1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 static struct kmem_cache *fsync_entry_slab; 18 19 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 20 { 21 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 22 > sbi->user_block_count) 23 return false; 24 return true; 25 } 26 27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 28 nid_t ino) 29 { 30 struct list_head *this; 31 struct fsync_inode_entry *entry; 32 33 list_for_each(this, head) { 34 entry = list_entry(this, struct fsync_inode_entry, list); 35 if (entry->inode->i_ino == ino) 36 return entry; 37 } 38 return NULL; 39 } 40 41 static int recover_dentry(struct page *ipage, struct inode *inode) 42 { 43 struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage); 44 struct f2fs_inode *raw_inode = &(raw_node->i); 45 struct qstr name; 46 struct f2fs_dir_entry *de; 47 struct page *page; 48 struct inode *dir; 49 int err = 0; 50 51 if (!is_dent_dnode(ipage)) 52 goto out; 53 54 dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino)); 55 if (IS_ERR(dir)) { 56 err = -EINVAL; 57 goto out; 58 } 59 60 name.len = le32_to_cpu(raw_inode->i_namelen); 61 name.name = raw_inode->i_name; 62 63 de = f2fs_find_entry(dir, &name, &page); 64 if (de) { 65 kunmap(page); 66 f2fs_put_page(page, 0); 67 } else { 68 err = __f2fs_add_link(dir, &name, inode); 69 } 70 iput(dir); 71 out: 72 kunmap(ipage); 73 return err; 74 } 75 76 static int recover_inode(struct inode *inode, struct page *node_page) 77 { 78 void *kaddr = page_address(node_page); 79 struct f2fs_node *raw_node = (struct f2fs_node *)kaddr; 80 struct f2fs_inode *raw_inode = &(raw_node->i); 81 82 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 83 i_size_write(inode, le64_to_cpu(raw_inode->i_size)); 84 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 85 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); 86 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 87 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 88 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); 89 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 90 91 return recover_dentry(node_page, inode); 92 } 93 94 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 95 { 96 unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); 97 struct curseg_info *curseg; 98 struct page *page; 99 block_t blkaddr; 100 int err = 0; 101 102 /* get node pages in the current segment */ 103 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 104 blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; 105 106 /* read node page */ 107 page = alloc_page(GFP_F2FS_ZERO); 108 if (IS_ERR(page)) 109 return PTR_ERR(page); 110 lock_page(page); 111 112 while (1) { 113 struct fsync_inode_entry *entry; 114 115 if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) 116 goto out; 117 118 if (cp_ver != cpver_of_node(page)) 119 goto out; 120 121 if (!is_fsync_dnode(page)) 122 goto next; 123 124 entry = get_fsync_inode(head, ino_of_node(page)); 125 if (entry) { 126 entry->blkaddr = blkaddr; 127 if (IS_INODE(page) && is_dent_dnode(page)) 128 set_inode_flag(F2FS_I(entry->inode), 129 FI_INC_LINK); 130 } else { 131 if (IS_INODE(page) && is_dent_dnode(page)) { 132 if (recover_inode_page(sbi, page)) { 133 err = -ENOMEM; 134 goto out; 135 } 136 } 137 138 /* add this fsync inode to the list */ 139 entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); 140 if (!entry) { 141 err = -ENOMEM; 142 goto out; 143 } 144 145 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 146 if (IS_ERR(entry->inode)) { 147 err = PTR_ERR(entry->inode); 148 kmem_cache_free(fsync_entry_slab, entry); 149 goto out; 150 } 151 152 list_add_tail(&entry->list, head); 153 entry->blkaddr = blkaddr; 154 } 155 if (IS_INODE(page)) { 156 err = recover_inode(entry->inode, page); 157 if (err) 158 goto out; 159 } 160 next: 161 /* check next segment */ 162 blkaddr = next_blkaddr_of_node(page); 163 ClearPageUptodate(page); 164 } 165 out: 166 unlock_page(page); 167 __free_pages(page, 0); 168 return err; 169 } 170 171 static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi, 172 struct list_head *head) 173 { 174 struct fsync_inode_entry *entry, *tmp; 175 176 list_for_each_entry_safe(entry, tmp, head, list) { 177 iput(entry->inode); 178 list_del(&entry->list); 179 kmem_cache_free(fsync_entry_slab, entry); 180 } 181 } 182 183 static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 184 block_t blkaddr) 185 { 186 struct seg_entry *sentry; 187 unsigned int segno = GET_SEGNO(sbi, blkaddr); 188 unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & 189 (sbi->blocks_per_seg - 1); 190 struct f2fs_summary sum; 191 nid_t ino; 192 void *kaddr; 193 struct inode *inode; 194 struct page *node_page; 195 block_t bidx; 196 int i; 197 198 sentry = get_seg_entry(sbi, segno); 199 