1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/recovery.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include "f2fs.h" 11 #include "node.h" 12 #include "segment.h" 13 14 /* 15 * Roll forward recovery scenarios. 16 * 17 * [Term] F: fsync_mark, D: dentry_mark 18 * 19 * 1. inode(x) | CP | inode(x) | dnode(F) 20 * -> Update the latest inode(x). 21 * 22 * 2. inode(x) | CP | inode(F) | dnode(F) 23 * -> No problem. 24 * 25 * 3. inode(x) | CP | dnode(F) | inode(x) 26 * -> Recover to the latest dnode(F), and drop the last inode(x) 27 * 28 * 4. inode(x) | CP | dnode(F) | inode(F) 29 * -> No problem. 30 * 31 * 5. CP | inode(x) | dnode(F) 32 * -> The inode(DF) was missing. Should drop this dnode(F). 33 * 34 * 6. CP | inode(DF) | dnode(F) 35 * -> No problem. 36 * 37 * 7. CP | dnode(F) | inode(DF) 38 * -> If f2fs_iget fails, then goto next to find inode(DF). 39 * 40 * 8. CP | dnode(F) | inode(x) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * But it will fail due to no inode(DF). 43 */ 44 45 static struct kmem_cache *fsync_entry_slab; 46 47 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) 48 { 49 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 50 51 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 52 return false; 53 return true; 54 } 55 56 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 57 nid_t ino) 58 { 59 struct fsync_inode_entry *entry; 60 61 list_for_each_entry(entry, head, list) 62 if (entry->inode->i_ino == ino) 63 return entry; 64 65 return NULL; 66 } 67 68 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 69 struct list_head *head, nid_t ino, bool quota_inode) 70 { 71 struct inode *inode; 72 struct fsync_inode_entry *entry; 73 int err; 74 75 inode = f2fs_iget_retry(sbi->sb, ino); 76 if (IS_ERR(inode)) 77 return ERR_CAST(inode); 78 79 err = dquot_initialize(inode); 80 if (err) 81 goto err_out; 82 83 if (quota_inode) { 84 err = dquot_alloc_inode(inode); 85 if (err) 86 goto err_out; 87 } 88 89 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 90 entry->inode = inode; 91 list_add_tail(&entry->list, head); 92 93 return entry; 94 err_out: 95 iput(inode); 96 return ERR_PTR(err); 97 } 98 99 static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) 100 { 101 if (drop) { 102 /* inode should not be recovered, drop it */ 103 f2fs_inode_synced(entry->inode); 104 } 105 iput(entry->inode); 106 list_del(&entry->list); 107 kmem_cache_free(fsync_entry_slab, entry); 108 } 109 110 static int recover_dentry(struct inode *inode, struct page *ipage, 111 struct list_head *dir_list) 112 { 113 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 114 nid_t pino = le32_to_cpu(raw_inode->i_pino); 115 struct f2fs_dir_entry *de; 116 struct fscrypt_name fname; 117 struct page *page; 118 struct inode *dir, *einode; 119 struct fsync_inode_entry *entry; 120 int err = 0; 121 char *name; 122 123 entry = get_fsync_inode(dir_list, pino); 124 if (!entry) { 125 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, 126 pino, false); 127 if (IS_ERR(entry)) { 128 dir = ERR_CAST(entry); 129 err = PTR_ERR(entry); 130 goto out; 131 } 132 } 133 134 dir = entry->inode; 135 136 memset(&fname, 0, sizeof(struct fscrypt_name)); 137 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen); 138 fname.disk_name.name = raw_inode->i_name; 139 140 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) { 141 WARN_ON(1); 142 err = -ENAMETOOLONG; 143 goto out; 144 } 145 retry: 146 de = __f2fs_find_entry(dir, &fname, &page); 147 if (de && inode->i_ino == le32_to_cpu(de->ino)) 148 goto out_put; 149 150 if (de) { 151 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 152 if (IS_ERR(einode)) { 153 WARN_ON(1); 154 err = PTR_ERR(einode); 155 if (err == -ENOENT) 156 err = -EEXIST; 157 goto out_put; 158 } 159 160 err = dquot_initialize(einode); 161 if (err) { 162 iput(einode); 163 goto out_put; 164 } 165 166 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); 167 if (err) { 168 iput(einode); 169 goto out_put; 170 } 171 f2fs_delete_entry(de, page, dir, einode); 172 iput(einode); 173 goto retry; 174 } else if (IS_ERR(page)) { 175 err = PTR_ERR(page); 176 } else { 177 err = f2fs_add_dentry(dir, &fname, inode, 178 inode->i_ino, inode->i_mode); 179 } 180 if (err == -ENOMEM) 181 goto retry; 182 goto out; 183 184 out_put: 185 f2fs_put_page(page, 0); 186 out: 187 if (file_enc_name(inode)) 188 name = "<encrypted>"; 189 else 190 name = raw_inode->i_name; 191 f2fs_msg(inode->i_sb, KERN_NOTICE, 192 "%s: ino = %x, name = %s, dir = %lx, err = %d", 193 __func__, ino_of_node(ipage), name, 194 IS_ERR(dir) ? 0 : dir->i_ino, err); 195 return err; 196 } 197 198 static int recover_quota_data(struct inode *inode, struct page *page) 199 { 200 struct f2fs_inode *raw = F2FS_INODE(page); 201 struct iattr attr; 202 uid_t i_uid = le32_to_cpu(raw->i_uid); 203 gid_t i_gid = le32_to_cpu(raw->i_gid); 204 int err; 205 206 memset(&attr, 0, sizeof(attr)); 207 208 attr.ia_uid = make_kuid(inode->i_sb->s_user_ns, i_uid); 209 attr.ia_gid = make_kgid(inode->i_sb->s_user_ns, i_gid); 210 211 if (!uid_eq(attr.ia_uid, inode->i_uid)) 212 attr.ia_valid |= ATTR_UID; 213 if (!gid_eq(attr.ia_gid, inode->i_gid)) 214 attr.ia_valid |= ATTR_GID; 215 216 if (!attr.ia_valid) 217 return 0; 218 219 err = dquot_transfer(inode, &attr); 220 if (err) 221 set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); 222 return err; 223 } 224 225 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) 226 { 227 if (ri->i_inline & F2FS_PIN_FILE) 228 set_inode_flag(inode, FI_PIN_FILE); 229 else 230 clear_inode_flag(inode, FI_PIN_FILE); 231 if (ri->i_inline & F2FS_DATA_EXIST) 232 set_inode_flag(inode, FI_DATA_EXIST); 233 else 234 clear_inode_flag(inode, FI_DATA_EXIST); 235 } 236 237 static int recover_inode(struct inode *inode, struct page *page) 238 { 239 struct f2fs_inode *raw = F2FS_INODE(page); 240 char *name; 241 int err; 242 243 inode->i_mode = le16_to_cpu(raw->i_mode); 244 245 err = recover_quota_data(inode, page); 246 if (err) 247 return err; 248 249 i_uid_write(inode, le32_to_cpu(raw->i_uid)); 250 i_gid_write(inode, le32_to_cpu(raw->i_gid)); 251 252 if (raw->i_inline & F2FS_EXTRA_ATTR) { 253 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) && 254 F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), 255 i_projid)) { 256 projid_t i_projid; 257 kprojid_t kprojid; 258 259 i_projid = (projid_t)le32_to_cpu(raw->i_projid); 260 kprojid = make_kprojid(&init_user_ns, i_projid); 261 262 if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) { 263 err = f2fs_transfer_project_quota(inode, 264 kprojid); 265 if (err) 266 return err; 267 F2FS_I(inode)->i_projid = kprojid; 268 } 269 } 270 } 271 272 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 273 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 274 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 275 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 276 