1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/recovery.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include "f2fs.h" 11 #include "node.h" 12 #include "segment.h" 13 14 /* 15 * Roll forward recovery scenarios. 16 * 17 * [Term] F: fsync_mark, D: dentry_mark 18 * 19 * 1. inode(x) | CP | inode(x) | dnode(F) 20 * -> Update the latest inode(x). 21 * 22 * 2. inode(x) | CP | inode(F) | dnode(F) 23 * -> No problem. 24 * 25 * 3. inode(x) | CP | dnode(F) | inode(x) 26 * -> Recover to the latest dnode(F), and drop the last inode(x) 27 * 28 * 4. inode(x) | CP | dnode(F) | inode(F) 29 * -> No problem. 30 * 31 * 5. CP | inode(x) | dnode(F) 32 * -> The inode(DF) was missing. Should drop this dnode(F). 33 * 34 * 6. CP | inode(DF) | dnode(F) 35 * -> No problem. 36 * 37 * 7. CP | dnode(F) | inode(DF) 38 * -> If f2fs_iget fails, then goto next to find inode(DF). 39 * 40 * 8. CP | dnode(F) | inode(x) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * But it will fail due to no inode(DF). 43 */ 44 45 static struct kmem_cache *fsync_entry_slab; 46 47 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) 48 { 49 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 50 51 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 52 return false; 53 return true; 54 } 55 56 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 57 nid_t ino) 58 { 59 struct fsync_inode_entry *entry; 60 61 list_for_each_entry(entry, head, list) 62 if (entry->inode->i_ino == ino) 63 return entry; 64 65 return NULL; 66 } 67 68 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 69 struct list_head *head, nid_t ino, bool quota_inode) 70 { 71 struct inode *inode; 72 struct fsync_inode_entry *entry; 73 int err; 74 75 inode = f2fs_iget_retry(sbi->sb, ino); 76 if (IS_ERR(inode)) 77 return ERR_CAST(inode); 78 79 err = dquot_initialize(inode); 80 if (err) 81 goto err_out; 82 83 if (quota_inode) { 84 err = dquot_alloc_inode(inode); 85 if (err) 86 goto err_out; 87 } 88 89 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 90 entry->inode = inode; 91 list_add_tail(&entry->list, head); 92 93 return entry; 94 err_out: 95 iput(inode); 96 return ERR_PTR(err); 97 } 98 99 static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) 100 { 101 if (drop) { 102 /* inode should not be recovered, drop it */ 103 f2fs_inode_synced(entry->inode); 104 } 105 iput(entry->inode); 106 list_del(&entry->list); 107 kmem_cache_free(fsync_entry_slab, entry); 108 } 109 110 static int recover_dentry(struct inode *inode, struct page *ipage, 111 struct list_head *dir_list) 112 { 113 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 114 nid_t pino = le32_to_cpu(raw_inode->i_pino); 115 struct f2fs_dir_entry *de; 116 struct fscrypt_name fname; 117 struct page *page; 118 struct inode *dir, *einode; 119 struct fsync_inode_entry *entry; 120 int err = 0; 121 char *name; 122 123 entry = get_fsync_inode(dir_list, pino); 124 if (!entry) { 125 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, 126 pino, false); 127 if (IS_ERR(entry)) { 128 dir = ERR_CAST(entry); 129 err = PTR_ERR(entry); 130 goto out; 131 } 132 } 133 134 dir = entry->inode; 135 136 memset(&fname, 0, sizeof(struct fscrypt_name)); 137 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen); 138 fname.disk_name.name = raw_inode->i_name; 139 140 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) { 141 WARN_ON(1); 142 err = -ENAMETOOLONG; 143 goto out; 144 } 145 retry: 146 de = __f2fs_find_entry(dir, &fname, &page); 147 if (de && inode->i_ino == le32_to_cpu(de->ino)) 148 goto out_put; 