit(free_i->free_segmap, 851 MAIN_SEGS(sbi), *newseg + 1); 852 if (segno - *newseg < sbi->segs_per_sec - 853 (*newseg % sbi->segs_per_sec)) 854 goto got_it; 855 } 856 find_other_zone: 857 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 858 if (secno >= MAIN_SECS(sbi)) { 859 if (dir == ALLOC_RIGHT) { 860 secno = find_next_zero_bit(free_i->free_secmap, 861 MAIN_SECS(sbi), 0); 862 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 863 } else { 864 go_left = 1; 865 left_start = hint - 1; 866 } 867 } 868 if (go_left == 0) 869 goto skip_left; 870 871 while (test_bit(left_start, free_i->free_secmap)) { 872 if (left_start > 0) { 873 left_start--; 874 continue; 875 } 876 left_start = find_next_zero_bit(free_i->free_secmap, 877 MAIN_SECS(sbi), 0); 878 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 879 break; 880 } 881 secno = left_start; 882 skip_left: 883 hint = secno; 884 segno = secno * sbi->segs_per_sec; 885 zoneno = secno / sbi->secs_per_zone; 886 887 /* give up on finding another zone */ 888 if (!init) 889 goto got_it; 890 if (sbi->secs_per_zone == 1) 891 goto got_it; 892 if (zoneno == old_zoneno) 893 goto got_it; 894 if (dir == ALLOC_LEFT) { 895 if (!go_left && zoneno + 1 >= total_zones) 896 goto got_it; 897 if (go_left && zoneno == 0) 898 goto got_it; 899 } 900 for (i = 0; i < NR_CURSEG_TYPE; i++) 901 if (CURSEG_I(sbi, i)->zone == zoneno) 902 break; 903 904 if (i < NR_CURSEG_TYPE) { 905 /* zone is in user, try another */ 906 if (go_left) 907 hint = zoneno * sbi->secs_per_zone - 1; 908 else if (zoneno + 1 >= total_zones) 909 hint = 0; 910 else 911 hint = (zoneno + 1) * sbi->secs_per_zone; 912 init = false; 913 goto find_other_zone; 914 } 915 got_it: 916 /* set it as dirty segment in free segmap */ 917 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 918 __set_inuse(sbi, segno); 919 *newseg = segno; 920 spin_unlock(&free_i->segmap_lock); 921 } 922 923 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 924 { 925 struct curseg_info *curseg = CURSEG_I(sbi, type); 926 struct summary_footer *sum_footer; 927 928 curseg->segno = curseg->next_segno; 929 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 930 curseg->next_blkoff = 0; 931 curseg->next_segno = NULL_SEGNO; 932 933 sum_footer = &(curseg->sum_blk->footer); 934 memset(sum_footer, 0, sizeof(struct summary_footer)); 935 if (IS_DATASEG(type)) 936 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 937 if (IS_NODESEG(type)) 938 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 939 __set_sit_entry_type(sbi, type, curseg->segno, modified); 940 } 941 942 /* 943 * Allocate a current working segment. 944 * This function always allocates a free segment in LFS manner. 945 */ 946 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 947 { 948 struct curseg_info *curseg = CURSEG_I(sbi, type); 949 unsigned int segno = curseg->segno; 950 int dir = ALLOC_LEFT; 951 952 write_sum_page(sbi, curseg->sum_blk, 953 GET_SUM_BLOCK(sbi, segno)); 954 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 955 dir = ALLOC_RIGHT; 956 957 if (test_opt(sbi, NOHEAP)) 958 dir = ALLOC_RIGHT; 959 960 get_new_segment(sbi, &segno, new_sec, dir); 961 curseg->next_segno = segno; 962 reset_curseg(sbi, type, 1); 963 curseg->alloc_type = LFS; 964 } 965 966 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 967 struct curseg_info *seg, block_t start) 968 { 969 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 970 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 971 unsigned long *target_map = SIT_I(sbi)->tmp_map; 972 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 973 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 974 int i, pos; 975 976 for (i = 0; i < entries; i++) 977 target_map[i] = ckpt_map[i] | cur_map[i]; 978 979 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 980 981 seg->next_blkoff = pos; 982 } 983 984 /* 985 * If a segment is written by LFS manner, next block offset is just obtained 986 * by increasing the current block offset. However, if a segment is written by 987 * SSR manner, next block offset obtained by calling __next_free_blkoff 988 */ 989 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 990 struct curseg_info *seg) 991 { 992 if (seg->alloc_type == SSR) 993 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 994 else 995 seg->next_blkoff++; 996 } 997 998 /* 999 * This function always allocates a used segment(from dirty seglist) by SSR 1000 * manner, so it should recover the existing segment information of valid blocks 1001 */ 1002 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1003 { 1004 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1005 struct curseg_info *curseg = CURSEG_I(sbi, type); 1006 unsigned int new_segno = curseg->next_segno; 1007 struct f2fs_summary_block *sum_node; 1008 struct page *sum_page; 1009 1010 write_sum_page(sbi, curseg->sum_blk, 1011 GET_SUM_BLOCK(sbi, curseg->segno)); 1012 __set_test_and_inuse(sbi, new_segno); 1013 1014 mutex_lock(&dirty_i->seglist_lock); 1015 __remove_dirty_segment(sbi, new_segno, PRE); 1016 __remove_dirty_segment(sbi, new_segno, DIRTY); 1017 mutex_unlock(&dirty_i->seglist_lock); 1018 1019 reset_curseg(sbi, type, 1); 1020 curseg->alloc_type = SSR; 1021 __next_free_blkoff(sbi, curseg, 0); 1022 1023 if (reuse) { 1024 sum_page = get_sum_page(sbi, new_segno); 1025 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1026 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1027 f2fs_put_page(sum_page, 1); 1028 } 1029 } 1030 1031 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1032 { 1033 struct curseg_info *curseg = CURSEG_I(sbi, type); 1034 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1035 1036 