xref: /openbmc/linux/fs/f2fs/segment.c (revision 089a49b6)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22 
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29 	/*
30 	 * We should do GC or end up with checkpoint, if there are so many dirty
31 	 * dir/node pages without enough free segments.
32 	 */
33 	if (has_not_enough_free_secs(sbi, 0)) {
34 		mutex_lock(&sbi->gc_mutex);
35 		f2fs_gc(sbi);
36 	}
37 }
38 
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40 		enum dirty_type dirty_type)
41 {
42 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43 
44 	/* need not be added */
45 	if (IS_CURSEG(sbi, segno))
46 		return;
47 
48 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49 		dirty_i->nr_dirty[dirty_type]++;
50 
51 	if (dirty_type == DIRTY) {
52 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
53 		enum dirty_type t = DIRTY_HOT_DATA;
54 
55 		dirty_type = sentry->type;
56 
57 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58 			dirty_i->nr_dirty[dirty_type]++;
59 
60 		/* Only one bitmap should be set */
61 		for (; t <= DIRTY_COLD_NODE; t++) {
62 			if (t == dirty_type)
63 				continue;
64 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65 				dirty_i->nr_dirty[t]--;
66 		}
67 	}
68 }
69 
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71 		enum dirty_type dirty_type)
72 {
73 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74 
75 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76 		dirty_i->nr_dirty[dirty_type]--;
77 
78 	if (dirty_type == DIRTY) {
79 		enum dirty_type t = DIRTY_HOT_DATA;
80 
81 		/* clear all the bitmaps */
82 		for (; t <= DIRTY_COLD_NODE; t++)
83 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84 				dirty_i->nr_dirty[t]--;
85 
86 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87 			clear_bit(GET_SECNO(sbi, segno),
88 						dirty_i->victim_secmap);
89 	}
90 }
91 
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100 	unsigned short valid_blocks;
101 
102 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103 		return;
104 
105 	mutex_lock(&dirty_i->seglist_lock);
106 
107 	valid_blocks = get_valid_blocks(sbi, segno, 0);
108 
109 	if (valid_blocks == 0) {
110 		__locate_dirty_segment(sbi, segno, PRE);
111 		__remove_dirty_segment(sbi, segno, DIRTY);
112 	} else if (valid_blocks < sbi->blocks_per_seg) {
113 		__locate_dirty_segment(sbi, segno, DIRTY);
114 	} else {
115 		/* Recovery routine with SSR needs this */
116 		__remove_dirty_segment(sbi, segno, DIRTY);
117 	}
118 
119 	mutex_unlock(&dirty_i->seglist_lock);
120 }
121 
122 /*
123  * Should call clear_prefree_segments after checkpoint is done.
124  */
125 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
126 {
127 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
128 	unsigned int segno = -1;
129 	unsigned int total_segs = TOTAL_SEGS(sbi);
130 
131 	mutex_lock(&dirty_i->seglist_lock);
132 	while (1) {
133 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
134 				segno + 1);
135 		if (segno >= total_segs)
136 			break;
137 		__set_test_and_free(sbi, segno);
138 	}
139 	mutex_unlock(&dirty_i->seglist_lock);
140 }
141 
142 void clear_prefree_segments(struct f2fs_sb_info *sbi)
143 {
144 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
145 	unsigned int segno = -1;
146 	unsigned int total_segs = TOTAL_SEGS(sbi);
147 
148 	mutex_lock(&dirty_i->seglist_lock);
149 	while (1) {
150 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
151 				segno + 1);
152 		if (segno >= total_segs)
153 			break;
154 
155 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
156 			dirty_i->nr_dirty[PRE]--;
157 
158 		/* Let's use trim */
159 		if (test_opt(sbi, DISCARD))
160 			blkdev_issue_discard(sbi->sb->s_bdev,
161 					START_BLOCK(sbi, segno) <<
162 					sbi->log_sectors_per_block,
163 					1 << (sbi->log_sectors_per_block +
164 						sbi->log_blocks_per_seg),
165 					GFP_NOFS, 0);
166 	}
167 	mutex_unlock(&dirty_i->seglist_lock);
168 }
169 
170 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
171 {
172 	struct sit_info *sit_i = SIT_I(sbi);
173 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
174 		sit_i->dirty_sentries++;
175 }
176 
177 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
178 					unsigned int segno, int modified)
179 {
180 	struct seg_entry *se = get_seg_entry(sbi, segno);
181 	se->type = type;
182 	if (modified)
183 		__mark_sit_entry_dirty(sbi, segno);
184 }
185 
186 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
187 {
188 	struct seg_entry *se;
189 	unsigned int segno, offset;
190 	long int new_vblocks;
191 
192 	segno = GET_SEGNO(sbi, blkaddr);
193 
194 	se = get_seg_entry(sbi, segno);
195 	new_vblocks = se->valid_blocks + del;
196 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
197 
198 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
199 				(new_vblocks > sbi->blocks_per_seg)));
200 
201 	se->valid_blocks = new_vblocks;
202 	se->mtime = get_mtime(sbi);
203 	SIT_I(sbi)->max_mtime = se->mtime;
204 
205 	/* Update valid block bitmap */
206 	if (del > 0) {
207 		if (f2fs_set_bit(offset, se->cur_valid_map))
208 			BUG();
209 	} else {
210 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
211 			BUG();
212 	}
213 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
214 		se->ckpt_valid_blocks += del;
215 
216 	__mark_sit_entry_dirty(sbi, segno);
217 
218 	/* update total number of valid blocks to be written in ckpt area */
219 	SIT_I(sbi)->written_valid_blocks += del;
220 
221 	if (sbi->segs_per_sec > 1)
222 		get_sec_entry(sbi, segno)->valid_blocks += del;
223 }
224 
225 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
226 			block_t old_blkaddr, block_t new_blkaddr)
227 {
228 	update_sit_entry(sbi, new_blkaddr, 1);
229 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
230 		update_sit_entry(sbi, old_blkaddr, -1);
231 }
232 
233 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
234 {
235 	unsigned int segno = GET_SEGNO(sbi, addr);
236 	struct sit_info *sit_i = SIT_I(sbi);