149 150 if (de) { 151 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 152 if (IS_ERR(einode)) { 153 WARN_ON(1); 154 err = PTR_ERR(einode); 155 if (err == -ENOENT) 156 err = -EEXIST; 157 goto out_put; 158 } 159 160 err = dquot_initialize(einode); 161 if (err) { 162 iput(einode); 163 goto out_put; 164 } 165 166 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); 167 if (err) { 168 iput(einode); 169 goto out_put; 170 } 171 f2fs_delete_entry(de, page, dir, einode); 172 iput(einode); 173 goto retry; 174 } else if (IS_ERR(page)) { 175 err = PTR_ERR(page); 176 } else { 177 err = f2fs_add_dentry(dir, &fname, inode, 178 inode->i_ino, inode->i_mode); 179 } 180 if (err == -ENOMEM) 181 goto retry; 182 goto out; 183 184 out_put: 185 f2fs_put_page(page, 0); 186 out: 187 if (file_enc_name(inode)) 188 name = "<encrypted>"; 189 else 190 name = raw_inode->i_name; 191 f2fs_msg(inode->i_sb, KERN_NOTICE, 192 "%s: ino = %x, name = %s, dir = %lx, err = %d", 193 __func__, ino_of_node(ipage), name, 194 IS_ERR(dir) ? 0 : dir->i_ino, err); 195 return err; 196 } 197 198 static int recover_quota_data(struct inode *inode, struct page *page) 199 { 200 struct f2fs_inode *raw = F2FS_INODE(page); 201 struct iattr attr; 202 uid_t i_uid = le32_to_cpu(raw->i_uid); 203 gid_t i_gid = le32_to_cpu(raw->i_gid); 204 int err; 205 206 memset(&attr, 0, sizeof(attr)); 207 208 attr.ia_uid = make_kuid(inode->i_sb->s_user_ns, i_uid); 209 attr.ia_gid = make_kgid(inode->i_sb->s_user_ns, i_gid); 210 211 if (!uid_eq(attr.ia_uid, inode->i_uid)) 212 attr.ia_valid |= ATTR_UID; 213 if (!gid_eq(attr.ia_gid, inode->i_gid)) 214 attr.ia_valid |= ATTR_GID; 215 216 if (!attr.ia_valid) 217 return 0; 218 219 err = dquot_transfer(inode, &attr); 220 if (err) 221 set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); 222 return err; 223 } 224 225 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) 226 { 227 if (ri->i_inline & F2FS_PIN_FILE) 228 set_inode_flag(inode, FI_PIN_FILE); 229 else 230 clear_inode_flag(inode, FI_PIN_FILE); 231 if (ri->i_inline & F2FS_DATA_EXIST) 232 set_inode_flag(inode, FI_DATA_EXIST); 233 else 234 clear_inode_flag(inode, FI_DATA_EXIST); 235 } 236 237 static int recover_inode(struct inode *inode, struct page *page) 238 { 239 struct f2fs_inode *raw = F2FS_INODE(page); 240 char *name; 241 int err; 242 243 inode->i_mode = le16_to_cpu(raw->i_mode); 244 245 err = recover_quota_data(inode, page); 246 if (err) 247 return err; 248 249 i_uid_write(inode, le32_to_cpu(raw->i_uid)); 250 i_gid_write(inode, le32_to_cpu(raw->i_gid)); 251 252 if (raw->i_inline & F2FS_EXTRA_ATTR) { 253 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && 254 F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), 255 i_projid)) { 256 projid_t i_projid; 257 kprojid_t kprojid; 258 259 i_projid = (projid_t)le32_to_cpu(raw->i_projid); 260 kprojid = make_kprojid(&init_user_ns, i_projid); 261 262 if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) { 263 err = f2fs_transfer_project_quota(inode, 264 kprojid); 265 if (err) 266 return err; 267 F2FS_I(inode)->i_projid = kprojid; 268 } 269 } 270 } 271 272 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 273 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 274 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 275 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 276 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 277 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 278 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 279 280 F2FS_I(inode)->i_advise = raw->i_advise; 