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 277 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 278 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 279 280 F2FS_I(inode)->i_advise = raw->i_advise; 281 F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags); 282 f2fs_set_inode_flags(inode); 283 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 284 le16_to_cpu(raw->i_gc_failures); 285 286 recover_inline_flags(inode, raw); 287 288 f2fs_mark_inode_dirty_sync(inode, true); 289 290 if (file_enc_name(inode)) 291 name = "<encrypted>"; 292 else 293 name = F2FS_INODE(page)->i_name; 294 295 f2fs_msg(inode->i_sb, KERN_NOTICE, 296 "recover_inode: ino = %x, name = %s, inline = %x", 297 ino_of_node(page), name, raw->i_inline); 298 return 0; 299 } 300 301 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, 302 bool check_only) 303 { 304 struct curseg_info *curseg; 305 struct page *page = NULL; 306 block_t blkaddr; 307 unsigned int loop_cnt = 0; 308 unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg - 309 valid_user_blocks(sbi); 310 int err = 0; 311 312 /* get node pages in the current segment */ 313 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 314 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 315 316 while (1) { 317 struct fsync_inode_entry *entry; 318 319 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 320 return 0; 321 322 page = f2fs_get_tmp_page(sbi, blkaddr); 323 if (IS_ERR(page)) { 324 err = PTR_ERR(page); 325 break; 326 } 327 328 if (!is_recoverable_dnode(page)) 329 break; 330 331 if (!is_fsync_dnode(page)) 332 goto next; 333 334 entry = get_fsync_inode(head, ino_of_node(page)); 335 if (!entry) { 336 bool quota_inode = false; 337 338 if (!check_only && 339 IS_INODE(page) && is_dent_dnode(page)) { 340 err = f2fs_recover_inode_page(sbi, page); 341 if (err) 342 break; 343 quota_inode = true; 344 } 345 346 /* 347 * CP | dnode(F) | inode(DF) 348 * For this case, we should not give up now. 349 */ 350 entry = add_fsync_inode(sbi, head, ino_of_node(page), 351 quota_inode); 352 if (IS_ERR(entry)) { 353 err = PTR_ERR(entry); 354 if (err == -ENOENT) { 355 err = 0; 356 goto next; 357 } 358 break; 359 } 360 } 361 entry->blkaddr = blkaddr; 362 363 if (IS_INODE(page) && is_dent_dnode(page)) 364 entry->last_dentry = blkaddr; 365 next: 366 /* sanity check in order to detect looped node chain */ 367 if (++loop_cnt >= free_blocks || 368 blkaddr == next_blkaddr_of_node(page)) { 369 f2fs_msg(sbi->sb, KERN_NOTICE, 370 "%s: detect looped node chain, " 371 "blkaddr:%u, next:%u", 372 __func__, blkaddr, next_blkaddr_of_node(page)); 373 err = -EINVAL; 374 break; 375 } 376 377 /* check next segment */ 378 blkaddr = next_blkaddr_of_node(page); 379 f2fs_put_page(page, 1); 380 381 f2fs_ra_meta_pages_cond(sbi, blkaddr); 382 } 383 f2fs_put_page(page, 1); 384 return err; 385 } 386 387 static void destroy_fsync_dnodes(struct list_head *head, int drop) 388 { 389 struct fsync_inode_entry *entry, *tmp; 390 391 list_for_each_entry_safe(entry, tmp, head, list) 392 del_fsync_inode(entry, drop); 393 } 394 395 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 396 block_t blkaddr, struct dnode_of_data *dn) 397 { 398 struct seg_entry *sentry; 399 unsigned int segno = GET_SEGNO(sbi, blkaddr); 400 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 401 struct f2fs_summary_block *sum_node; 402 struct f2fs_summary sum; 403 struct page *sum_page, *node_page; 404 struct dnode_of_data