237 
238 	BUG_ON(addr == NULL_ADDR);
239 	if (addr == NEW_ADDR)
240 		return;
241 
242 	/* add it into sit main buffer */
243 	mutex_lock(&sit_i->sentry_lock);
244 
245 	update_sit_entry(sbi, addr, -1);
246 
247 	/* add it into dirty seglist */
248 	locate_dirty_segment(sbi, segno);
249 
250 	mutex_unlock(&sit_i->sentry_lock);
251 }
252 
253 /*
254  * This function should be resided under the curseg_mutex lock
255  */
256 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
257 					struct f2fs_summary *sum)
258 {
259 	struct curseg_info *curseg = CURSEG_I(sbi, type);
260 	void *addr = curseg->sum_blk;
261 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
262 	memcpy(addr, sum, sizeof(struct f2fs_summary));
263 }
264 
265 /*
266  * Calculate the number of current summary pages for writing
267  */
268 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
269 {
270 	int total_size_bytes = 0;
271 	int valid_sum_count = 0;
272 	int i, sum_space;
273 
274 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
275 		if (sbi->ckpt->alloc_type[i] == SSR)
276 			valid_sum_count += sbi->blocks_per_seg;
277 		else
278 			valid_sum_count += curseg_blkoff(sbi, i);
279 	}
280 
281 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
282 			+ sizeof(struct nat_journal) + 2
283 			+ sizeof(struct sit_journal) + 2;
284 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
285 	if (total_size_bytes < sum_space)
286 		return 1;
287 	else if (total_size_bytes < 2 * sum_space)
288 		return 2;
289 	return 3;
290 }
291 
292 /*
293  * Caller should put this summary page
294  */
295 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
296 {
297 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
298 }
299 
300 static void write_sum_page(struct f2fs_sb_info *sbi,
301 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
302 {
303 	struct page *page = grab_meta_page(sbi, blk_addr);
304 	void *kaddr = page_address(page);
305 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
306 	set_page_dirty(page);
307 	f2fs_put_page(page, 1);
308 }
309 
310 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
311 {
312 	struct curseg_info *curseg = CURSEG_I(sbi, type);
313 	unsigned int segno = curseg->segno + 1;
314 	struct free_segmap_info *free_i = FREE_I(sbi);
315 
316 	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
317 		return !test_bit(segno, free_i->free_segmap);
318 	return 0;
319 }
320 
321 /*
322  * Find a new segment from the free segments bitmap to right order
323  * This function should be returned with success, otherwise BUG
324  */
325 static void get_new_segment(struct f2fs_sb_info *sbi,
326 			unsigned int *newseg, bool new_sec, int dir)
327 {
328 	struct free_segmap_info *free_i = FREE_I(sbi);
329 	unsigned int segno, secno, zoneno;
330 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
331 	unsigned int hint = *newseg / sbi->segs_per_sec;
332 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
333 	unsigned int left_start = hint;
334 	bool init = true;
335 	int go_left = 0;
336 	int i;
337 
338 	write_lock(&free_i->segmap_lock);
339 
340 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
341 		segno = find_next_zero_bit(free_i->free_segmap,
342 					TOTAL_SEGS(sbi), *newseg + 1);
343 		if (segno - *newseg < sbi->segs_per_sec -
344 					(*newseg % sbi->segs_per_sec))
345 			goto got_it;
346 	}
347 find_other_zone:
348 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
349 	if (secno >= TOTAL_SECS(sbi)) {
350 		if (dir == ALLOC_RIGHT) {
351 			secno = find_next_zero_bit(free_i->free_secmap,
352 							TOTAL_SECS(sbi), 0);
353 			BUG_ON(secno >= TOTAL_SECS(sbi));
354 		} else {
355 			go_left = 1;
356 			left_start = hint - 1;
357 		}
358 	}
359 	if (go_left == 0)
360 		goto skip_left;
361 
362 	while (test_bit(left_start, free_i->free_secmap)) {
363 		if (left_start > 0) {
364 			left_start--;
365 			continue;
366 		}
367 		left_start = find_next_zero_bit(free_i->free_secmap,
368 							TOTAL_SECS(sbi), 0);
369 		BUG_ON(left_start >= TOTAL_SECS(sbi));
370 		break;
371 	}
372 	secno = left_start;
373 skip_left:
374 	hint = secno;
375 	segno = secno * sbi->segs_per_sec;
376 	zoneno = secno / sbi->secs_per_zone;
377 
378 	/* give up on finding another zone */
379 	if (!init)
380 		goto got_it;
381 	if (sbi->secs_per_zone == 1)
382 		goto got_it;
383 	if (zoneno == old_zoneno)
384 		goto got_it;
385 	if (dir == ALLOC_LEFT) {
386 		if (!go_left && zoneno + 1 >= total_zones)
387 			goto got_it;
388 		if (go_left && zoneno == 0)
389 			goto got_it;
390 	}
391 	for (i = 0; i < NR_CURSEG_TYPE; i++)
392 		if (CURSEG_I(sbi, i)->zone == zoneno)
393 			break;
394 
395 	if (i < NR_CURSEG_TYPE) {
396 		/* zone is in user, try another */
397 		if (go_left)
398 			hint = zoneno * sbi->secs_per_zone - 1;
399 		else if (zoneno + 1 >= total_zones)
400 			hint = 0;
401 		else
402 			hint = (zoneno + 1) * sbi->secs_per_zone;
403 		init = false;
404 		goto find_other_zone;
405 	}
406 got_it:
407 	/* set it as dirty segment in free segmap */
408 	BUG_ON(test_bit(segno, free_i->free_segmap));
409 	__set_inuse(sbi, segno);
410 	*newseg = segno;
411 	write_unlock(&free_i->segmap_lock);
412 }
413 
414 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
415 {
416 	struct curseg_info *curseg = CURSEG_I(sbi, type);
417 	struct summary_footer *sum_footer;
418 
419 	curseg->segno = curseg->next_segno;
420 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
421 	curseg->next_blkoff = 0;
422 	curseg->next_segno = NULL_SEGNO;
423 
424 	sum_footer = &(curseg->sum_blk->footer);
425 	memset(sum_footer, 0, sizeof(struct summary_footer));
426 	if (IS_DATASEG(type))
427 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
428 	if (IS_NODESEG(type))
429 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
430 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
431 }
432 
433 /*
434  * Allocate a current working segment.
435  * This function always allocates a free segment in LFS manner.