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1037 return v_ops->get_victim(sbi, 1038 &(curseg)->next_segno, BG_GC, type, SSR); 1039 1040 /* For data segments, let's do SSR more intensively */ 1041 for (; type >= CURSEG_HOT_DATA; type--) 1042 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1043 BG_GC, type, SSR)) 1044 return 1; 1045 return 0; 1046 } 1047 1048 /* 1049 * flush out current segment and replace it with new segment 1050 * This function should be returned with success, otherwise BUG 1051 */ 1052 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1053 int type, bool force) 1054 { 1055 struct curseg_info *curseg = CURSEG_I(sbi, type); 1056 1057 if (force) 1058 new_curseg(sbi, type, true); 1059 else if (type == CURSEG_WARM_NODE) 1060 new_curseg(sbi, type, false); 1061 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1062 new_curseg(sbi, type, false); 1063 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1064 change_curseg(sbi, type, true); 1065 else 1066 new_curseg(sbi, type, false); 1067 1068 stat_inc_seg_type(sbi, curseg); 1069 } 1070 1071 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1072 { 1073 struct curseg_info *curseg = CURSEG_I(sbi, type); 1074 unsigned int old_segno; 1075 1076 old_segno = curseg->segno; 1077 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1078 locate_dirty_segment(sbi, old_segno); 1079 } 1080 1081 void allocate_new_segments(struct f2fs_sb_info *sbi) 1082 { 1083 int i; 1084 1085 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1086 __allocate_new_segments(sbi, i); 1087 } 1088 1089 static const struct segment_allocation default_salloc_ops = { 1090 .allocate_segment = allocate_segment_by_default, 1091 }; 1092 1093 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1094 { 1095 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1096 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1097 unsigned int start_segno, end_segno; 1098 struct cp_control cpc; 1099 1100 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1101 return -EINVAL; 1102 1103 cpc.trimmed = 0; 1104 if (end <= MAIN_BLKADDR(sbi)) 1105 goto out; 1106 1107 /* start/end segment number in main_area */ 1108 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1109 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1110 GET_SEGNO(sbi, end); 1111 cpc.reason = CP_DISCARD; 1112 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1113 1114 /* do checkpoint to issue discard commands safely */ 1115 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1116 cpc.trim_start = start_segno; 1117 1118 if (sbi->discard_blks == 0) 1119 break; 1120 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1121 cpc.trim_end = end_segno; 1122 else 1123 cpc.trim_end = min_t(unsigned int, 1124 rounddown(start_segno + 1125 BATCHED_TRIM_SEGMENTS(sbi), 1126 sbi->segs_per_sec) - 1, end_segno); 1127 1128 mutex_lock(&sbi->gc_mutex); 1129 write_checkpoint(sbi, &cpc); 1130 mutex_unlock(&sbi->gc_mutex); 1131 } 1132 out: 1133 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1134 return 0; 1135 } 1136 1137 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1138 { 1139 struct curseg_info *curseg = CURSEG_I(sbi, type); 1140 if (curseg->next_blkoff < sbi->blocks_per_seg) 1141 return true; 1142 return false; 1143 } 1144 1145 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1146 { 1147 if (p_type == DATA) 1148 return CURSEG_HOT_DATA; 1149 else 1150 return CURSEG_HOT_NODE; 1151 } 1152 1153 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1154 { 1155 if (p_type == DATA) { 1156 struct inode *inode = page->mapping->host; 1157 1158 if (S_ISDIR(inode->i_mode)) 1159 return CURSEG_HOT_DATA; 1160 else 1161 return CURSEG_COLD_DATA; 1162 } else { 1163 if (IS_DNODE(page) && is_cold_node(page)) 1164 return CURSEG_WARM_NODE; 1165 else 1166 return CURSEG_COLD_NODE; 1167 } 1168 } 1169 1170 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1171 { 1172 if (p_type == DATA) { 1173 struct inode *inode = page->mapping->host; 1174 1175 if (S_ISDIR(inode->i_mode)) 1176 return CURSEG_HOT_DATA; 1177 else if (is_cold_data(page) || file_is_cold(inode)) 1178 return CURSEG_COLD_DATA; 1179 else 1180 return CURSEG_WARM_DATA; 1181 } else { 1182 if (IS_DNODE(page)) 1183 return is_cold_node(page) ? CURSEG_WARM_NODE : 1184 CURSEG_HOT_NODE; 1185 else 1186 return CURSEG_COLD_NODE; 1187 } 1188 } 1189 1190 static int __get_segment_type(struct page *page, enum page_type p_type) 1191 { 1192 switch (F2FS_P_SB(page)->active_logs) { 1193 case 2: 1194 return __get_segment_type_2(page, p_type); 1195 case 4: 1196 return __get_segment_type_4(page, p_type); 1197 } 1198 /* NR_CURSEG_TYPE(6) logs by default */ 1199 f2fs_bug_on(F2FS_P_SB(page), 1200 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1201 return __get_segment_type_6(page, p_type); 1202 } 1203 1204 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1205 block_t old_blkaddr, block_t *new_blkaddr, 1206 struct f2fs_summary *sum, int type) 1207 { 1208 struct sit_info *sit_i = SIT_I(sbi); 1209 struct curseg_info *curseg; 1210 bool direct_io = (type == CURSEG_DIRECT_IO); 1211 1212 type = direct_io ? CURSEG_WARM_DATA : type; 1213 1214 curseg = CURSEG_I(sbi, type); 1215 1216 mutex_lock(&curseg->curseg_mutex); 1217 mutex_lock(&sit_i->sentry_lock); 1218 1219 /* direct_io'ed data is aligned to the segment for better performance */ 1220 if (direct_io && curseg->next_blkoff) 1221 __allocate_new_segments(sbi, type); 1222 1223 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1224 1225 /* 1226 * __add_sum_entry should be resided under the curseg_mutex 1227 * because, this function updates a summary entry in the 1228 * current summary block. 