281 F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags); 282 f2fs_set_inode_flags(inode); 283 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 284 le16_to_cpu(raw->i_gc_failures); 285 286 recover_inline_flags(inode, raw); 287 288 f2fs_mark_inode_dirty_sync(inode, true); 289 290 if (file_enc_name(inode)) 291 name = "<encrypted>"; 292 else 293 name = F2FS_INODE(page)->i_name; 294 295 f2fs_msg(inode->i_sb, KERN_NOTICE, 296 "recover_inode: ino = %x, name = %s, inline = %x", 297 ino_of_node(page), name, raw->i_inline); 298 return 0; 299 } 300 301 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, 302 bool check_only) 303 { 304 struct curseg_info *curseg; 305 struct page *page = NULL; 306 block_t blkaddr; 307 unsigned int loop_cnt = 0; 308 unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg - 309 valid_user_blocks(sbi); 310 int err = 0; 311 312 /* get node pages in the current segment */ 313 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 314 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 315 316 while (1) { 317 struct fsync_inode_entry *entry; 318 319 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 320 return 0; 321 322 page = f2fs_get_tmp_page(sbi, blkaddr); 323 if (IS_ERR(page)) { 324 err = PTR_ERR(page); 325 break; 326 } 327 328 if (!is_recoverable_dnode(page)) { 329 f2fs_put_page(page, 1); 330 break; 331 } 332 333 if (!is_fsync_dnode(page)) 334 goto next; 335 336 entry = get_fsync_inode(head, ino_of_node(page)); 337 if (!entry) { 338 bool quota_inode = false; 339 340 if (!check_only && 341 IS_INODE(page) && is_dent_dnode(page)) { 342 err = f2fs_recover_inode_page(sbi, page); 343 if (err) { 344 f2fs_put_page(page, 1); 345 break; 346 } 347 quota_inode = true; 348 } 349 350 /* 351 * CP | dnode(F) | inode(DF) 352 * For this case, we should not give up now. 353 */ 354 entry = add_fsync_inode(sbi, head, ino_of_node(page), 355 quota_inode); 356 if (IS_ERR(entry)) { 357 err = PTR_ERR(entry); 358 if (err == -ENOENT) { 359 err = 0; 360 goto next; 361 } 362 f2fs_put_page(page, 1); 363 break; 364 } 365 } 366 entry->blkaddr = blkaddr; 367 368 if (IS_INODE(page) && is_dent_dnode(page)) 369 entry->last_dentry = blkaddr; 370 next: 371 /* sanity check in order to detect looped node chain */ 372 if (++loop_cnt >= free_blocks || 373 blkaddr == next_blkaddr_of_node(page)) { 374 f2fs_msg(sbi->sb, KERN_NOTICE, 375 "%s: detect looped node chain, " 376 "blkaddr:%u, next:%u", 377 __func__, blkaddr, next_blkaddr_of_node(page)); 378 f2fs_put_page(page, 1); 379 err = -EINVAL; 380 break; 381 } 382 383 /* check next segment */ 384 blkaddr = next_blkaddr_of_node(page); 385 f2fs_put_page(page, 1); 386 387 f2fs_ra_meta_pages_cond(sbi, blkaddr); 388 } 389 return err; 390 } 391 392 static void destroy_fsync_dnodes(struct list_head *head, int drop) 393 { 394 struct fsync_inode_entry *entry, *tmp; 395 396 list_for_each_entry_safe(entry, tmp, head, list) 397 del_fsync_inode(entry, drop); 398 } 399 400 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 401 block_t blkaddr, struct dnode_of_data *dn) 402 { 403 struct seg_entry *sentry; 404 unsigned int segno = GET_SEGNO(sbi, blkaddr); 405 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 406 struct f2fs_summary_block *sum_node; 407 struct f2fs_summary sum; 408 struct page *sum_page, *node_page; 409 struct dnode_of_data tdn = *dn; 410 nid_t ino, nid; 411 struct inode *inode; 412 unsigned int offset; 413 block_t bidx; 414 int i; 415 416 sentry = get_seg_entry(sbi, segno); 417 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 