436  */
437 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
438 {
439 	struct curseg_info *curseg = CURSEG_I(sbi, type);
440 	unsigned int segno = curseg->segno;
441 	int dir = ALLOC_LEFT;
442 
443 	write_sum_page(sbi, curseg->sum_blk,
444 				GET_SUM_BLOCK(sbi, segno));
445 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
446 		dir = ALLOC_RIGHT;
447 
448 	if (test_opt(sbi, NOHEAP))
449 		dir = ALLOC_RIGHT;
450 
451 	get_new_segment(sbi, &segno, new_sec, dir);
452 	curseg->next_segno = segno;
453 	reset_curseg(sbi, type, 1);
454 	curseg->alloc_type = LFS;
455 }
456 
457 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
458 			struct curseg_info *seg, block_t start)
459 {
460 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
461 	block_t ofs;
462 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
463 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
464 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
465 			break;
466 	}
467 	seg->next_blkoff = ofs;
468 }
469 
470 /*
471  * If a segment is written by LFS manner, next block offset is just obtained
472  * by increasing the current block offset. However, if a segment is written by
473  * SSR manner, next block offset obtained by calling __next_free_blkoff
474  */
475 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
476 				struct curseg_info *seg)
477 {
478 	if (seg->alloc_type == SSR)
479 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
480 	else
481 		seg->next_blkoff++;
482 }
483 
484 /*
485  * This function always allocates a used segment (from dirty seglist) by SSR
486  * manner, so it should recover the existing segment information of valid blocks
487  */
488 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
489 {
490 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
491 	struct curseg_info *curseg = CURSEG_I(sbi, type);
492 	unsigned int new_segno = curseg->next_segno;
493 	struct f2fs_summary_block *sum_node;
494 	struct page *sum_page;
495 
496 	write_sum_page(sbi, curseg->sum_blk,
497 				GET_SUM_BLOCK(sbi, curseg->segno));
498 	__set_test_and_inuse(sbi, new_segno);
499 
500 	mutex_lock(&dirty_i->seglist_lock);
501 	__remove_dirty_segment(sbi, new_segno, PRE);
502 	__remove_dirty_segment(sbi, new_segno, DIRTY);
503 	mutex_unlock(&dirty_i->seglist_lock);
504 
505 	reset_curseg(sbi, type, 1);
506 	curseg->alloc_type = SSR;
507 	__next_free_blkoff(sbi, curseg, 0);
508 
509 	if (reuse) {
510 		sum_page = get_sum_page(sbi, new_segno);
511 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
512 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
513 		f2fs_put_page(sum_page, 1);
514 	}
515 }
516 
517 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
518 {
519 	struct curseg_info *curseg = CURSEG_I(sbi, type);
520 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
521 
522 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
523 		return v_ops->get_victim(sbi,
524 				&(curseg)->next_segno, BG_GC, type, SSR);
525 
526 	/* For data segments, let's do SSR more intensively */
527 	for (; type >= CURSEG_HOT_DATA; type--)
528 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
529 						BG_GC, type, SSR))
530 			return 1;
531 	return 0;
532 }
533 
534 /*
535  * flush out current segment and replace it with new segment
536  * This function should be returned with success, otherwise BUG
537  */
538 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
539 						int type, bool force)
540 {
541 	struct curseg_info *curseg = CURSEG_I(sbi, type);
542 
543 	if (force)
544 		new_curseg(sbi, type, true);
545 	else if (type == CURSEG_WARM_NODE)
546 		new_curseg(sbi, type, false);
547 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
548 		new_curseg(sbi, type, false);
549 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
550 		change_curseg(sbi, type, true);
551 	else
552 		new_curseg(sbi, type, false);
553 #ifdef CONFIG_F2FS_STAT_FS
554 	sbi->segment_count[curseg->alloc_type]++;
555 #endif
556 }
557 
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
559 {
560 	struct curseg_info *curseg;
561 	unsigned int old_curseg;
562 	int i;
563 
564 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565 		curseg = CURSEG_I(sbi, i);
566 		old_curseg = curseg->segno;
567 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568 		locate_dirty_segment(sbi, old_curseg);
569 	}
570 }
571 
572 static const struct segment_allocation default_salloc_ops = {
573 	.allocate_segment = allocate_segment_by_default,
574 };
575 
576 static void f2fs_end_io_write(struct bio *bio, int err)
577 {
578 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580 	struct bio_private *p = bio->bi_private;
581 
582 	do {
583 		struct page *page = bvec->bv_page;
584 
585 		if (--bvec >= bio->bi_io_vec)
586 			prefetchw(&bvec->bv_page->flags);
587 		if (!uptodate) {
588 			SetPageError(page);
589 			if (page->mapping)
590 				set_bit(AS_EIO, &page->mapping->flags);
591 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592 			p->sbi->sb->s_flags |= MS_RDONLY;
593 		}
594 		end_page_writeback(page);
595 		dec_page_count(p->sbi, F2FS_WRITEBACK);
596 	} while (bvec >= bio->bi_io_vec);
597 
598 	if (p->is_sync)
599 		complete(p->wait);
600 	kfree(p);
601 	bio_put(bio);
602 }
603 
604 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
605 {
606 	struct bio *bio;
607 
608 	/* No failure on bio allocation */
609 	bio = bio_alloc(GFP_NOIO, npages);
610 	bio->bi_bdev = bdev;
611 	bio->bi_private = NULL;
612 
613 	return bio;
614 }
615 
616 static void do_submit_bio(struct f2fs_sb_info *sbi,
617 				enum page_type type, bool sync)
618 {
619 	int rw = sync ? WRITE_SYNC : WRITE;
620 	enum page_type btype = type > META ? META : type;
621 
622 	if (type >= META_FLUSH)
623 		rw = WRITE_FLUSH_FUA;
624 
625 	if (btype == META)
626 		rw |= REQ_META;
627 
628 	if (sbi->bio[btype]) {
629 		struct bio_private *p = sbi->bio[btype]->bi_private;
630 		p->sbi = sbi;
631 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
632 
633 		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
634 
635 		if (type == META_FLUSH) {
636 			DECLARE_COMPLETION_ONSTACK(wait);
637 			p->is_sync = true;
638 			p->wait = &wait;
639 			submit_bio(rw, sbi->bio[btype]);
640 			wait_for_completion(&wait);
641 		} else {
642 			p->is_sync = false;
643 			submit_bio(rw, sbi->bio[btype]);
644 		}
645 		sbi->bio[btype] = NULL;
646 	}
647 }
648 
649 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
650 {
651 	down_write(&sbi->bio_sem);
652 	do_submit_bio(sbi, type, sync);
653 	up_write(&sbi->bio_sem);
654 }
655 
656 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
657 				block_t blk_addr, enum page_type type)
658 {
659 	struct block_device *bdev = sbi->sb->s_bdev;
660 
661 	verify_block_addr(sbi, blk_addr);
662 
663 	down_write(&sbi->bio_sem);
664 
665 	inc_page_count(sbi, F2FS_WRITEBACK);
666 
667 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
668 		do_submit_bio(sbi, type, false);
669 alloc_new:
670 	if (sbi->bio[type] == NULL) {
671 		struct bio_private *priv;
672 retry:
673 		priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
674 		if (!priv) {
675 			cond_resched();
676 			goto retry;
677 		}
678 
679 		sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
680 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
681 		sbi->bio[type]->bi_private = priv;
682 		/*
683 		 * The end_io will be assigned at the sumbission phase.