1229 */ 1230 __add_sum_entry(sbi, type, sum); 1231 1232 __refresh_next_blkoff(sbi, curseg); 1233 1234 stat_inc_block_count(sbi, curseg); 1235 1236 if (!__has_curseg_space(sbi, type)) 1237 sit_i->s_ops->allocate_segment(sbi, type, false); 1238 /* 1239 * SIT information should be updated before segment allocation, 1240 * since SSR needs latest valid block information. 1241 */ 1242 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1243 1244 mutex_unlock(&sit_i->sentry_lock); 1245 1246 if (page && IS_NODESEG(type)) 1247 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1248 1249 mutex_unlock(&curseg->curseg_mutex); 1250 } 1251 1252 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1253 { 1254 int type = __get_segment_type(fio->page, fio->type); 1255 1256 allocate_data_block(fio->sbi, fio->page, fio->blk_addr, 1257 &fio->blk_addr, sum, type); 1258 1259 /* writeout dirty page into bdev */ 1260 f2fs_submit_page_mbio(fio); 1261 } 1262 1263 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1264 { 1265 struct f2fs_io_info fio = { 1266 .sbi = sbi, 1267 .type = META, 1268 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1269 .blk_addr = page->index, 1270 .page = page, 1271 .encrypted_page = NULL, 1272 }; 1273 1274 set_page_writeback(page); 1275 f2fs_submit_page_mbio(&fio); 1276 } 1277 1278 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1279 { 1280 struct f2fs_summary sum; 1281 1282 set_summary(&sum, nid, 0, 0); 1283 do_write_page(&sum, fio); 1284 } 1285 1286 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1287 { 1288 struct f2fs_sb_info *sbi = fio->sbi; 1289 struct f2fs_summary sum; 1290 struct node_info ni; 1291 1292 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1293 get_node_info(sbi, dn->nid, &ni); 1294 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1295 do_write_page(&sum, fio); 1296 dn->data_blkaddr = fio->blk_addr; 1297 } 1298 1299 void rewrite_data_page(struct f2fs_io_info *fio) 1300 { 1301 stat_inc_inplace_blocks(fio->sbi); 1302 f2fs_submit_page_mbio(fio); 1303 } 1304 1305 static void __f2fs_replace_block(struct f2fs_sb_info *sbi, 1306 struct f2fs_summary *sum, 1307 block_t old_blkaddr, block_t new_blkaddr, 1308 bool recover_curseg) 1309 { 1310 struct sit_info *sit_i = SIT_I(sbi); 1311 struct curseg_info *curseg; 1312 unsigned int segno, old_cursegno; 1313 struct seg_entry *se; 1314 int type; 1315 unsigned short old_blkoff; 1316 1317 segno = GET_SEGNO(sbi, new_blkaddr); 1318 se = get_seg_entry(sbi, segno); 1319 type = se->type; 1320 1321 if (!recover_curseg) { 1322 /* for recovery flow */ 1323 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1324 if (old_blkaddr == NULL_ADDR) 1325 type = CURSEG_COLD_DATA; 1326 else 1327 type = CURSEG_WARM_DATA; 1328 } 1329 } else { 1330 if (!IS_CURSEG(sbi, segno)) 1331 type = CURSEG_WARM_DATA; 1332 } 1333 1334 curseg = CURSEG_I(sbi, type); 1335 1336 mutex_lock(&curseg->curseg_mutex); 1337 mutex_lock(&sit_i->sentry_lock); 1338 1339 old_cursegno = curseg->segno; 1340 old_blkoff = curseg->next_blkoff; 1341 1342 /* change the current segment */ 1343 if (segno != curseg->segno) { 1344 curseg->next_segno = segno; 1345 change_curseg(sbi, type, true); 1346 } 1347 1348 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1349 __add_sum_entry(sbi, type, sum); 1350 1351 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1352 locate_dirty_segment(sbi, old_cursegno); 1353 1354 if (recover_curseg) { 1355 if (old_cursegno != curseg->segno) { 1356 curseg->next_segno = old_cursegno; 1357 change_curseg(sbi, type, true); 1358 } 1359 curseg->next_blkoff = old_blkoff; 1360 } 1361 1362 mutex_unlock(&sit_i->sentry_lock); 1363 mutex_unlock(&curseg->curseg_mutex); 1364 } 1365 1366 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1367 block_t old_addr, block_t new_addr, 1368 unsigned char version, bool recover_curseg) 1369 { 1370 struct f2fs_summary sum; 1371 1372 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1373 1374 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg); 1375 1376 dn->data_blkaddr = new_addr; 1377 set_data_blkaddr(dn); 1378 f2fs_update_extent_cache(dn); 1379 } 1380 1381 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1382 struct page *page, enum page_type type) 1383 { 1384 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1385 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1386 struct bio_vec *bvec; 1387 struct page *target; 1388 int i; 1389 1390 down_read(&io->io_rwsem); 1391 if (!io->bio) { 1392 up_read(&io->io_rwsem); 1393 return false; 1394 } 1395 1396 bio_for_each_segment_all(bvec, io->bio, i) { 1397 1398 if (bvec->bv_page->mapping) { 1399 target = bvec->bv_page; 1400 } else { 1401 struct f2fs_crypto_ctx *ctx; 1402 1403 /* encrypted page */ 1404 ctx = (struct f2fs_crypto_ctx *)page_private( 1405 bvec->bv_page); 1406 target = ctx->w.control_page; 1407 } 1408 1409 if (page == target) { 1410 up_read(&io->io_rwsem); 1411 return true; 1412 } 1413 } 1414 1415 up_read(&io->io_rwsem); 1416 return false; 1417 } 1418 1419 void f2fs_wait_on_page_writeback(struct page *page, 1420 enum page_type type) 1421 { 1422 if (PageWriteback(page)) { 1423 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1424 1425 if (is_merged_page(sbi, page, type)) 1426 f2fs_submit_merged_bio(sbi, type, WRITE); 1427 wait_on_page_writeback(page); 1428 } 1429 } 1430 1431 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1432 { 1433 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1434 struct curseg_info *seg_i; 1435 unsigned char *kaddr; 1436 struct page *page; 1437 block_t start; 1438 int i, j, offset; 1439 1440 start = start_sum_block(sbi); 1441 1442 page = get_meta_page(sbi, start++); 1443 kaddr = (unsigned char *)page_address(page); 1444 1445 /* Step 1: restore nat cache */ 1446 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1447 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1448 1449 /* Step 2: restore sit cache */ 1450 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1451 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1452 SUM_JOURNAL_SIZE); 1453 offset = 2 * SUM_JOURNAL_SIZE; 1454 1455 /* Step 3: restore summary entries */ 1456 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1457 unsigned short blk_off; 1458 unsigned int segno; 1459 1460 seg_i = CURSEG_I(sbi, i); 1461 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1462 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1463 seg_i->next_segno = segno; 1464 reset_curseg(sbi, i, 0); 1465 seg_i->alloc_type = ckpt->alloc_type[i]; 1466 seg_i->next_blkoff = blk_off; 1467 1468 if (seg_i->alloc_type == SSR) 1469 blk_off = sbi->blocks_per_seg; 1470 1471 for (j = 0; j < blk_off; j++) { 1472 struct f2fs_summary *s; 1473 s = (struct f2fs_summary *)(kaddr + offset); 1474 seg_i->sum_blk->entries[j] = *s; 1475 offset += SUMMARY_SIZE; 1476 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1477 SUM_FOOTER_SIZE) 1478 continue; 1479 1480 f2fs_put_page(page, 1); 1481 page = NULL; 1482 1483 page = get_meta_page(sbi, start++); 1484 kaddr = (unsigned char *)page_address(page); 1485 offset = 0; 1486 } 1487 } 1488 f2fs_put_page(page, 1); 1489 return 0; 1490 } 1491 1492 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1493 { 1494 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1495 struct f2fs_summary_block *sum; 1496 struct curseg_info *curseg; 1497 struct page *new; 1498 unsigned short blk_off; 1499 unsigned int segno = 0; 1500 block_t blk_addr = 0; 1501 1502 /* get segment number and block addr */ 1503 if (IS_DATASEG(type)) { 1504 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1505 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1506 CURSEG_HOT_DATA]); 1507 if (__exist_node_summaries(sbi)) 1508 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1509 else 1510 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1511 } else { 1512 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1513 CURSEG_HOT_NODE]); 1514 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1515 CURSEG_HOT_NODE]); 1516 if (__exist_node_summaries(sbi)) 1517 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1518 type - CURSEG_HOT_NODE); 1519 else 1520 blk_addr = GET_SUM_BLOCK(sbi, segno); 1521 } 1522 1523 new = get_meta_page(sbi, blk_addr); 1524 sum = (struct f2fs_summary_block *)page_address(new); 1525 1526 if (IS_NODESEG(type)) { 1527 if (__exist_node_summaries(sbi)) { 1528 struct f2fs_summary *ns = &sum->entries[0]; 1529 int i; 1530 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1531 ns->version = 0; 1532 ns->ofs_in_node = 0; 1533 } 1534 } else { 1535 int err; 1536 1537 err = restore_node_summary(sbi, segno, sum); 1538 if (err) { 1539 f2fs_put_page(new, 1); 1540 return err; 1541 } 1542 } 1543 } 1544 1545 /* set uncompleted segment to curseg */ 1546 curseg = CURSEG_I(sbi, type); 1547 mutex_lock(&curseg->curseg_mutex); 1548 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1549 curseg->next_segno = segno; 1550 reset_curseg(sbi, type, 0); 1551 curseg->alloc_type = ckpt->alloc_type[type]; 1552 curseg->next_blkoff = blk_off; 1553 mutex_unlock(&curseg->curseg_mutex); 1554 f2fs_put_page(new, 1); 1555 return 0; 1556 } 1557 1558 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1559 { 1560 int type = CURSEG_HOT_DATA; 1561 int err; 1562 1563 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1564 int npages = npages_for_summary_flush(sbi, true); 1565 1566 if (npages >= 2) 1567 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1568 META_CP); 1569 1570 /* restore for compacted data summary */ 1571 if (read_compacted_summaries(sbi)) 1572 return -EINVAL; 1573 type = CURSEG_HOT_NODE; 1574 } 1575 1576 if (__exist_node_summaries(sbi)) 1577 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1578 NR_CURSEG_TYPE - type, META_CP); 1579 1580 for (; type <= CURSEG_COLD_NODE; type++) { 1581 err = read_normal_summaries(sbi, type); 1582 if (err) 1583 return err; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1590 { 1591 struct page *page; 1592 unsigned char *kaddr; 1593 struct f2fs_summary *summary; 1594 struct curseg_info *seg_i; 1595 int written_size = 0; 1596 int i, j; 1597 1598 page = grab_meta_page(sbi, blkaddr++); 1599 kaddr = (unsigned char *)page_address(page); 1600 1601 /* Step 1: write nat cache */ 1602 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1603 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1604 written_size += SUM_JOURNAL_SIZE; 1605 1606 /* Step 2: write sit cache */ 1607 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1608 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1609 SUM_JOURNAL_SIZE); 1610 written_size += SUM_JOURNAL_SIZE; 1611 1612 /* Step 3: write summary entries */ 1613 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1614 unsigned short blkoff; 1615 seg_i = CURSEG_I(sbi, i); 1616 if (sbi->ckpt->alloc_type[i] == SSR) 1617 blkoff = sbi->blocks_per_seg; 1618 else 1619 blkoff = curseg_blkoff(sbi, i); 1620 1621 for (j = 0; j < blkoff; j++) { 1622 if (!page) { 1623 page = grab_meta_page(sbi, blkaddr++); 1624 kaddr = (unsigned char *)page_address(page); 1625 written_size = 0; 1626 } 1627 summary = (struct f2fs_summary *)(kaddr + written_size); 1628 *summary = seg_i->sum_blk->entries[j]; 1629 written_size += SUMMARY_SIZE; 1630 1631 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1632 SUM_FOOTER_SIZE) 1633 continue; 1634 1635 