418 return 0; 419 420 /* Get the previous summary */ 421 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 422 struct curseg_info *curseg = CURSEG_I(sbi, i); 423 if (curseg->segno == segno) { 424 sum = curseg->sum_blk->entries[blkoff]; 425 goto got_it; 426 } 427 } 428 429 sum_page = f2fs_get_sum_page(sbi, segno); 430 if (IS_ERR(sum_page)) 431 return PTR_ERR(sum_page); 432 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 433 sum = sum_node->entries[blkoff]; 434 f2fs_put_page(sum_page, 1); 435 got_it: 436 /* Use the locked dnode page and inode */ 437 nid = le32_to_cpu(sum.nid); 438 if (dn->inode->i_ino == nid) { 439 tdn.nid = nid; 440 if (!dn->inode_page_locked) 441 lock_page(dn->inode_page); 442 tdn.node_page = dn->inode_page; 443 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 444 goto truncate_out; 445 } else if (dn->nid == nid) { 446 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 447 goto truncate_out; 448 } 449 450 /* Get the node page */ 451 node_page = f2fs_get_node_page(sbi, nid); 452 if (IS_ERR(node_page)) 453 return PTR_ERR(node_page); 454 455 offset = ofs_of_node(node_page); 456 ino = ino_of_node(node_page); 457 f2fs_put_page(node_page, 1); 458 459 if (ino != dn->inode->i_ino) { 460 int ret; 461 462 /* Deallocate previous index in the node page */ 463 inode = f2fs_iget_retry(sbi->sb, ino); 464 if (IS_ERR(inode)) 465 return PTR_ERR(inode); 466 467 ret = dquot_initialize(inode); 468 if (ret) { 469 iput(inode); 470 return ret; 471 } 472 } else { 473 inode = dn->inode; 474 } 475 476 bidx = f2fs_start_bidx_of_node(offset, inode) + 477 le16_to_cpu(sum.ofs_in_node); 478 479 /* 480 * if inode page is locked, unlock temporarily, but its reference 481 * count keeps alive. 482 */ 483 if (ino == dn->inode->i_ino && dn->inode_page_locked) 484 unlock_page(dn->inode_page); 485 486 set_new_dnode(&tdn, inode, NULL, NULL, 0); 487 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 488 goto out; 489 490 if (tdn.data_blkaddr == blkaddr) 491 f2fs_truncate_data_blocks_range(&tdn, 1); 492 493 f2fs_put_dnode(&tdn); 494 out: 495 if (ino != dn->inode->i_ino) 496 iput(inode); 497 else if (dn->inode_page_locked) 498 lock_page(dn->inode_page); 499 return 0; 500 501 truncate_out: 502 if (datablock_addr(tdn.inode, tdn.node_page, 503 tdn.ofs_in_node) == blkaddr) 504 f2fs_truncate_data_blocks_range(&tdn, 1); 505 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 506 unlock_page(dn->inode_page); 507 return 0; 508 } 509 510 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 511 struct page *page) 512 { 513 struct dnode_of_data dn; 514 struct node_info ni; 515 unsigned int start, end; 516 int err = 0, recovered = 0; 517 518 /* step 1: recover xattr */ 519 if (IS_INODE(page)) { 520 f2fs_recover_inline_xattr(inode, page); 521 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 522 err = f2fs_recover_xattr_data(inode, page); 523 if (!err) 524 recovered++; 525 goto out; 526 } 527 528 /* step 2: recover inline data */ 529 if (f2fs_recover_inline_data(inode, page)) 530 goto out; 531 532 /* step 3: recover data indices */ 533 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); 534 end = start + ADDRS_PER_PAGE(page, inode); 535 536 set_new_dnode(&dn, inode, NULL, NULL, 0); 537 retry_dn: 538 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); 539 if (err) { 540 if (err == -ENOMEM) { 541 congestion_wait(BLK_RW_ASYNC, HZ/50); 542 goto retry_dn; 543 } 544 goto out; 545 } 546 547 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 548 549 err = f2fs_get_node_info(sbi, dn.nid, &ni); 