684 		 * Until then, let bio_add_page() merge consecutive IOs as much
685 		 * as possible.
686 		 */
687 	}
688 
689 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
690 							PAGE_CACHE_SIZE) {
691 		do_submit_bio(sbi, type, false);
692 		goto alloc_new;
693 	}
694 
695 	sbi->last_block_in_bio[type] = blk_addr;
696 
697 	up_write(&sbi->bio_sem);
698 	trace_f2fs_submit_write_page(page, blk_addr, type);
699 }
700 
701 void f2fs_wait_on_page_writeback(struct page *page,
702 				enum page_type type, bool sync)
703 {
704 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
705 	if (PageWriteback(page)) {
706 		f2fs_submit_bio(sbi, type, sync);
707 		wait_on_page_writeback(page);
708 	}
709 }
710 
711 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
712 {
713 	struct curseg_info *curseg = CURSEG_I(sbi, type);
714 	if (curseg->next_blkoff < sbi->blocks_per_seg)
715 		return true;
716 	return false;
717 }
718 
719 static int __get_segment_type_2(struct page *page, enum page_type p_type)
720 {
721 	if (p_type == DATA)
722 		return CURSEG_HOT_DATA;
723 	else
724 		return CURSEG_HOT_NODE;
725 }
726 
727 static int __get_segment_type_4(struct page *page, enum page_type p_type)
728 {
729 	if (p_type == DATA) {
730 		struct inode *inode = page->mapping->host;
731 
732 		if (S_ISDIR(inode->i_mode))
733 			return CURSEG_HOT_DATA;
734 		else
735 			return CURSEG_COLD_DATA;
736 	} else {
737 		if (IS_DNODE(page) && !is_cold_node(page))
738 			return CURSEG_HOT_NODE;
739 		else
740 			return CURSEG_COLD_NODE;
741 	}
742 }
743 
744 static int __get_segment_type_6(struct page *page, enum page_type p_type)
745 {
746 	if (p_type == DATA) {
747 		struct inode *inode = page->mapping->host;
748 
749 		if (S_ISDIR(inode->i_mode))
750 			return CURSEG_HOT_DATA;
751 		else if (is_cold_data(page) || file_is_cold(inode))
752 			return CURSEG_COLD_DATA;
753 		else
754 			return CURSEG_WARM_DATA;
755 	} else {
756 		if (IS_DNODE(page))
757 			return is_cold_node(page) ? CURSEG_WARM_NODE :
758 						CURSEG_HOT_NODE;
759 		else
760 			return CURSEG_COLD_NODE;
761 	}
762 }
763 
764 static int __get_segment_type(struct page *page, enum page_type p_type)
765 {
766 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
767 	switch (sbi->active_logs) {
768 	case 2:
769 		return __get_segment_type_2(page, p_type);
770 	case 4:
771 		return __get_segment_type_4(page, p_type);
772 	}
773 	/* NR_CURSEG_TYPE(6) logs by default */
774 	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
775 	return __get_segment_type_6(page, p_type);
776 }
777 
778 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
779 			block_t old_blkaddr, block_t *new_blkaddr,
780 			struct f2fs_summary *sum, enum page_type p_type)
781 {
782 	struct sit_info *sit_i = SIT_I(sbi);
783 	struct curseg_info *curseg;
784 	unsigned int old_cursegno;
785 	int type;
786 
787 	type = __get_segment_type(page, p_type);
788 	curseg = CURSEG_I(sbi, type);
789 
790 	mutex_lock(&curseg->curseg_mutex);
791 
792 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
793 	old_cursegno = curseg->segno;
794 
795 	/*
796 	 * __add_sum_entry should be resided under the curseg_mutex
797 	 * because, this function updates a summary entry in the
798 	 * current summary block.
799 	 */
800 	__add_sum_entry(sbi, type, sum);
801 
802 	mutex_lock(&sit_i->sentry_lock);
803 	__refresh_next_blkoff(sbi, curseg);
804 #ifdef CONFIG_F2FS_STAT_FS
805 	sbi->block_count[curseg->alloc_type]++;
806 #endif
807 
808 	/*
809 	 * SIT information should be updated before segment allocation,
810 	 * since SSR needs latest valid block information.
811 	 */
812 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
813 
814 	if (!__has_curseg_space(sbi, type))
815 		sit_i->s_ops->allocate_segment(sbi, type, false);
816 
817 	locate_dirty_segment(sbi, old_cursegno);
818 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
819 	mutex_unlock(&sit_i->sentry_lock);
820 
821 	if (p_type == NODE)
822 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
823 
824 	/* writeout dirty page into bdev */
825 	submit_write_page(sbi, page, *new_blkaddr, p_type);
826 
827 	mutex_unlock(&curseg->curseg_mutex);
828 }
829 
830 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
831 {
832 	set_page_writeback(page);
833 	submit_write_page(sbi, page, page->index, META);
834 }
835 
836 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
837 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
838 {
839 	struct f2fs_summary sum;
840 	set_summary(&sum, nid, 0, 0);
841 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
842 }
843 
844 void write_data_page(struct inode *inode, struct page *page,
845 		struct dnode_of_data *dn, block_t old_blkaddr,
846 		block_t *new_blkaddr)
847 {
848 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
849 	struct f2fs_summary sum;
850 	struct node_info ni;
851 
852 	BUG_ON(old_blkaddr == NULL_ADDR);
853 	get_node_info(sbi, dn->nid, &ni);
854 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
855 
856 	do_write_page(sbi, page, old_blkaddr,
857 			new_blkaddr, &sum, DATA);
858 }
859 
860 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
861 					block_t old_blk_addr)
862 {
863 	submit_write_page(sbi, page, old_blk_addr, DATA);
864 }
865 
866 void recover_data_page(struct f2fs_sb_info *sbi,
867 			struct page *page, struct f2fs_summary *sum,
868 			block_t old_blkaddr, block_t new_blkaddr)
869 {
870 	struct sit_info *sit_i = SIT_I(sbi);
871 	struct curseg_info *curseg;
872 	unsigned int segno, old_cursegno;
873 	struct seg_entry *se;
874 	int type;
875 
876 	segno = GET_SEGNO(sbi, new_blkaddr);
877 	se = get_seg_entry(sbi, segno);
878 	type = se->type;
879 
880 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
881 		if (old_blkaddr == NULL_ADDR)
882 			type = CURSEG_COLD_DATA;
883 		else
884 			type = CURSEG_WARM_DATA;
885 	}
886 	curseg = CURSEG_I(sbi, type);
887 
888 	mutex_lock(&curseg->curseg_mutex);
889 	mutex_lock(&sit_i->sentry_lock);
890 
891 	old_cursegno = curseg->segno;
892 
893 	/* change the current segment */
894 	if (segno != curseg->segno) {
895 		curseg->next_segno = segno;
896 		change_curseg(sbi, type, true);
897 	}
898 
899 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
900 					(sbi->blocks_per_seg - 1);
901 	__add_sum_entry(sbi, type, sum);
902 