set_page_dirty(page); 1636 f2fs_put_page(page, 1); 1637 page = NULL; 1638 } 1639 } 1640 if (page) { 1641 set_page_dirty(page); 1642 f2fs_put_page(page, 1); 1643 } 1644 } 1645 1646 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1647 block_t blkaddr, int type) 1648 { 1649 int i, end; 1650 if (IS_DATASEG(type)) 1651 end = type + NR_CURSEG_DATA_TYPE; 1652 else 1653 end = type + NR_CURSEG_NODE_TYPE; 1654 1655 for (i = type; i < end; i++) { 1656 struct curseg_info *sum = CURSEG_I(sbi, i); 1657 mutex_lock(&sum->curseg_mutex); 1658 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1659 mutex_unlock(&sum->curseg_mutex); 1660 } 1661 } 1662 1663 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1664 { 1665 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1666 write_compacted_summaries(sbi, start_blk); 1667 else 1668 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1669 } 1670 1671 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1672 { 1673 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1674 } 1675 1676 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1677 unsigned int val, int alloc) 1678 { 1679 int i; 1680 1681 if (type == NAT_JOURNAL) { 1682 for (i = 0; i < nats_in_cursum(sum); i++) { 1683 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1684 return i; 1685 } 1686 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1687 return update_nats_in_cursum(sum, 1); 1688 } else if (type == SIT_JOURNAL) { 1689 for (i = 0; i < sits_in_cursum(sum); i++) 1690 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1691 return i; 1692 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1693 return update_sits_in_cursum(sum, 1); 1694 } 1695 return -1; 1696 } 1697 1698 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1699 unsigned int segno) 1700 { 1701 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1702 } 1703 1704 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1705 unsigned int start) 1706 { 1707 struct sit_info *sit_i = SIT_I(sbi); 1708 struct page *src_page, *dst_page; 1709 pgoff_t src_off, dst_off; 1710 void *src_addr, *dst_addr; 1711 1712 src_off = current_sit_addr(sbi, start); 1713 dst_off = next_sit_addr(sbi, src_off); 1714 1715 /* get current sit block page without lock */ 1716 src_page = get_meta_page(sbi, src_off); 1717 dst_page = grab_meta_page(sbi, dst_off); 1718 f2fs_bug_on(sbi, PageDirty(src_page)); 1719 1720 src_addr = page_address(src_page); 1721 dst_addr = page_address(dst_page); 1722 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1723 1724 set_page_dirty(dst_page); 1725 f2fs_put_page(src_page, 1); 1726 1727 set_to_next_sit(sit_i, start); 1728 1729 return dst_page; 1730 } 1731 1732 static struct sit_entry_set *grab_sit_entry_set(void) 1733 { 1734 struct sit_entry_set *ses = 1735 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1736 1737 ses->entry_cnt = 0; 1738 INIT_LIST_HEAD(&ses->set_list); 1739 return ses; 1740 } 1741 1742 static void release_sit_entry_set(struct sit_entry_set *ses) 1743 { 1744 list_del(&ses->set_list); 1745 kmem_cache_free(sit_entry_set_slab, ses); 1746 } 1747 1748 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1749 struct list_head *head) 1750 { 1751 struct sit_entry_set *next = ses; 1752 1753 if (list_is_last(&ses->set_list, head)) 1754 return; 1755 1756 list_for_each_entry_continue(next, head, set_list) 1757 if (ses->entry_cnt <= next->entry_cnt) 1758 break; 1759 1760 list_move_tail(&ses->set_list, &next->set_list); 1761 } 1762 1763 static void add_sit_entry(unsigned int segno, struct list_head *head) 1764 { 1765 struct sit_entry_set *ses; 1766 unsigned int start_segno = START_SEGNO(segno); 1767 1768 list_for_each_entry(ses, head, set_list) { 1769 if (ses->start_segno == start_segno) { 1770 ses->entry_cnt++; 1771 adjust_sit_entry_set(ses, head); 1772 return; 1773 } 1774 } 1775 1776 ses = grab_sit_entry_set(); 1777 1778 ses->start_segno = start_segno; 1779 ses->entry_cnt++; 1780 list_add(&ses->set_list, head); 1781 } 1782 1783 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1784 { 1785 struct f2fs_sm_info *sm_info = SM_I(sbi); 1786 struct list_head *set_list = &sm_info->sit_entry_set; 1787 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1788 unsigned int segno; 1789 1790 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1791 add_sit_entry(segno, set_list); 1792 } 1793 1794 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1795 { 1796 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1797 struct f2fs_summary_block *sum = curseg->sum_blk; 1798 int i; 1799 1800 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1801 unsigned int segno; 1802 bool dirtied; 1803 1804 segno = le32_to_cpu(segno_in_journal(sum, i)); 1805 dirtied = __mark_sit_entry_dirty(sbi, segno); 1806 1807 if (!dirtied) 1808 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1809 } 1810 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1811 } 1812 1813 /* 1814 * CP calls this function, which flushes SIT entries including sit_journal, 1815 * and moves prefree segs to free segs. 1816 */ 1817 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1818 { 1819 struct sit_info *sit_i = SIT_I(sbi); 1820 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1821 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1822 struct f2fs_summary_block *sum = curseg->sum_blk; 1823 struct sit_entry_set *ses, *tmp; 1824 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1825 bool to_journal = true; 1826 struct seg_entry *se; 1827 1828 mutex_lock(&curseg->curseg_mutex); 1829 mutex_lock(&sit_i->sentry_lock); 1830 1831 if (!sit_i->dirty_sentries) 1832 goto out; 1833 1834 /* 1835 * add and account sit entries of dirty bitmap in sit entry 1836 * set temporarily 1837 */ 1838 add_sits_in_set(sbi); 1839 1840 /* 1841 * if there are no enough space in journal to store dirty sit 1842 * entries, remove all entries from journal and add and account 1843 * them in sit entry set. 1844 */ 1845 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1846 remove_sits_in_journal(sbi); 1847 1848 /* 1849 * there are two steps to flush sit entries: 1850 * #1, flush sit entries to journal in current cold data summary block. 