550 if (err) 551 goto err; 552 553 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 554 555 if (ofs_of_node(dn.node_page) != ofs_of_node(page)) { 556 f2fs_msg(sbi->sb, KERN_WARNING, 557 "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u", 558 inode->i_ino, ofs_of_node(dn.node_page), 559 ofs_of_node(page)); 560 err = -EFAULT; 561 goto err; 562 } 563 564 for (; start < end; start++, dn.ofs_in_node++) { 565 block_t src, dest; 566 567 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 568 dest = datablock_addr(dn.inode, page, dn.ofs_in_node); 569 570 if (__is_valid_data_blkaddr(src) && 571 !f2fs_is_valid_blkaddr(sbi, src, META_POR)) { 572 err = -EFAULT; 573 goto err; 574 } 575 576 if (__is_valid_data_blkaddr(dest) && 577 !f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 578 err = -EFAULT; 579 goto err; 580 } 581 582 /* skip recovering if dest is the same as src */ 583 if (src == dest) 584 continue; 585 586 /* dest is invalid, just invalidate src block */ 587 if (dest == NULL_ADDR) { 588 f2fs_truncate_data_blocks_range(&dn, 1); 589 continue; 590 } 591 592 if (!file_keep_isize(inode) && 593 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 594 f2fs_i_size_write(inode, 595 (loff_t)(start + 1) << PAGE_SHIFT); 596 597 /* 598 * dest is reserved block, invalidate src block 599 * and then reserve one new block in dnode page. 600 */ 601 if (dest == NEW_ADDR) { 602 f2fs_truncate_data_blocks_range(&dn, 1); 603 f2fs_reserve_new_block(&dn); 604 continue; 605 } 606 607 /* dest is valid block, try to recover from src to dest */ 608 if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 609 610 if (src == NULL_ADDR) { 611 err = f2fs_reserve_new_block(&dn); 612 while (err && 613 IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) 614 err = f2fs_reserve_new_block(&dn); 615 /* We should not get -ENOSPC */ 616 f2fs_bug_on(sbi, err); 617 if (err) 618 goto err; 619 } 620 retry_prev: 621 /* Check the previous node page having this index */ 622 err = check_index_in_prev_nodes(sbi, dest, &dn); 623 if (err) { 624 if (err == -ENOMEM) { 625 congestion_wait(BLK_RW_ASYNC, HZ/50); 626 goto retry_prev; 627 } 628 goto err; 629 } 630 631 /* write dummy data page */ 632 f2fs_replace_block(sbi, &dn, src, dest, 633 ni.version, false, false); 634 recovered++; 635 } 636 } 637 638 copy_node_footer(dn.node_page, page); 639 fill_node_footer(dn.node_page, dn.nid, ni.ino, 640 ofs_of_node(page), false); 641 set_page_dirty(dn.node_page); 642 err: 643 f2fs_put_dnode(&dn); 644 out: 645 f2fs_msg(sbi->sb, KERN_NOTICE, 646 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 647 inode->i_ino, 648 file_keep_isize(inode) ? "keep" : "recover", 649 recovered, err); 650 return err; 651 } 652 653 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 654 struct list_head *tmp_inode_list, struct list_head *dir_list) 655 { 656 struct curseg_info *curseg; 657 struct page *page = NULL; 658 int err = 0; 659 block_t blkaddr; 660 661 /* get node pages in the current segment */ 662 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 663 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 664 665 while (1) { 666 struct fsync_inode_entry *entry; 667 668 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 669 break; 670 671 f2fs_ra_meta_pages_cond(sbi, blkaddr); 672 673 page = f2fs_get_tmp_page(sbi, blkaddr); 674 if (IS_ERR(page)) { 675 err = PTR_ERR(page); 676 break; 677 } 678 679 if (!is_recoverable_dnode(page)) { 680 f2fs_put_page(page, 1); 681 break; 682 } 683 684 entry = get_fsync_inode(inode_list, ino_of_node(page)); 685 if (!entry) 686 goto next; 687 /* 688 * inode(x) | CP | inode(x) | dnode(F) 689 * In this case, we can lose the latest inode(x). 