903 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
904 
905 	locate_dirty_segment(sbi, old_cursegno);
906 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
907 
908 	mutex_unlock(&sit_i->sentry_lock);
909 	mutex_unlock(&curseg->curseg_mutex);
910 }
911 
912 void rewrite_node_page(struct f2fs_sb_info *sbi,
913 			struct page *page, struct f2fs_summary *sum,
914 			block_t old_blkaddr, block_t new_blkaddr)
915 {
916 	struct sit_info *sit_i = SIT_I(sbi);
917 	int type = CURSEG_WARM_NODE;
918 	struct curseg_info *curseg;
919 	unsigned int segno, old_cursegno;
920 	block_t next_blkaddr = next_blkaddr_of_node(page);
921 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
922 
923 	curseg = CURSEG_I(sbi, type);
924 
925 	mutex_lock(&curseg->curseg_mutex);
926 	mutex_lock(&sit_i->sentry_lock);
927 
928 	segno = GET_SEGNO(sbi, new_blkaddr);
929 	old_cursegno = curseg->segno;
930 
931 	/* change the current segment */
932 	if (segno != curseg->segno) {
933 		curseg->next_segno = segno;
934 		change_curseg(sbi, type, true);
935 	}
936 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
937 					(sbi->blocks_per_seg - 1);
938 	__add_sum_entry(sbi, type, sum);
939 
940 	/* change the current log to the next block addr in advance */
941 	if (next_segno != segno) {
942 		curseg->next_segno = next_segno;
943 		change_curseg(sbi, type, true);
944 	}
945 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
946 					(sbi->blocks_per_seg - 1);
947 
948 	/* rewrite node page */
949 	set_page_writeback(page);
950 	submit_write_page(sbi, page, new_blkaddr, NODE);
951 	f2fs_submit_bio(sbi, NODE, true);
952 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
953 
954 	locate_dirty_segment(sbi, old_cursegno);
955 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
956 
957 	mutex_unlock(&sit_i->sentry_lock);
958 	mutex_unlock(&curseg->curseg_mutex);
959 }
960 
961 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
962 {
963 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
964 	struct curseg_info *seg_i;
965 	unsigned char *kaddr;
966 	struct page *page;
967 	block_t start;
968 	int i, j, offset;
969 
970 	start = start_sum_block(sbi);
971 
972 	page = get_meta_page(sbi, start++);
973 	kaddr = (unsigned char *)page_address(page);
974 
975 	/* Step 1: restore nat cache */
976 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
977 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
978 
979 	/* Step 2: restore sit cache */
980 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
981 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
982 						SUM_JOURNAL_SIZE);
983 	offset = 2 * SUM_JOURNAL_SIZE;
984 
985 	/* Step 3: restore summary entries */
986 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
987 		unsigned short blk_off;
988 		unsigned int segno;
989 
990 		seg_i = CURSEG_I(sbi, i);
991 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
992 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
993 		seg_i->next_segno = segno;
994 		reset_curseg(sbi, i, 0);
995 		seg_i->alloc_type = ckpt->alloc_type[i];
996 		seg_i->next_blkoff = blk_off;
997 
998 		if (seg_i->alloc_type == SSR)
999 			blk_off = sbi->blocks_per_seg;
1000 
1001 		for (j = 0; j < blk_off; j++) {
1002 			struct f2fs_summary *s;
1003 			s = (struct f2fs_summary *)(kaddr + offset);
1004 			seg_i->sum_blk->entries[j] = *s;
1005 			offset += SUMMARY_SIZE;
1006 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1007 						SUM_FOOTER_SIZE)
1008 				continue;
1009 
1010 			f2fs_put_page(page, 1);
1011 			page = NULL;
1012 
1013 			page = get_meta_page(sbi, start++);
1014 			kaddr = (unsigned char *)page_address(page);
1015 			offset = 0;
1016 		}
1017 	}
1018 	f2fs_put_page(page, 1);
1019 	return 0;
1020 }
1021 
1022 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1023 {
1024 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025 	struct f2fs_summary_block *sum;
1026 	struct curseg_info *curseg;
1027 	struct page *new;
1028 	unsigned short blk_off;
1029 	unsigned int segno = 0;
1030 	block_t blk_addr = 0;
1031 
1032 	/* get segment number and block addr */
1033 	if (IS_DATASEG(type)) {
1034 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1035 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1036 							CURSEG_HOT_DATA]);
1037 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1038 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1039 		else
1040 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1041 	} else {
1042 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1043 							CURSEG_HOT_NODE]);
1044 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1045 							CURSEG_HOT_NODE]);
1046 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1047 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1048 							type - CURSEG_HOT_NODE);
1049 		else
1050 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1051 	}
1052 
1053 	new = get_meta_page(sbi, blk_addr);
1054 	sum = (struct f2fs_summary_block *)page_address(new);
1055 
1056 	if (IS_NODESEG(type)) {
1057 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1058 			struct f2fs_summary *ns = &sum->entries[0];
1059 			int i;
1060 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1061 				ns->version = 0;
1062 				ns->ofs_in_node = 0;
1063 			}
1064 		} else {
1065 			if (restore_node_summary(sbi, segno, sum)) {
1066 				f2fs_put_page(new, 1);
1067 				return -EINVAL;
1068 			}
1069 		}
1070 	}
1071 
1072 	/* set uncompleted segment to curseg */
1073 	curseg = CURSEG_I(sbi, type);
1074 	mutex_lock(&curseg->curseg_mutex);
1075 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1076 	curseg->next_segno = segno;
1077 	reset_curseg(sbi, type, 0);
1078 	curseg->alloc_type = ckpt->alloc_type[type];
1079 	curseg->next_blkoff = blk_off;
1080 	mutex_unlock(&curseg->curseg_mutex);
1081 	f2fs_put_page(new, 1);
1082 	return 0;
1083 }
1084 
1085 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1086 {
1087 	int type = CURSEG_HOT_DATA;
1088 
1089 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1090 		/* restore for compacted data summary */
1091 		if (read_compacted_summaries(sbi))
1092 			return -EINVAL;
1093 		type = CURSEG_HOT_NODE;
1094 	}
1095 
1096 	for (; type <= CURSEG_COLD_NODE; type++)
1097 		if (read_normal_summaries(sbi, type))
1098 			return -EINVAL;
1099 	return 0;
1100 }