1851 * #2, flush sit entries to sit page. 1852 */ 1853 list_for_each_entry_safe(ses, tmp, head, set_list) { 1854 struct page *page = NULL; 1855 struct f2fs_sit_block *raw_sit = NULL; 1856 unsigned int start_segno = ses->start_segno; 1857 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1858 (unsigned long)MAIN_SEGS(sbi)); 1859 unsigned int segno = start_segno; 1860 1861 if (to_journal && 1862 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1863 to_journal = false; 1864 1865 if (!to_journal) { 1866 page = get_next_sit_page(sbi, start_segno); 1867 raw_sit = page_address(page); 1868 } 1869 1870 /* flush dirty sit entries in region of current sit set */ 1871 for_each_set_bit_from(segno, bitmap, end) { 1872 int offset, sit_offset; 1873 1874 se = get_seg_entry(sbi, segno); 1875 1876 /* add discard candidates */ 1877 if (cpc->reason != CP_DISCARD) { 1878 cpc->trim_start = segno; 1879 add_discard_addrs(sbi, cpc); 1880 } 1881 1882 if (to_journal) { 1883 offset = lookup_journal_in_cursum(sum, 1884 SIT_JOURNAL, segno, 1); 1885 f2fs_bug_on(sbi, offset < 0); 1886 segno_in_journal(sum, offset) = 1887 cpu_to_le32(segno); 1888 seg_info_to_raw_sit(se, 1889 &sit_in_journal(sum, offset)); 1890 } else { 1891 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1892 seg_info_to_raw_sit(se, 1893 &raw_sit->entries[sit_offset]); 1894 } 1895 1896 __clear_bit(segno, bitmap); 1897 sit_i->dirty_sentries--; 1898 ses->entry_cnt--; 1899 } 1900 1901 if (!to_journal) 1902 f2fs_put_page(page, 1); 1903 1904 f2fs_bug_on(sbi, ses->entry_cnt); 1905 release_sit_entry_set(ses); 1906 } 1907 1908 f2fs_bug_on(sbi, !list_empty(head)); 1909 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1910 out: 1911 if (cpc->reason == CP_DISCARD) { 1912 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1913 add_discard_addrs(sbi, cpc); 1914 } 1915 mutex_unlock(&sit_i->sentry_lock); 1916 mutex_unlock(&curseg->curseg_mutex); 1917 1918 set_prefree_as_free_segments(sbi); 1919 } 1920 1921 static int build_sit_info(struct f2fs_sb_info *sbi) 1922 { 1923 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1925 struct sit_info *sit_i; 1926 unsigned int sit_segs, start; 1927 char *src_bitmap, *dst_bitmap; 1928 unsigned int bitmap_size; 1929 1930 /* allocate memory for SIT information */ 1931 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1932 if (!sit_i) 1933 return -ENOMEM; 1934 1935 SM_I(sbi)->sit_info = sit_i; 1936 1937 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1938 if (!sit_i->sentries) 1939 return -ENOMEM; 1940 1941 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1942 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1943 if (!sit_i->dirty_sentries_bitmap) 1944 return -ENOMEM; 1945 1946 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1947 sit_i->sentries[start].cur_valid_map 1948 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1949 sit_i->sentries[start].ckpt_valid_map 1950 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1951 sit_i->sentries[start].discard_map 1952 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1953 if (!sit_i->sentries[start].cur_valid_map || 1954 !sit_i->sentries[start].ckpt_valid_map || 1955 !sit_i->sentries[start].discard_map) 1956 return -ENOMEM; 1957 } 1958 1959 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1960 if (!sit_i->tmp_map) 1961 return -ENOMEM; 1962 1963 if (sbi->segs_per_sec > 1) { 1964 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1965 sizeof(struct sec_entry)); 1966 if (!sit_i->sec_entries) 1967 return -ENOMEM; 1968 } 1969 1970 /* get information related with SIT */ 1971 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1972 1973 /* setup SIT bitmap from ckeckpoint pack */ 1974 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1975 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1976 1977 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1978 if (!dst_bitmap) 1979 return -ENOMEM; 1980 1981 /* init SIT information */ 1982 sit_i->s_ops = &default_salloc_ops; 1983 1984 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1985 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1986 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1987 sit_i->sit_bitmap = dst_bitmap; 1988 sit_i->bitmap_size = bitmap_size; 1989 sit_i->dirty_sentries = 0; 1990 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1991 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1992 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1993 mutex_init(&sit_i->sentry_lock); 1994 return 0; 1995 } 1996 1997 static int build_free_segmap(struct f2fs_sb_info *sbi) 1998 { 1999 struct free_segmap_info *free_i; 2000 unsigned int bitmap_size, sec_bitmap_size; 2001 2002 /* allocate memory for free segmap information */ 2003 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2004 if (!free_i) 2005 return -ENOMEM; 2006 2007 SM_I(sbi)->free_info = free_i; 2008 2009 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2010 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 2011 if (!free_i->free_segmap) 2012 return -ENOMEM; 2013 2014 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2015 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 2016 