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 200 return; 201 202 /* Get the previous summary */ 203 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 204 struct curseg_info *curseg = CURSEG_I(sbi, i); 205 if (curseg->segno == segno) { 206 sum = curseg->sum_blk->entries[blkoff]; 207 break; 208 } 209 } 210 if (i > CURSEG_COLD_DATA) { 211 struct page *sum_page = get_sum_page(sbi, segno); 212 struct f2fs_summary_block *sum_node; 213 kaddr = page_address(sum_page); 214 sum_node = (struct f2fs_summary_block *)kaddr; 215 sum = sum_node->entries[blkoff]; 216 f2fs_put_page(sum_page, 1); 217 } 218 219 /* Get the node page */ 220 node_page = get_node_page(sbi, le32_to_cpu(sum.nid)); 221 bidx = start_bidx_of_node(ofs_of_node(node_page)) + 222 le16_to_cpu(sum.ofs_in_node); 223 ino = ino_of_node(node_page); 224 f2fs_put_page(node_page, 1); 225 226 /* Deallocate previous index in the node page */ 227 inode = f2fs_iget(sbi->sb, ino); 228 if (IS_ERR(inode)) 229 return; 230 231 truncate_hole(inode, bidx, bidx + 1); 232 iput(inode); 233 } 234 235 static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 236 struct page *page, block_t blkaddr) 237 { 238 unsigned int start, end; 239 struct dnode_of_data dn; 240 struct f2fs_summary sum; 241 struct node_info ni; 242 243 start = start_bidx_of_node(ofs_of_node(page)); 244 if (IS_INODE(page)) 245 end = start + ADDRS_PER_INODE; 246 else 247 end = start + ADDRS_PER_BLOCK; 248 249 set_new_dnode(&dn, inode, NULL, NULL, 0); 250 if (get_dnode_of_data(&dn, start, 0)) 251 return; 252 253 wait_on_page_writeback(dn.node_page); 254 255 get_node_info(sbi, dn.nid, &ni); 256 BUG_ON(ni.ino != ino_of_node(page)); 257 BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page)); 258 259 for (; start < end; start++) { 260 block_t src, dest; 261 262 src = datablock_addr(dn.node_page, dn.ofs_in_node); 263 dest = datablock_addr(page, dn.ofs_in_node); 264 265 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 266 if (src == NULL_ADDR) { 267 int err = reserve_new_block(&dn); 268 /* We should not get -ENOSPC */ 269 BUG_ON(err); 270 } 271 272 /* Check the previous node page having this index */ 273 check_index_in_prev_nodes(sbi, dest); 274 275 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 276 277 /* write dummy data page */ 278 recover_data_page(sbi, NULL, &sum, src, dest); 279 update_extent_cache(dest, &dn); 280 } 281 dn.ofs_in_node++; 282 } 283 284 /* write node page in place */ 285 set_summary(&sum, dn.nid, 0, 0); 286 if (IS_INODE(dn.node_page)) 287 sync_inode_page(&dn); 288 289 copy_node_footer(dn.node_page, page); 290 fill_node_footer(dn.node_page, dn.nid, ni.ino, 291 ofs_of_node(page), false); 292 set_page_dirty(dn.node_page); 293 294 recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); 295 f2fs_put_dnode(&dn); 296 } 297 298 static void recover_data(struct f2fs_sb_info *sbi, 299 struct list_head *head, int type) 300 { 301 unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); 302 struct curseg_info *curseg; 303 struct page *page; 304 block_t blkaddr; 305 306 /* get node pages in the current segment */ 307 curseg = CURSEG_I(sbi, type); 308 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 309 310 /* read node page */ 311 page = alloc_page(GFP_NOFS | __GFP_ZERO); 312 if (IS_ERR(page)) 313 return; 314 lock_page(page); 315 316 while (1) { 317 struct fsync_inode_entry *entry; 318 319 if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) 320 goto out; 321 322 if (cp_ver != cpver_of_node(page)) 323 goto out; 324 325 entry = get_fsync_inode(head, ino_of_node(page)); 326 if (!entry) 327 goto next; 328 329 do_recover_data(sbi, entry->inode, page, blkaddr); 330 331 if (entry->blkaddr == blkaddr) { 332 iput(entry->inode); 333 list_del(&entry->list); 334 kmem_cache_free(fsync_entry_slab, entry); 335 } 336 next: 337 /* check next segment */ 338 blkaddr = next_blkaddr_of_node(page); 339 ClearPageUptodate(page); 340 } 341 out: 342 unlock_page(page); 343 __free_pages(page, 0); 344 345 allocate_new_segments(sbi); 346 } 347 348 void recover_fsync_data(struct f2fs_sb_info *sbi) 349 { 350 struct list_head inode_list; 351 352 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 353 sizeof(struct fsync_inode_entry), NULL); 354 if (unlikely(!fsync_entry_slab)) 355 return; 356 357 INIT_LIST_HEAD(&inode_list); 358 359 /* step #1: find fsynced inode numbers */ 360 if (find_fsync_dnodes(sbi, &inode_list)) 361 goto out; 362 363 if (list_empty(&inode_list)) 364 goto out; 365 366 /* step #2: recover data */ 367 sbi->por_doing = 1; 368 recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 369 sbi->por_doing = 0; 370 BUG_ON(!list_empty(&inode_list)); 371 out: 372 destroy_fsync_dnodes(sbi, &inode_list); 373 kmem_cache_destroy(fsync_entry_slab); 374 write_checkpoint(sbi, false); 375 } 376