1101 
1102 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1103 {
1104 	struct page *page;
1105 	unsigned char *kaddr;
1106 	struct f2fs_summary *summary;
1107 	struct curseg_info *seg_i;
1108 	int written_size = 0;
1109 	int i, j;
1110 
1111 	page = grab_meta_page(sbi, blkaddr++);
1112 	kaddr = (unsigned char *)page_address(page);
1113 
1114 	/* Step 1: write nat cache */
1115 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1116 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1117 	written_size += SUM_JOURNAL_SIZE;
1118 
1119 	/* Step 2: write sit cache */
1120 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1121 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1122 						SUM_JOURNAL_SIZE);
1123 	written_size += SUM_JOURNAL_SIZE;
1124 
1125 	set_page_dirty(page);
1126 
1127 	/* Step 3: write summary entries */
1128 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1129 		unsigned short blkoff;
1130 		seg_i = CURSEG_I(sbi, i);
1131 		if (sbi->ckpt->alloc_type[i] == SSR)
1132 			blkoff = sbi->blocks_per_seg;
1133 		else
1134 			blkoff = curseg_blkoff(sbi, i);
1135 
1136 		for (j = 0; j < blkoff; j++) {
1137 			if (!page) {
1138 				page = grab_meta_page(sbi, blkaddr++);
1139 				kaddr = (unsigned char *)page_address(page);
1140 				written_size = 0;
1141 			}
1142 			summary = (struct f2fs_summary *)(kaddr + written_size);
1143 			*summary = seg_i->sum_blk->entries[j];
1144 			written_size += SUMMARY_SIZE;
1145 			set_page_dirty(page);
1146 
1147 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1148 							SUM_FOOTER_SIZE)
1149 				continue;
1150 
1151 			f2fs_put_page(page, 1);
1152 			page = NULL;
1153 		}
1154 	}
1155 	if (page)
1156 		f2fs_put_page(page, 1);
1157 }
1158 
1159 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1160 					block_t blkaddr, int type)
1161 {
1162 	int i, end;
1163 	if (IS_DATASEG(type))
1164 		end = type + NR_CURSEG_DATA_TYPE;
1165 	else
1166 		end = type + NR_CURSEG_NODE_TYPE;
1167 
1168 	for (i = type; i < end; i++) {
1169 		struct curseg_info *sum = CURSEG_I(sbi, i);
1170 		mutex_lock(&sum->curseg_mutex);
1171 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1172 		mutex_unlock(&sum->curseg_mutex);
1173 	}
1174 }
1175 
1176 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1177 {
1178 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1179 		write_compacted_summaries(sbi, start_blk);
1180 	else
1181 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1182 }
1183 
1184 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1185 {
1186 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1187 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1188 }
1189 
1190 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1191 					unsigned int val, int alloc)
1192 {
1193 	int i;
1194 
1195 	if (type == NAT_JOURNAL) {
1196 		for (i = 0; i < nats_in_cursum(sum); i++) {
1197 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1198 				return i;
1199 		}
1200 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1201 			return update_nats_in_cursum(sum, 1);
1202 	} else if (type == SIT_JOURNAL) {
1203 		for (i = 0; i < sits_in_cursum(sum); i++)
1204 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1205 				return i;
1206 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1207 			return update_sits_in_cursum(sum, 1);
1208 	}
1209 	return -1;
1210 }
1211 
1212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1213 					unsigned int segno)
1214 {
1215 	struct sit_info *sit_i = SIT_I(sbi);
1216 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1217 	block_t blk_addr = sit_i->sit_base_addr + offset;
1218 
1219 	check_seg_range(sbi, segno);
1220 
1221 	/* calculate sit block address */
1222 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1223 		blk_addr += sit_i->sit_blocks;
1224 
1225 	return get_meta_page(sbi, blk_addr);
1226 }
1227 
1228 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1229 					unsigned int start)
1230 {
1231 	struct sit_info *sit_i = SIT_I(sbi);
1232 	struct page *src_page, *dst_page;
1233 	pgoff_t src_off, dst_off;
1234 	void *src_addr, *dst_addr;
1235 
1236 	src_off = current_sit_addr(sbi, start);
1237 	dst_off = next_sit_addr(sbi, src_off);
1238 
1239 	/* get current sit block page without lock */
1240 	src_page = get_meta_page(sbi, src_off);
1241 	dst_page = grab_meta_page(sbi, dst_off);
1242 	BUG_ON(PageDirty(src_page));
1243 
1244 	src_addr = page_address(src_page);
1245 	dst_addr = page_address(dst_page);
1246 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1247 
1248 	set_page_dirty(dst_page);
1249 	f2fs_put_page(src_page, 1);
1250 
1251 	set_to_next_sit(sit_i, start);
1252 
1253 	return dst_page;
1254 }
1255 
1256 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1257 {
1258 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1259 	struct f2fs_summary_block *sum = curseg->sum_blk;
1260 	int i;
1261 
1262 	/*
1263 	 * If the journal area in the current summary is full of sit entries,
1264 	 * all the sit entries will be flushed. Otherwise the sit entries
1265 	 * are not able to replace with newly hot sit entries.
1266 	 */
1267 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1268 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1269 			unsigned int segno;
1270 			segno = le32_to_cpu(segno_in_journal(sum, i));
1271 			__mark_sit_entry_dirty(sbi, segno);
1272 		}
1273 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1274 		return 1;
1275 	}
1276 	return 0;
1277 }
1278 
1279 /*
1280  * CP calls this function, which flushes SIT entries including sit_journal,
1281  * and moves prefree segs to free segs.
1282  */
1283 void flush_sit_entries(struct f2fs_sb_info *sbi)
1284 {
1285 	struct sit_info *sit_i = SIT_I(sbi);
1286 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1287 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1288 	struct f2fs_summary_block *sum = curseg->sum_blk;
1289 	unsigned long nsegs = TOTAL_SEGS(sbi);
1290 	struct page *page = NULL;
1291 	struct f2fs_sit_block *raw_sit = NULL;
1292 	unsigned int start = 0, end = 0;
1293 	unsigned int segno = -1;
1294 	bool flushed;
1295 
1296 	mutex_lock(&curseg->curseg_mutex);
1297 	mutex_lock(&sit_i->sentry_lock);
1298 
1299 	/*
1300 	 * "flushed" indicates whether sit entries in journal are flushed
1301 	 * to the SIT area or not.