if (!free_i->free_secmap) 2017 return -ENOMEM; 2018 2019 /* set all segments as dirty temporarily */ 2020 memset(free_i->free_segmap, 0xff, bitmap_size); 2021 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2022 2023 /* init free segmap information */ 2024 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2025 free_i->free_segments = 0; 2026 free_i->free_sections = 0; 2027 spin_lock_init(&free_i->segmap_lock); 2028 return 0; 2029 } 2030 2031 static int build_curseg(struct f2fs_sb_info *sbi) 2032 { 2033 struct curseg_info *array; 2034 int i; 2035 2036 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2037 if (!array) 2038 return -ENOMEM; 2039 2040 SM_I(sbi)->curseg_array = array; 2041 2042 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2043 mutex_init(&array[i].curseg_mutex); 2044 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 2045 if (!array[i].sum_blk) 2046 return -ENOMEM; 2047 array[i].segno = NULL_SEGNO; 2048 array[i].next_blkoff = 0; 2049 } 2050 return restore_curseg_summaries(sbi); 2051 } 2052 2053 static void build_sit_entries(struct f2fs_sb_info *sbi) 2054 { 2055 struct sit_info *sit_i = SIT_I(sbi); 2056 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2057 struct f2fs_summary_block *sum = curseg->sum_blk; 2058 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2059 unsigned int i, start, end; 2060 unsigned int readed, start_blk = 0; 2061 int nrpages = MAX_BIO_BLOCKS(sbi); 2062 2063 do { 2064 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 2065 2066 start = start_blk * sit_i->sents_per_block; 2067 end = (start_blk + readed) * sit_i->sents_per_block; 2068 2069 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2070 struct seg_entry *se = &sit_i->sentries[start]; 2071 struct f2fs_sit_block *sit_blk; 2072 struct f2fs_sit_entry sit; 2073 struct page *page; 2074 2075 mutex_lock(&curseg->curseg_mutex); 2076 for (i = 0; i < sits_in_cursum(sum); i++) { 2077 if (le32_to_cpu(segno_in_journal(sum, i)) 2078 == start) { 2079 sit = sit_in_journal(sum, i); 2080 mutex_unlock(&curseg->curseg_mutex); 2081 goto got_it; 2082 } 2083 } 2084 mutex_unlock(&curseg->curseg_mutex); 2085 2086 page = get_current_sit_page(sbi, start); 2087 sit_blk = (struct f2fs_sit_block *)page_address(page); 2088 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2089 f2fs_put_page(page, 1); 2090 got_it: 2091 check_block_count(sbi, start, &sit); 2092 seg_info_from_raw_sit(se, &sit); 2093 2094 /* build discard map only one time */ 2095 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2096 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2097 2098 if (sbi->segs_per_sec > 1) { 2099 struct sec_entry *e = get_sec_entry(sbi, start); 2100 e->valid_blocks += se->valid_blocks; 2101 } 2102 } 2103 start_blk += readed; 2104 } while (start_blk < sit_blk_cnt); 2105 } 2106 2107 static void init_free_segmap(struct f2fs_sb_info *sbi) 2108 { 2109 unsigned int start; 2110 int type; 2111 2112 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2113 struct seg_entry *sentry = get_seg_entry(sbi, start); 2114 if (!sentry->valid_blocks) 2115 __set_free(sbi, start); 2116 } 2117 2118 /* set use the current segments */ 2119 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2120 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2121 __set_test_and_inuse(sbi, curseg_t->segno); 2122 } 2123 } 2124 2125 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2126 { 2127 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2128 struct free_segmap_info *free_i = FREE_I(sbi); 2129 unsigned int segno = 0, offset = 0; 2130 unsigned short valid_blocks; 2131 2132 while (1) { 2133 /* find dirty segment based on free segmap */ 2134 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2135 if (segno >= MAIN_SEGS(sbi)) 2136 break; 2137 offset = segno + 1; 2138 valid_blocks = get_valid_blocks(sbi, segno, 0); 2139 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2140 continue; 2141 if (valid_blocks > sbi->blocks_per_seg) { 2142 f2fs_bug_on(sbi, 1); 2143 continue; 2144 } 2145 mutex_lock(&dirty_i->seglist_lock); 2146 __locate_dirty_segment(sbi, segno, DIRTY); 2147 mutex_unlock(&dirty_i->seglist_lock); 2148 } 2149 } 2150 2151 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2152 { 2153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2154 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2155 2156 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2157 if (!dirty_i->victim_secmap) 2158 return -ENOMEM; 2159 return 0; 2160 } 2161 2162 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2163 { 2164 struct dirty_seglist_info *dirty_i; 2165 unsigned int bitmap_size, i; 2166 2167 /* allocate memory for dirty segments list information */ 2168 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2169 if (!dirty_i) 2170 return -ENOMEM; 2171 2172 SM_I(sbi)->dirty_info = dirty_i; 2173 mutex_init(&dirty_i->seglist_lock); 2174 2175 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2176 2177 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2178 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2179 if (!dirty_i->dirty_segmap[i]) 2180 return -ENOMEM; 2181 } 2182 2183 init_dirty_segmap(sbi); 2184 return init_victim_secmap(sbi); 2185 } 2186 2187 /* 2188 * Update min, max modified time for cost-benefit GC algorithm 2189 */ 2190 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2191 { 2192 struct sit_info *sit_i = SIT_I(sbi); 2193 unsigned int segno; 2194 2195 mutex_lock(&sit_i->sentry_lock); 2196 2197 sit_i->min_mtime = LLONG_MAX; 2198 2199 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2200 unsigned int i; 2201 unsigned long long mtime = 0; 2202 2203 for (i = 0; i < sbi->segs_per_sec; i++) 2204 mtime += get_seg_entry(sbi, segno + i)->mtime; 2205 2206 mtime = div_u64(mtime, sbi->segs_per_sec); 2207 2208 if (sit_i->min_mtime > mtime) 2209 sit_i->min_mtime = mtime; 2210 } 2211 sit_i->max_mtime = get_mtime(sbi); 2212 mutex_unlock(&sit_i->sentry_lock); 2213 } 2214 2215 int build_segment_manager(struct f2fs_sb_info *sbi) 2216 { 2217 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2218 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2219 struct f2fs_sm_info *sm_info; 2220 int err; 2221 2222 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2223 if (!sm_info) 2224 return -ENOMEM; 2225 2226 /* init sm info */ 2227 sbi->sm_info = sm_info; 2228 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2229 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2230 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2231 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2232 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2233 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2234 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2235 sm_info->rec_prefree_segments = sm_info->main_segments * 2236 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2237 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2238 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2239 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2240 2241 INIT_LIST_HEAD(&sm_info->discard_list); 2242 sm_info->nr_discards = 0; 2243 sm_info->max_discards = 0; 2244 2245 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2246 2247 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2248 2249 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2250 err = create_flush_cmd_control(sbi); 2251 if (err) 2252 return err; 2253 } 2254 2255 err = build_sit_info(sbi); 2256 if (err) 2257 return err; 2258 err = build_free_segmap(sbi); 2259 if (err) 2260 return err; 2261 err = build_curseg(sbi); 2262 if (err) 2263 return err; 2264 2265 /* reinit free segmap based on SIT */ 2266 build_sit_entries(sbi); 2267 2268 init_free_segmap(sbi); 2269 err = build_dirty_segmap(sbi); 2270 if (err) 2271 return err; 2272 2273 init_min_max_mtime(sbi); 2274 return 0; 2275 } 2276 2277 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2278 enum dirty_type dirty_type) 2279 { 2280 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2281 2282 mutex_lock(&dirty_i->seglist_lock); 2283 kfree(dirty_i->dirty_segmap[dirty_type]); 2284 dirty_i->nr_dirty[dirty_type] = 0; 2285 mutex_unlock(&dirty_i->seglist_lock); 2286 } 2287 2288 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2289 { 2290 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2291 kfree(dirty_i->victim_secmap); 2292 } 2293 2294 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2295 { 2296 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2297 int i; 2298 2299 if (!dirty_i) 2300 return; 2301 2302 /* discard pre-free/dirty segments list */ 2303 for (i = 0; i < NR_DIRTY_TYPE; i++) 2304 discard_dirty_segmap(sbi, i); 2305 2306 destroy_victim_secmap(sbi); 2307 SM_I(sbi)->dirty_info = NULL; 2308 kfree(dirty_i); 2309 } 2310 2311 static void destroy_curseg(struct f2fs_sb_info *sbi) 2312 { 2313 struct curseg_info *array = SM_I(sbi)->curseg_array; 2314 int i; 2315 2316 if (!array) 2317 return; 2318 SM_I(sbi)->curseg_array = NULL; 2319 for (i = 0; i < NR_CURSEG_TYPE; i++) 2320 kfree(array[i].sum_blk); 2321 kfree(array); 2322 } 2323 2324 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2325 { 2326 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2327 if (!free_i) 2328 return; 2329 SM_I(sbi)->free_info = NULL; 2330 kfree(free_i->free_segmap); 2331 kfree(free_i->free_secmap); 2332 kfree(free_i); 2333 } 2334 2335 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2336 { 2337 struct sit_info *sit_i = SIT_I(sbi); 2338 unsigned int start; 2339 2340 if (!sit_i) 2341 return; 2342 2343 if (sit_i->sentries) { 2344 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2345 kfree(sit_i->sentries[start].cur_valid_map); 2346 kfree(sit_i->sentries[start].ckpt_valid_map); 2347 kfree(sit_i->sentries[start].discard_map); 2348 } 2349 } 2350 kfree(sit_i->tmp_map); 2351 2352 vfree(sit_i->sentries); 2353 vfree(sit_i->sec_entries); 2354 kfree(sit_i->dirty_sentries_bitmap); 2355 2356 SM_I(sbi)->sit_info = NULL; 2357 kfree(sit_i->sit_bitmap); 2358 kfree(sit_i); 2359 } 2360 2361 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2362 { 2363 struct f2fs_sm_info *sm_info = SM_I(sbi); 2364 2365 if (!sm_info) 2366 return; 2367 destroy_flush_cmd_control(sbi); 2368 destroy_dirty_segmap(sbi); 2369 destroy_curseg(sbi); 2370 destroy_free_segmap(sbi); 2371 destroy_sit_info(sbi); 2372 sbi->sm_info = NULL; 2373 kfree(sm_info); 2374 } 2375 2376 int __init create_segment_manager_caches(void) 2377 { 2378 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2379 sizeof(struct discard_entry)); 2380 if (!discard_entry_slab) 2381 goto fail; 2382 2383 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2384 sizeof(struct sit_entry_set)); 2385 if (!sit_entry_set_slab) 2386 goto destory_discard_entry; 2387 2388 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2389 sizeof(struct inmem_pages)); 2390 if (!inmem_entry_slab) 2391 goto destroy_sit_entry_set; 2392 return 0; 2393 2394 destroy_sit_entry_set: 2395 kmem_cache_destroy(sit_entry_set_slab); 2396 destory_discard_entry: 2397 kmem_cache_destroy(discard_entry_slab); 2398 fail: 2399 return -ENOMEM; 2400 } 2401 2402 void destroy_segment_manager_caches(void) 2403 { 2404 kmem_cache_destroy(sit_entry_set_slab); 2405 kmem_cache_destroy(discard_entry_slab); 2406 kmem_cache_destroy(inmem_entry_slab); 2407 } 2408