1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 53 54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 55 return false; 56 return true; 57 } 58 59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 60 nid_t ino) 61 { 62 struct fsync_inode_entry *entry; 63 64 list_for_each_entry(entry, head, list) 65 if (entry->inode->i_ino == ino) 66 return entry; 67 68 return NULL; 69 } 70 71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 72 struct list_head *head, nid_t ino) 73 { 74 struct inode *inode; 75 struct fsync_inode_entry *entry; 76 77 inode = f2fs_iget_retry(sbi->sb, ino); 78 if (IS_ERR(inode)) 79 return ERR_CAST(inode); 80 81 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 82 entry->inode = inode; 83 list_add_tail(&entry->list, head); 84 85 return entry; 86 } 87 88 static void del_fsync_inode(struct fsync_inode_entry *entry) 89 { 90 iput(entry->inode); 91 list_del(&entry->list); 92 kmem_cache_free(fsync_entry_slab, entry); 93 } 94 95 static int recover_dentry(struct inode *inode, struct page *ipage, 96 struct list_head *dir_list) 97 { 98 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 99 nid_t pino = le32_to_cpu(raw_inode->i_pino); 100 struct f2fs_dir_entry *de; 101 struct fscrypt_name fname; 102 struct page *page; 103 struct inode *dir, *einode; 104 struct fsync_inode_entry *entry; 105 int err = 0; 106 char *name; 107 108 entry = get_fsync_inode(dir_list, pino); 109 if (!entry) { 110 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, pino); 111 if (IS_ERR(entry)) { 112 dir = ERR_CAST(entry); 113 err = PTR_ERR(entry); 114 goto out; 115 } 116 } 117 118 dir = entry->inode; 119 120 memset(&fname, 0, sizeof(struct fscrypt_name)); 121 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen); 122 fname.disk_name.name = raw_inode->i_name; 123 124 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) { 125 WARN_ON(1); 126 err = -ENAMETOOLONG; 127 goto out; 128 } 129 retry: 130 de = __f2fs_find_entry(dir, &fname, &page); 131 if (de && inode->i_ino == le32_to_cpu(de->ino)) 132 goto out_unmap_put; 133 134 if (de) { 135 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 136 if (IS_ERR(einode)) { 137 WARN_ON(1); 138 err = PTR_ERR(einode); 139 if (err == -ENOENT) 140 err = -EEXIST; 141 goto out_unmap_put; 142 } 143 err = acquire_orphan_inode(F2FS_I_SB(inode)); 144 if (err) { 145 iput(einode); 146 goto out_unmap_put; 147 } 148 f2fs_delete_entry(de, page, dir, einode); 149 iput(einode); 150 goto retry; 151 } else if (IS_ERR(page)) { 152 err = PTR_ERR(page); 153 } else { 154 err = __f2fs_do_add_link(dir, &fname, inode, 155 inode->i_ino, inode->i_mode); 156 } 157 if (err == -ENOMEM) 158 goto retry; 159 goto out; 160 161 out_unmap_put: 162 f2fs_dentry_kunmap(dir, page); 163 f2fs_put_page(page, 0); 164 out: 165 if (file_enc_name(inode)) 166 name = "<encrypted>"; 167 else 168 name = raw_inode->i_name; 169 f2fs_msg(inode->i_sb, KERN_NOTICE, 170 "%s: ino = %x, name = %s, dir = %lx, err = %d", 171 __func__, ino_of_node(ipage), name, 172 IS_ERR(dir) ? 0 : dir->i_ino, err); 173 return err; 174 } 175 176 static void recover_inode(struct inode *inode, struct page *page) 177 { 178 struct f2fs_inode *raw = F2FS_INODE(page); 179 char *name; 180 181 inode->i_mode = le16_to_cpu(raw->i_mode); 182 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 183 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 184 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 185 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 186 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 187 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 188 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 189 190 F2FS_I(inode)->i_advise = raw->i_advise; 191 192 if (file_enc_name(inode)) 193 name = "<encrypted>"; 194 else 195 name = F2FS_INODE(page)->i_name; 196 197 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 198 ino_of_node(page), name); 199 } 200 201 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 202 { 203 struct curseg_info *curseg; 204 struct page *page = NULL; 205 block_t blkaddr; 206 int err = 0; 207 208 /* get node pages in the current segment */ 209 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 210 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 211 212 while (1) { 213 struct fsync_inode_entry *entry; 214 215 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 216 return 0; 217 218 page = get_tmp_page(sbi, blkaddr); 219 220 if (!is_recoverable_dnode(page)) 221 break; 222 223 if (!is_fsync_dnode(page)) 224 goto next; 225 226 entry = get_fsync_inode(head, ino_of_node(page)); 227 if (!entry) { 228 if (IS_INODE(page) && is_dent_dnode(page)) { 229 err = recover_inode_page(sbi, page); 230 if (err) 231 break; 232 } 233 234 /* 235 * CP | dnode(F) | inode(DF) 236 * For this case, we should not give up now. 237 */ 238 entry = add_fsync_inode(sbi, head, ino_of_node(page)); 239 if (IS_ERR(entry)) { 240 err = PTR_ERR(entry); 241 if (err == -ENOENT) { 242 err = 0; 243 goto next; 244 } 245 break; 246 } 247 } 248 entry->blkaddr = blkaddr; 249 250 if (IS_INODE(page) && is_dent_dnode(page)) 251 entry->last_dentry = blkaddr; 252 next: 253 /* check next segment */ 254 blkaddr = next_blkaddr_of_node(page); 255 f2fs_put_page(page, 1); 256 257 ra_meta_pages_cond(sbi, blkaddr); 258 } 259 f2fs_put_page(page, 1); 260 return err; 261 } 262 263 static void destroy_fsync_dnodes(struct list_head *head) 264 { 265 struct fsync_inode_entry *entry, *tmp; 266 267 list_for_each_entry_safe(entry, tmp, head, list) 268 del_fsync_inode(entry); 269 } 270 271 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 272 block_t blkaddr, struct dnode_of_data *dn) 273 { 274 struct seg_entry *sentry; 275 unsigned int segno = GET_SEGNO(sbi, blkaddr); 276 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 277 struct f2fs_summary_block *sum_node; 278 struct f2fs_summary sum; 279 struct page *sum_page, *node_page; 280 struct dnode_of_data tdn = *dn; 281 nid_t ino, nid; 282 struct inode *inode; 283 unsigned int offset; 284 block_t bidx; 285 int i; 286 287 sentry = get_seg_entry(sbi, segno); 288 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 289 return 0; 290 291 /* Get the previous summary */ 292 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 293 struct curseg_info *curseg = CURSEG_I(sbi, i); 294 if (curseg->segno == segno) { 295 sum = curseg->sum_blk->entries[blkoff]; 296 goto got_it; 297 } 298 } 299 300 sum_page = get_sum_page(sbi, segno); 301 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 302 sum = sum_node->entries[blkoff]; 303 f2fs_put_page(sum_page, 1); 304 got_it: 305 /* Use the locked dnode page and inode */ 306 nid = le32_to_cpu(sum.nid); 307 if (dn->inode->i_ino == nid) { 308 tdn.nid = nid; 309 if (!dn->inode_page_locked) 310 lock_page(dn->inode_page); 311 tdn.node_page = dn->inode_page; 312 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 313 goto truncate_out; 314 } else if (dn->nid == nid) { 315 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 316 goto truncate_out; 317 } 318 319 /* Get the node page */ 320 node_page = get_node_page(sbi, nid); 321 if (IS_ERR(node_page)) 322 return PTR_ERR(node_page); 323 324 offset = ofs_of_node(node_page); 325 ino = ino_of_node(node_page); 326 f2fs_put_page(node_page, 1); 327 328 if (ino != dn->inode->i_ino) { 329 /* Deallocate previous index in the node page */ 330 inode = f2fs_iget_retry(sbi->sb, ino); 331 if (IS_ERR(inode)) 332 return PTR_ERR(inode); 333 } else { 334 inode = dn->inode; 335 } 336 337 bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node); 338 339 /* 340 * if inode page is locked, unlock temporarily, but its reference 341 * count keeps alive. 