1302 	 */
1303 	flushed = flush_sits_in_journal(sbi);
1304 
1305 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1306 		struct seg_entry *se = get_seg_entry(sbi, segno);
1307 		int sit_offset, offset;
1308 
1309 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1310 
1311 		if (flushed)
1312 			goto to_sit_page;
1313 
1314 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1315 		if (offset >= 0) {
1316 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1317 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1318 			goto flush_done;
1319 		}
1320 to_sit_page:
1321 		if (!page || (start > segno) || (segno > end)) {
1322 			if (page) {
1323 				f2fs_put_page(page, 1);
1324 				page = NULL;
1325 			}
1326 
1327 			start = START_SEGNO(sit_i, segno);
1328 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1329 
1330 			/* read sit block that will be updated */
1331 			page = get_next_sit_page(sbi, start);
1332 			raw_sit = page_address(page);
1333 		}
1334 
1335 		/* udpate entry in SIT block */
1336 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1337 flush_done:
1338 		__clear_bit(segno, bitmap);
1339 		sit_i->dirty_sentries--;
1340 	}
1341 	mutex_unlock(&sit_i->sentry_lock);
1342 	mutex_unlock(&curseg->curseg_mutex);
1343 
1344 	/* writeout last modified SIT block */
1345 	f2fs_put_page(page, 1);
1346 
1347 	set_prefree_as_free_segments(sbi);
1348 }
1349 
1350 static int build_sit_info(struct f2fs_sb_info *sbi)
1351 {
1352 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1353 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354 	struct sit_info *sit_i;
1355 	unsigned int sit_segs, start;
1356 	char *src_bitmap, *dst_bitmap;
1357 	unsigned int bitmap_size;
1358 
1359 	/* allocate memory for SIT information */
1360 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1361 	if (!sit_i)
1362 		return -ENOMEM;
1363 
1364 	SM_I(sbi)->sit_info = sit_i;
1365 
1366 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1367 	if (!sit_i->sentries)
1368 		return -ENOMEM;
1369 
1370 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1371 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1372 	if (!sit_i->dirty_sentries_bitmap)
1373 		return -ENOMEM;
1374 
1375 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1376 		sit_i->sentries[start].cur_valid_map
1377 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1378 		sit_i->sentries[start].ckpt_valid_map
1379 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1380 		if (!sit_i->sentries[start].cur_valid_map
1381 				|| !sit_i->sentries[start].ckpt_valid_map)
1382 			return -ENOMEM;
1383 	}
1384 
1385 	if (sbi->segs_per_sec > 1) {
1386 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1387 					sizeof(struct sec_entry));
1388 		if (!sit_i->sec_entries)
1389 			return -ENOMEM;
1390 	}
1391 
1392 	/* get information related with SIT */
1393 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1394 
1395 	/* setup SIT bitmap from ckeckpoint pack */
1396 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1397 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1398 
1399 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1400 	if (!dst_bitmap)
1401 		return -ENOMEM;
1402 
1403 	/* init SIT information */
1404 	sit_i->s_ops = &default_salloc_ops;
1405 
1406 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1407 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1408 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1409 	sit_i->sit_bitmap = dst_bitmap;
1410 	sit_i->bitmap_size = bitmap_size;
1411 	sit_i->dirty_sentries = 0;
1412 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1413 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1414 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1415 	mutex_init(&sit_i->sentry_lock);
1416 	return 0;
1417 }
1418 
1419 static int build_free_segmap(struct f2fs_sb_info *sbi)
1420 {
1421 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1422 	struct free_segmap_info *free_i;
1423 	unsigned int bitmap_size, sec_bitmap_size;
1424 
1425 	/* allocate memory for free segmap information */
1426 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1427 	if (!free_i)
1428 		return -ENOMEM;
1429 
1430 	SM_I(sbi)->free_info = free_i;
1431 
1432 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1433 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1434 	if (!free_i->free_segmap)
1435 		return -ENOMEM;
1436 
1437 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1438 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1439 	if (!free_i->free_secmap)
1440 		return -ENOMEM;
1441 
1442 	/* set all segments as dirty temporarily */
1443 	memset(free_i->free_segmap, 0xff, bitmap_size);
1444 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1445 
1446 	/* init free segmap information */
1447 	free_i->start_segno =
1448 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1449 	free_i->free_segments = 0;
1450 	free_i->free_sections = 0;
1451 	rwlock_init(&free_i->segmap_lock);
1452 	return 0;
1453 }
1454 
1455 static int build_curseg(struct f2fs_sb_info *sbi)
1456 {
1457 	struct curseg_info *array;
1458 	int i;
1459 
1460 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1461 	if (!array)
1462 		return -ENOMEM;
1463 
1464 	SM_I(sbi)->curseg_array = array;
1465 
1466 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1467 		mutex_init(&array[i].curseg_mutex);
1468 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1469 		if (!array[i].sum_blk)
1470 			return -ENOMEM;
1471 		array[i].segno = NULL_SEGNO;
1472 		array[i].next_blkoff = 0;
1473 	}
1474 	return restore_curseg_summaries(sbi);
1475 }
1476 
1477 static void build_sit_entries(struct f2fs_sb_info *sbi)
1478 {
1479 	struct sit_info *sit_i = SIT_I(sbi);
1480 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1481 	struct f2fs_summary_block *sum = curseg->sum_blk;
1482 	unsigned int start;
1483 
1484 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1485 		struct seg_entry *se = &sit_i->sentries[start];
1486 		struct f2fs_sit_block *sit_blk;
1487 		struct f2fs_sit_entry sit;
1488 		struct page *page;
1489 		int i;
1490 
1491 		mutex_lock(&curseg->curseg_mutex);
1492 		for (i = 0; i < sits_in_cursum(sum); i++) {
1493 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1494 				sit = sit_in_journal(sum, i);
1495 				mutex_unlock(&curseg->curseg_mutex);
1496 				goto got_it;
1497 			}
1498 		}
1499 		mutex_unlock(&curseg->curseg_mutex);
1500 		page = get_current_sit_page(sbi, start);
1501 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1502 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1503 		f2fs_put_page(page, 1);
1504 got_it:
1505 		check_block_count(sbi, start, &sit);
1506 		seg_info_from_raw_sit(se, &sit);
1507 		if (sbi->segs_per_sec > 1) {
1508 			struct sec_entry *e = get_sec_entry(sbi, start);
1509 			e->valid_blocks += se->valid_blocks;
1510 		}
1511 	}
1512 }
1513 
1514 static void init_free_segmap(struct f2fs_sb_info *sbi)