tdn = *dn; 405 nid_t ino, nid; 406 struct inode *inode; 407 unsigned int offset; 408 block_t bidx; 409 int i; 410 411 sentry = get_seg_entry(sbi, segno); 412 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 413 return 0; 414 415 /* Get the previous summary */ 416 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 417 struct curseg_info *curseg = CURSEG_I(sbi, i); 418 if (curseg->segno == segno) { 419 sum = curseg->sum_blk->entries[blkoff]; 420 goto got_it; 421 } 422 } 423 424 sum_page = f2fs_get_sum_page(sbi, segno); 425 if (IS_ERR(sum_page)) 426 return PTR_ERR(sum_page); 427 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 428 sum = sum_node->entries[blkoff]; 429 f2fs_put_page(sum_page, 1); 430 got_it: 431 /* Use the locked dnode page and inode */ 432 nid = le32_to_cpu(sum.nid); 433 if (dn->inode->i_ino == nid) { 434 tdn.nid = nid; 435 if (!dn->inode_page_locked) 436 lock_page(dn->inode_page); 437 tdn.node_page = dn->inode_page; 438 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 439 goto truncate_out; 440 } else if (dn->nid == nid) { 441 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 442 goto truncate_out; 443 } 444 445 /* Get the node page */ 446 node_page = f2fs_get_node_page(sbi, nid); 447 if (IS_ERR(node_page)) 448 return PTR_ERR(node_page); 449 450 offset = ofs_of_node(node_page); 451 ino = ino_of_node(node_page); 452 f2fs_put_page(node_page, 1); 453 454 if (ino != dn->inode->i_ino) { 455 int ret; 456 457 /* Deallocate previous index in the node page */ 458 inode = f2fs_iget_retry(sbi->sb, ino); 459 if (IS_ERR(inode)) 460 return PTR_ERR(inode); 461 462 ret = dquot_initialize(inode); 463 if (ret) { 464 iput(inode); 465 return ret; 466 } 467 } else { 468 inode = dn->inode; 469 } 470 471 bidx = f2fs_start_bidx_of_node(offset, inode) + 472 le16_to_cpu(sum.ofs_in_node); 473 474 /* 475 * if inode page is locked, unlock temporarily, but its reference 476 * count keeps alive. 477 */ 478 if (ino == dn->inode->i_ino && dn->inode_page_locked) 479 unlock_page(dn->inode_page); 480 481 set_new_dnode(&tdn, inode, NULL, NULL, 0); 482 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 483 goto out; 484 485 if (tdn.data_blkaddr == blkaddr) 486 f2fs_truncate_data_blocks_range(&tdn, 1); 487 488 f2fs_put_dnode(&tdn); 489 out: 490 if (ino != dn->inode->i_ino) 491 iput(inode); 492 else if (dn->inode_page_locked) 493 lock_page(dn->inode_page); 494 return 0; 495 496 truncate_out: 497 if (datablock_addr(tdn.inode, tdn.node_page, 498 tdn.ofs_in_node) == blkaddr) 499 f2fs_truncate_data_blocks_range(&tdn, 1); 500 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 501 unlock_page(dn->inode_page); 502 return 0; 503 } 504 505 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 506 struct page *page) 507 { 508 struct dnode_of_data dn; 509 struct node_info ni; 510 unsigned int start, end; 511 int err = 0, recovered = 0; 512 513 /* step 1: recover xattr */ 514 if (IS_INODE(page)) { 515 f2fs_recover_inline_xattr(inode, page); 516 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 517 err = f2fs_recover_xattr_data(inode, page); 518 if (!err) 519 recovered++; 520 goto out; 521 } 522 523 /* step 2: recover inline data */ 524 if (f2fs_recover_inline_data(inode, page)) 525 goto out; 526 527 /* step 3: recover data indices */ 528 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); 529 end = start + ADDRS_PER_PAGE(page, inode); 530 531 set_new_dnode(&dn, inode, NULL, NULL, 