342 */ 343 if (ino == dn->inode->i_ino && dn->inode_page_locked) 344 unlock_page(dn->inode_page); 345 346 set_new_dnode(&tdn, inode, NULL, NULL, 0); 347 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 348 goto out; 349 350 if (tdn.data_blkaddr == blkaddr) 351 truncate_data_blocks_range(&tdn, 1); 352 353 f2fs_put_dnode(&tdn); 354 out: 355 if (ino != dn->inode->i_ino) 356 iput(inode); 357 else if (dn->inode_page_locked) 358 lock_page(dn->inode_page); 359 return 0; 360 361 truncate_out: 362 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr) 363 truncate_data_blocks_range(&tdn, 1); 364 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 365 unlock_page(dn->inode_page); 366 return 0; 367 } 368 369 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 370 struct page *page, block_t blkaddr) 371 { 372 struct dnode_of_data dn; 373 struct node_info ni; 374 unsigned int start, end; 375 int err = 0, recovered = 0; 376 377 /* step 1: recover xattr */ 378 if (IS_INODE(page)) { 379 recover_inline_xattr(inode, page); 380 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 381 err = recover_xattr_data(inode, page, blkaddr); 382 if (!err) 383 recovered++; 384 goto out; 385 } 386 387 /* step 2: recover inline data */ 388 if (recover_inline_data(inode, page)) 389 goto out; 390 391 /* step 3: recover data indices */ 392 start = start_bidx_of_node(ofs_of_node(page), inode); 393 end = start + ADDRS_PER_PAGE(page, inode); 394 395 set_new_dnode(&dn, inode, NULL, NULL, 0); 396 retry_dn: 397 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 398 if (err) { 399 if (err == -ENOMEM) { 400 congestion_wait(BLK_RW_ASYNC, HZ/50); 401 goto retry_dn; 402 } 403 goto out; 404 } 405 406 f2fs_wait_on_page_writeback(dn.node_page, NODE, true); 407 408 get_node_info(sbi, dn.nid, &ni); 409 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 410 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 411 412 for (; start < end; start++, dn.ofs_in_node++) { 413 block_t src, dest; 414 415 src = datablock_addr(dn.node_page, dn.ofs_in_node); 416 dest = datablock_addr(page, dn.ofs_in_node); 417 418 /* skip recovering if dest is the same as src */ 419 if (src == dest) 420 continue; 421 422 /* dest is invalid, just invalidate src block */ 423 if (dest == NULL_ADDR) { 424 truncate_data_blocks_range(&dn, 1); 425 continue; 426 } 427 428 if (!file_keep_isize(inode) && 429 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 430 f2fs_i_size_write(inode, 431 (loff_t)(start + 1) << PAGE_SHIFT); 432 433 /* 434 * dest is reserved block, invalidate src block 435 * and then reserve one new block in dnode page. 436 */ 437 if (dest == NEW_ADDR) { 438 truncate_data_blocks_range(&dn, 1); 439 reserve_new_block(&dn); 440 continue; 441 } 442 443 /* dest is valid block, try to recover from src to dest */ 444 if (is_valid_blkaddr(sbi, dest, META_POR)) { 445 446 if (src == NULL_ADDR) { 447 err = reserve_new_block(&dn); 448 #ifdef CONFIG_F2FS_FAULT_INJECTION 449 while (err) 450 err = reserve_new_block(&dn); 451 #endif 452 /* We should not get -ENOSPC */ 453 f2fs_bug_on(sbi, err); 454 if (err) 455 goto err; 456 } 457 retry_prev: 458 /* Check the previous node page having this index */ 459 err = check_index_in_prev_nodes(sbi, dest, &dn); 460 if (err) { 461 if (err == -ENOMEM) { 462 congestion_wait(BLK_RW_ASYNC, HZ/50); 463 goto retry_prev; 464 } 465 goto err; 466 } 467 468 /* write dummy data page */ 469 