1515 {
1516 	unsigned int start;
1517 	int type;
1518 
1519 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1520 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1521 		if (!sentry->valid_blocks)
1522 			__set_free(sbi, start);
1523 	}
1524 
1525 	/* set use the current segments */
1526 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1527 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1528 		__set_test_and_inuse(sbi, curseg_t->segno);
1529 	}
1530 }
1531 
1532 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1533 {
1534 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1535 	struct free_segmap_info *free_i = FREE_I(sbi);
1536 	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1537 	unsigned short valid_blocks;
1538 
1539 	while (1) {
1540 		/* find dirty segment based on free segmap */
1541 		segno = find_next_inuse(free_i, total_segs, offset);
1542 		if (segno >= total_segs)
1543 			break;
1544 		offset = segno + 1;
1545 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1546 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1547 			continue;
1548 		mutex_lock(&dirty_i->seglist_lock);
1549 		__locate_dirty_segment(sbi, segno, DIRTY);
1550 		mutex_unlock(&dirty_i->seglist_lock);
1551 	}
1552 }
1553 
1554 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1555 {
1556 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1557 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1558 
1559 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1560 	if (!dirty_i->victim_secmap)
1561 		return -ENOMEM;
1562 	return 0;
1563 }
1564 
1565 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1566 {
1567 	struct dirty_seglist_info *dirty_i;
1568 	unsigned int bitmap_size, i;
1569 
1570 	/* allocate memory for dirty segments list information */
1571 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1572 	if (!dirty_i)
1573 		return -ENOMEM;
1574 
1575 	SM_I(sbi)->dirty_info = dirty_i;
1576 	mutex_init(&dirty_i->seglist_lock);
1577 
1578 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1579 
1580 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1581 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1582 		if (!dirty_i->dirty_segmap[i])
1583 			return -ENOMEM;
1584 	}
1585 
1586 	init_dirty_segmap(sbi);
1587 	return init_victim_secmap(sbi);
1588 }
1589 
1590 /*
1591  * Update min, max modified time for cost-benefit GC algorithm
1592  */
1593 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1594 {
1595 	struct sit_info *sit_i = SIT_I(sbi);
1596 	unsigned int segno;
1597 
1598 	mutex_lock(&sit_i->sentry_lock);
1599 
1600 	sit_i->min_mtime = LLONG_MAX;
1601 
1602 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1603 		unsigned int i;
1604 		unsigned long long mtime = 0;
1605 
1606 		for (i = 0; i < sbi->segs_per_sec; i++)
1607 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1608 
1609 		mtime = div_u64(mtime, sbi->segs_per_sec);
1610 
1611 		if (sit_i->min_mtime > mtime)
1612 			sit_i->min_mtime = mtime;
1613 	}
1614 	sit_i->max_mtime = get_mtime(sbi);
1615 	mutex_unlock(&sit_i->sentry_lock);
1616 }
1617 
1618 int build_segment_manager(struct f2fs_sb_info *sbi)
1619 {
1620 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1621 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1622 	struct f2fs_sm_info *sm_info;
1623 	int err;
1624 
1625 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1626 	if (!sm_info)
1627 		return -ENOMEM;
1628 
1629 	/* init sm info */
1630 	sbi->sm_info = sm_info;
1631 	INIT_LIST_HEAD(&sm_info->wblist_head);
1632 	spin_lock_init(&sm_info->wblist_lock);
1633 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1634 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1635 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1636 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1637 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1638 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1639 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1640 
1641 	err = build_sit_info(sbi);
1642 	if (err)
1643 		return err;
1644 	err = build_free_segmap(sbi);
1645 	if (err)
1646 		return err;
1647 	err = build_curseg(sbi);
1648 	if (err)
1649 		return err;
1650 
1651 	/* reinit free segmap based on SIT */
1652 	build_sit_entries(sbi);
1653 
1654 	init_free_segmap(sbi);
1655 	err = build_dirty_segmap(sbi);
1656 	if (err)
1657 		return err;
1658 
1659 	init_min_max_mtime(sbi);
1660 	return 0;
1661 }
1662 
1663 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1664 		enum dirty_type dirty_type)
1665 {
1666 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1667 
1668 	mutex_lock(&dirty_i->seglist_lock);
1669 	kfree(dirty_i->dirty_segmap[dirty_type]);
1670 	dirty_i->nr_dirty[dirty_type] = 0;
1671 	mutex_unlock(&dirty_i->seglist_lock);
1672 }
1673 
1674 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1675 {
1676 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1677 	kfree(dirty_i->victim_secmap);
1678 }
1679 
1680 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1681 {
1682 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1683 	int i;
1684 
1685 	if (!dirty_i)
1686 		return;
1687 
1688 	/* discard pre-free/dirty segments list */
1689 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1690 		discard_dirty_segmap(sbi, i);
1691 
1692 	destroy_victim_secmap(sbi);
1693 	SM_I(sbi)->dirty_info = NULL;
1694 	kfree(dirty_i);
1695 }
1696 
1697 static void destroy_curseg(struct f2fs_sb_info *sbi)
1698 {
1699 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1700 	int i;
1701 
1702 	if (!array)
1703 		return;
1704 	SM_I(sbi)->curseg_array = NULL;
1705 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1706 		kfree(array[i].sum_blk);
1707 	kfree(array);
1708 }
1709 
1710 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1711 {
1712 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1713 	if (!free_i)
1714 		return;
1715 	SM_I(sbi)->free_info = NULL;
1716 	kfree(free_i->free_segmap);
1717 	kfree(free_i->free_secmap);
1718 	kfree(free_i);
1719 }
1720 
1721 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1722 {
1723 	struct sit_info *sit_i = SIT_I(sbi);
1724 	unsigned int start;
1725 
1726 	if (!sit_i)
1727 		return;
1728 
1729 	if (sit_i->sentries) {
1730 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1731 			kfree(sit_i->sentries[start].cur_valid_map);
1732 			kfree(sit_i->sentries[start].ckpt_valid_map);
1733 		}
1734 	}
1735 	vfree(sit_i->sentries);
1736 	vfree(sit_i->sec_entries);
1737 	kfree(sit_i->dirty_sentries_bitmap);
1738 
1739 	SM_I(sbi)->sit_info = NULL;
1740 	kfree(sit_i->sit_bitmap);
1741 	kfree(sit_i);
1742 }
1743 
1744 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1745 {
1746 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1747 	destroy_dirty_segmap(sbi);
1748 	destroy_curseg(sbi);
1749 	destroy_free_segmap(sbi);
1750 	destroy_sit_info(sbi);
1751 	sbi->sm_info = NULL;
1752 	kfree(sm_info);
1753 }
1754