0); 532 retry_dn: 533 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); 534 if (err) { 535 if (err == -ENOMEM) { 536 congestion_wait(BLK_RW_ASYNC, HZ/50); 537 goto retry_dn; 538 } 539 goto out; 540 } 541 542 f2fs_wait_on_page_writeback(dn.node_page, NODE, true); 543 544 err = f2fs_get_node_info(sbi, dn.nid, &ni); 545 if (err) 546 goto err; 547 548 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 549 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 550 551 for (; start < end; start++, dn.ofs_in_node++) { 552 block_t src, dest; 553 554 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 555 dest = datablock_addr(dn.inode, page, dn.ofs_in_node); 556 557 /* skip recovering if dest is the same as src */ 558 if (src == dest) 559 continue; 560 561 /* dest is invalid, just invalidate src block */ 562 if (dest == NULL_ADDR) { 563 f2fs_truncate_data_blocks_range(&dn, 1); 564 continue; 565 } 566 567 if (!file_keep_isize(inode) && 568 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 569 f2fs_i_size_write(inode, 570 (loff_t)(start + 1) << PAGE_SHIFT); 571 572 /* 573 * dest is reserved block, invalidate src block 574 * and then reserve one new block in dnode page. 575 */ 576 if (dest == NEW_ADDR) { 577 f2fs_truncate_data_blocks_range(&dn, 1); 578 f2fs_reserve_new_block(&dn); 579 continue; 580 } 581 582 /* dest is valid block, try to recover from src to dest */ 583 if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 584 585 if (src == NULL_ADDR) { 586 err = f2fs_reserve_new_block(&dn); 587 while (err && 588 IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) 589 err = f2fs_reserve_new_block(&dn); 590 /* We should not get -ENOSPC */ 591 f2fs_bug_on(sbi, err); 592 if (err) 593 goto err; 594 } 595 retry_prev: 596 /* Check the previous node page having this index */ 597 err = check_index_in_prev_nodes(sbi, dest, &dn); 598 if (err) { 599 if (err == -ENOMEM) { 600 congestion_wait(BLK_RW_ASYNC, HZ/50); 601 goto retry_prev; 602 } 603 goto err; 604 } 605 606 /* write dummy data page */ 607 f2fs_replace_block(sbi, &dn, src, dest, 608 ni.version, false, false); 609 recovered++; 610 } 611 } 612 613 copy_node_footer(dn.node_page, page); 614 fill_node_footer(dn.node_page, dn.nid, ni.ino, 615 ofs_of_node(page), false); 616 set_page_dirty(dn.node_page); 617 err: 618 f2fs_put_dnode(&dn); 619 out: 620 f2fs_msg(sbi->sb, KERN_NOTICE, 621 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 622 inode->i_ino, 623 file_keep_isize(inode) ? "keep" : "recover", 624 recovered, err); 625 return err; 626 } 627 628 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 629 struct list_head *tmp_inode_list, struct list_head *dir_list) 630 { 631 struct curseg_info *curseg; 632 struct page *page = NULL; 633 int err = 0; 634 block_t blkaddr; 635 636 /* get node pages in the current segment */ 637 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 638 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 639 640 while (1) { 641 struct fsync_inode_entry *entry; 642 643 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 644 break; 645 646 f2fs_ra_meta_pages_cond(sbi, blkaddr); 647 648 page = f2fs_get_tmp_page(sbi, blkaddr); 649 if (IS_ERR(page)) { 650 err = PTR_ERR(page); 651 break; 652 } 653 654 if (!is_recoverable_dnode(page)) { 655 f2fs_put_page(page, 1); 656 break; 657 } 658 659 entry = get_fsync_inode(inode_list, ino_of_node(page)); 660 if (!entry) 661 goto next; 662 /* 663 * inode(x) | CP | inode(x) | dnode(F) 664 * In this case, we can lose the latest inode(x). 