f2fs_replace_block(sbi, &dn, src, dest, 470 ni.version, false, false); 471 recovered++; 472 } 473 } 474 475 copy_node_footer(dn.node_page, page); 476 fill_node_footer(dn.node_page, dn.nid, ni.ino, 477 ofs_of_node(page), false); 478 set_page_dirty(dn.node_page); 479 err: 480 f2fs_put_dnode(&dn); 481 out: 482 f2fs_msg(sbi->sb, KERN_NOTICE, 483 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 484 inode->i_ino, 485 file_keep_isize(inode) ? "keep" : "recover", 486 recovered, err); 487 return err; 488 } 489 490 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 491 struct list_head *dir_list) 492 { 493 struct curseg_info *curseg; 494 struct page *page = NULL; 495 int err = 0; 496 block_t blkaddr; 497 498 /* get node pages in the current segment */ 499 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 500 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 501 502 while (1) { 503 struct fsync_inode_entry *entry; 504 505 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 506 break; 507 508 ra_meta_pages_cond(sbi, blkaddr); 509 510 page = get_tmp_page(sbi, blkaddr); 511 512 if (!is_recoverable_dnode(page)) { 513 f2fs_put_page(page, 1); 514 break; 515 } 516 517 entry = get_fsync_inode(inode_list, ino_of_node(page)); 518 if (!entry) 519 goto next; 520 /* 521 * inode(x) | CP | inode(x) | dnode(F) 522 * In this case, we can lose the latest inode(x). 523 * So, call recover_inode for the inode update. 524 */ 525 if (IS_INODE(page)) 526 recover_inode(entry->inode, page); 527 if (entry->last_dentry == blkaddr) { 528 err = recover_dentry(entry->inode, page, dir_list); 529 if (err) { 530 f2fs_put_page(page, 1); 531 break; 532 } 533 } 534 err = do_recover_data(sbi, entry->inode, page, blkaddr); 535 if (err) { 536 f2fs_put_page(page, 1); 537 break; 538 } 539 540 if (entry->blkaddr == blkaddr) 541 del_fsync_inode(entry); 542 next: 543 /* check next segment */ 544 blkaddr = next_blkaddr_of_node(page); 545 f2fs_put_page(page, 1); 546 } 547 if (!err) 548 allocate_new_segments(sbi); 549 return err; 550 } 551 552 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 553 { 554 struct list_head inode_list; 555 struct list_head dir_list; 556 int err; 557 int ret = 0; 558 bool need_writecp = false; 559 560 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 561 sizeof(struct fsync_inode_entry)); 562 if (!fsync_entry_slab) 563 return -ENOMEM; 564 565 INIT_LIST_HEAD(&inode_list); 566 INIT_LIST_HEAD(&dir_list); 567 568 /* prevent checkpoint */ 569 mutex_lock(&sbi->cp_mutex); 570 571 /* step #1: find fsynced inode numbers */ 572 err = find_fsync_dnodes(sbi, &inode_list); 573 if (err || list_empty(&inode_list)) 574 goto out; 575 576 if (check_only) { 577 ret = 1; 578 goto out; 579 } 580 581 need_writecp = true; 582 583 /* step #2: recover data */ 584 err = recover_data(sbi, &inode_list, &dir_list); 585 if (!err) 586 f2fs_bug_on(sbi, !list_empty(&inode_list)); 587 out: 588 destroy_fsync_dnodes(&inode_list); 589 590 /* truncate meta pages to be used by the recovery */ 591 truncate_inode_pages_range(META_MAPPING(sbi), 592 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 593 594 if (err) { 595 truncate_inode_pages_final(NODE_MAPPING(sbi)); 596 truncate_inode_pages_final(META_MAPPING(sbi)); 597 } 598 599 clear_sbi_flag(sbi, SBI_POR_DOING); 600 if (err) 601 set_ckpt_flags(sbi, CP_ERROR_FLAG); 602 mutex_unlock(&sbi->cp_mutex); 603 604 /* let's drop all the directory inodes for clean checkpoint */ 605 destroy_fsync_dnodes(&dir_list); 606 607 if (!err && need_writecp) { 608 struct cp_control cpc = { 609 .reason = CP_RECOVERY, 610 }; 611 err = write_checkpoint(sbi, &cpc); 612 } 613 614 kmem_cache_destroy(fsync_entry_slab); 615 return ret ? ret: err; 616 } 617