690 * So, call recover_inode for the inode update. 691 */ 692 if (IS_INODE(page)) { 693 err = recover_inode(entry->inode, page); 694 if (err) { 695 f2fs_put_page(page, 1); 696 break; 697 } 698 } 699 if (entry->last_dentry == blkaddr) { 700 err = recover_dentry(entry->inode, page, dir_list); 701 if (err) { 702 f2fs_put_page(page, 1); 703 break; 704 } 705 } 706 err = do_recover_data(sbi, entry->inode, page); 707 if (err) { 708 f2fs_put_page(page, 1); 709 break; 710 } 711 712 if (entry->blkaddr == blkaddr) 713 list_move_tail(&entry->list, tmp_inode_list); 714 next: 715 /* check next segment */ 716 blkaddr = next_blkaddr_of_node(page); 717 f2fs_put_page(page, 1); 718 } 719 if (!err) 720 f2fs_allocate_new_segments(sbi); 721 return err; 722 } 723 724 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 725 { 726 struct list_head inode_list, tmp_inode_list; 727 struct list_head dir_list; 728 int err; 729 int ret = 0; 730 unsigned long s_flags = sbi->sb->s_flags; 731 bool need_writecp = false; 732 #ifdef CONFIG_QUOTA 733 int quota_enabled; 734 #endif 735 736 if (s_flags & SB_RDONLY) { 737 f2fs_msg(sbi->sb, KERN_INFO, 738 "recover fsync data on readonly fs"); 739 sbi->sb->s_flags &= ~SB_RDONLY; 740 } 741 742 #ifdef CONFIG_QUOTA 743 /* Needed for iput() to work correctly and not trash data */ 744 sbi->sb->s_flags |= SB_ACTIVE; 745 /* Turn on quotas so that they are updated correctly */ 746 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 747 #endif 748 749 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 750 sizeof(struct fsync_inode_entry)); 751 if (!fsync_entry_slab) { 752 err = -ENOMEM; 753 goto out; 754 } 755 756 INIT_LIST_HEAD(&inode_list); 757 INIT_LIST_HEAD(&tmp_inode_list); 758 INIT_LIST_HEAD(&dir_list); 759 760 /* prevent checkpoint */ 761 mutex_lock(&sbi->cp_mutex); 762 763 /* step #1: find fsynced inode numbers */ 764 err = find_fsync_dnodes(sbi, &inode_list, check_only); 765 if (err || list_empty(&inode_list)) 766 goto skip; 767 768 if (check_only) { 769 ret = 1; 770 goto skip; 771 } 772 773 need_writecp = true; 774 775 /* step #2: recover data */ 776 err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); 777 if (!err) 778 f2fs_bug_on(sbi, !list_empty(&inode_list)); 779 else { 780 /* restore s_flags to let iput() trash data */ 781 sbi->sb->s_flags = s_flags; 782 } 783 skip: 784 destroy_fsync_dnodes(&inode_list, err); 785 destroy_fsync_dnodes(&tmp_inode_list, err); 786 787 /* truncate meta pages to be used by the recovery */ 788 truncate_inode_pages_range(META_MAPPING(sbi), 789 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 790 791 if (err) { 792 truncate_inode_pages_final(NODE_MAPPING(sbi)); 793 truncate_inode_pages_final(META_MAPPING(sbi)); 794 } else { 795 clear_sbi_flag(sbi, SBI_POR_DOING); 796 } 797 mutex_unlock(&sbi->cp_mutex); 798 799 /* let's drop all the directory inodes for clean checkpoint */ 800 destroy_fsync_dnodes(&dir_list, err); 801 802 if (need_writecp) { 803 set_sbi_flag(sbi, SBI_IS_RECOVERED); 804 805 if (!err) { 806 struct cp_control cpc = { 807 .reason = CP_RECOVERY, 808 }; 809 err = f2fs_write_checkpoint(sbi, &cpc); 810 } 811 } 812 813 kmem_cache_destroy(fsync_entry_slab); 814 out: 815 #ifdef CONFIG_QUOTA 816 /* Turn quotas off */ 817 if (quota_enabled) 818 f2fs_quota_off_umount(sbi->sb); 819 #endif 820 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 821 822 return ret ? ret: err; 823 } 824