665 * So, call recover_inode for the inode update. 666 */ 667 if (IS_INODE(page)) { 668 err = recover_inode(entry->inode, page); 669 if (err) 670 break; 671 } 672 if (entry->last_dentry == blkaddr) { 673 err = recover_dentry(entry->inode, page, dir_list); 674 if (err) { 675 f2fs_put_page(page, 1); 676 break; 677 } 678 } 679 err = do_recover_data(sbi, entry->inode, page); 680 if (err) { 681 f2fs_put_page(page, 1); 682 break; 683 } 684 685 if (entry->blkaddr == blkaddr) 686 list_move_tail(&entry->list, tmp_inode_list); 687 next: 688 /* check next segment */ 689 blkaddr = next_blkaddr_of_node(page); 690 f2fs_put_page(page, 1); 691 } 692 if (!err) 693 f2fs_allocate_new_segments(sbi); 694 return err; 695 } 696 697 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 698 { 699 struct list_head inode_list, tmp_inode_list; 700 struct list_head dir_list; 701 int err; 702 int ret = 0; 703 unsigned long s_flags = sbi->sb->s_flags; 704 bool need_writecp = false; 705 #ifdef CONFIG_QUOTA 706 int quota_enabled; 707 #endif 708 709 if (s_flags & SB_RDONLY) { 710 f2fs_msg(sbi->sb, KERN_INFO, 711 "recover fsync data on readonly fs"); 712 sbi->sb->s_flags &= ~SB_RDONLY; 713 } 714 715 #ifdef CONFIG_QUOTA 716 /* Needed for iput() to work correctly and not trash data */ 717 sbi->sb->s_flags |= SB_ACTIVE; 718 /* Turn on quotas so that they are updated correctly */ 719 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 720 #endif 721 722 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 723 sizeof(struct fsync_inode_entry)); 724 if (!fsync_entry_slab) { 725 err = -ENOMEM; 726 goto out; 727 } 728 729 INIT_LIST_HEAD(&inode_list); 730 INIT_LIST_HEAD(&tmp_inode_list); 731 INIT_LIST_HEAD(&dir_list); 732 733 /* prevent checkpoint */ 734 mutex_lock(&sbi->cp_mutex); 735 736 /* step #1: find fsynced inode numbers */ 737 err = find_fsync_dnodes(sbi, &inode_list, check_only); 738 if (err || list_empty(&inode_list)) 739 goto skip; 740 741 if (check_only) { 742 ret = 1; 743 goto skip; 744 } 745 746 need_writecp = true; 747 748 /* step #2: recover data */ 749 err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); 750 if (!err) 751 f2fs_bug_on(sbi, !list_empty(&inode_list)); 752 else { 753 /* restore s_flags to let iput() trash data */ 754 sbi->sb->s_flags = s_flags; 755 } 756 skip: 757 destroy_fsync_dnodes(&inode_list, err); 758 destroy_fsync_dnodes(&tmp_inode_list, err); 759 760 /* truncate meta pages to be used by the recovery */ 761 truncate_inode_pages_range(META_MAPPING(sbi), 762 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 763 764 if (err) { 765 truncate_inode_pages_final(NODE_MAPPING(sbi)); 766 truncate_inode_pages_final(META_MAPPING(sbi)); 767 } else { 768 clear_sbi_flag(sbi, SBI_POR_DOING); 769 } 770 mutex_unlock(&sbi->cp_mutex); 771 772 /* let's drop all the directory inodes for clean checkpoint */ 773 destroy_fsync_dnodes(&dir_list, err); 774 775 if (need_writecp) { 776 set_sbi_flag(sbi, SBI_IS_RECOVERED); 777 778 if (!err) { 779 struct cp_control cpc = { 780 .reason = CP_RECOVERY, 781 }; 782 err = f2fs_write_checkpoint(sbi, &cpc); 783 } 784 } 785 786 kmem_cache_destroy(fsync_entry_slab); 787 out: 788 #ifdef CONFIG_QUOTA 789 /* Turn quotas off */ 790 if (quota_enabled) 791 f2fs_quota_off_umount(sbi->sb); 792 #endif 793 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 794 795 return ret ? ret: err; 796 } 797