1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 53 > sbi->user_block_count) 54 return false; 55 return true; 56 } 57 58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 59 nid_t ino) 60 { 61 struct fsync_inode_entry *entry; 62 63 list_for_each_entry(entry, head, list) 64 if (entry->inode->i_ino == ino) 65 return entry; 66 67 return NULL; 68 } 69 70 static int recover_dentry(struct inode *inode, struct page *ipage) 71 { 72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 73 nid_t pino = le32_to_cpu(raw_inode->i_pino); 74 struct f2fs_dir_entry *de; 75 struct qstr name; 76 struct page *page; 77 struct inode *dir, *einode; 78 int err = 0; 79 80 dir = f2fs_iget(inode->i_sb, pino); 81 if (IS_ERR(dir)) { 82 err = PTR_ERR(dir); 83 goto out; 84 } 85 86 name.len = le32_to_cpu(raw_inode->i_namelen); 87 name.name = raw_inode->i_name; 88 89 if (unlikely(name.len > F2FS_NAME_LEN)) { 90 WARN_ON(1); 91 err = -ENAMETOOLONG; 92 goto out_err; 93 } 94 retry: 95 de = f2fs_find_entry(dir, &name, &page); 96 if (de && inode->i_ino == le32_to_cpu(de->ino)) { 97 clear_inode_flag(F2FS_I(inode), FI_INC_LINK); 98 goto out_unmap_put; 99 } 100 if (de) { 101 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 102 if (IS_ERR(einode)) { 103 WARN_ON(1); 104 err = PTR_ERR(einode); 105 if (err == -ENOENT) 106 err = -EEXIST; 107 goto out_unmap_put; 108 } 109 err = acquire_orphan_inode(F2FS_I_SB(inode)); 110 if (err) { 111 iput(einode); 112 goto out_unmap_put; 113 } 114 f2fs_delete_entry(de, page, dir, einode); 115 iput(einode); 116 goto retry; 117 } 118 err = __f2fs_add_link(dir, &name, inode); 119 if (err) 120 goto out_err; 121 122 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) { 123 iput(dir); 124 } else { 125 add_dirty_dir_inode(dir); 126 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 127 } 128 129 goto out; 130 131 out_unmap_put: 132 f2fs_dentry_kunmap(dir, page); 133 f2fs_put_page(page, 0); 134 out_err: 135 iput(dir); 136 out: 137 f2fs_msg(inode->i_sb, KERN_NOTICE, 138 "%s: ino = %x, name = %s, dir = %lx, err = %d", 139 __func__, ino_of_node(ipage), raw_inode->i_name, 140 IS_ERR(dir) ? 0 : dir->i_ino, err); 141 return err; 142 } 143 144 static void recover_inode(struct inode *inode, struct page *page) 145 { 146 struct f2fs_inode *raw = F2FS_INODE(page); 147 148 inode->i_mode = le16_to_cpu(raw->i_mode); 149 i_size_write(inode, le64_to_cpu(raw->i_size)); 150 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime); 151 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 152 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 153 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 154 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 155 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 156 157 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 158 ino_of_node(page), F2FS_INODE(page)->i_name); 159 } 160 161 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 162 { 163 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 164 struct curseg_info *curseg; 165 struct page *page = NULL; 166 block_t blkaddr; 167 int err = 0; 168 169 /* get node pages in the current segment */ 170 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 171 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 172 173 ra_meta_pages(sbi, blkaddr, 1, META_POR); 174 175 while (1) { 176 struct fsync_inode_entry *entry; 177 178 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi)) 179 return 0; 180 181 page = get_meta_page(sbi, blkaddr); 182 183 if (cp_ver != cpver_of_node(page)) 184 break; 185 186 if (!is_fsync_dnode(page)) 187 goto next; 188 189 entry = get_fsync_inode(head, ino_of_node(page)); 190 if (entry) { 191 if (IS_INODE(page) && is_dent_dnode(page)) 192 set_inode_flag(F2FS_I(entry->inode), 193 FI_INC_LINK); 194 } else { 195 if (IS_INODE(page) && is_dent_dnode(page)) { 196 err = recover_inode_page(sbi, page); 197 if (err) 198 break; 199 } 200 201 /* add this fsync inode to the list */ 202 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 203 if (!entry) { 204 err = -ENOMEM; 205 break; 206 } 207 /* 208 * CP | dnode(F) | inode(DF) 209 * For this case, we should not give up now. 210 */ 211 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 212 if (IS_ERR(entry->inode)) { 213 err = PTR_ERR(entry->inode); 214 kmem_cache_free(fsync_entry_slab, entry); 215 if (err == -ENOENT) 216 goto next; 217 break; 218 } 219 list_add_tail(&entry->list, head); 220 } 221 entry->blkaddr = blkaddr; 222 223 if (IS_INODE(page)) { 224 entry->last_inode = blkaddr; 225 if (is_dent_dnode(page)) 226 entry->last_dentry = blkaddr; 227 } 228 next: 229 /* check next segment */ 230 blkaddr = next_blkaddr_of_node(page); 231 f2fs_put_page(page, 1); 232 233 ra_meta_pages_cond(sbi, blkaddr); 234 } 235 f2fs_put_page(page, 1); 236 return err; 237 } 238 239 static void destroy_fsync_dnodes(struct list_head *head) 240 { 241 struct fsync_inode_entry *entry, *tmp; 242 243 list_for_each_entry_safe(entry, tmp, head, list) { 244 iput(entry->inode); 245 list_del(&entry->list); 246 kmem_cache_free(fsync_entry_slab, entry); 247 } 248 } 249 250 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 251 block_t blkaddr, struct dnode_of_data *dn) 252 { 253 struct seg_entry *sentry; 254 unsigned int segno = GET_SEGNO(sbi, blkaddr); 255 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 256 struct f2fs_summary_block *sum_node; 257 struct f2fs_summary sum; 258 struct page *sum_page, *node_page; 259 nid_t ino, nid; 260 struct inode *inode; 261 unsigned int offset; 262 block_t bidx; 263 int i; 264 265 sentry = get_seg_entry(sbi, segno); 266 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 267 return 0; 268 269 /* Get the previous summary */ 270 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 271 struct curseg_info *curseg = CURSEG_I(sbi, i); 272 if (curseg->segno == segno) { 273 sum = curseg->sum_blk->entries[blkoff]; 274 goto got_it; 275 } 276 } 277 278 sum_page = get_sum_page(sbi, segno); 279 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 280 sum = sum_node->entries[blkoff]; 281 f2fs_put_page(sum_page, 1); 282 got_it: 283 /* Use the locked dnode page and inode */ 284 nid = le32_to_cpu(sum.nid); 285 if (dn->inode->i_ino == nid) { 286 struct dnode_of_data tdn = *dn; 287 tdn.nid = nid; 288 tdn.node_page = dn->inode_page; 289 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 290 truncate_data_blocks_range(&tdn, 1); 291 return 0; 292 } else if (dn->nid == nid) { 293 struct dnode_of_data tdn = *dn; 294 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 295 truncate_data_blocks_range(&tdn, 1); 296 return 0; 297 } 298 299 /* Get the node page */ 300 node_page = get_node_page(sbi, nid); 301 if (IS_ERR(node_page)) 302 return PTR_ERR(node_page); 303 304 offset = ofs_of_node(node_page); 305 ino = ino_of_node(node_page); 306 f2fs_put_page(node_page, 1); 307 308 if (ino != dn->inode->i_ino) { 309 /* Deallocate previous index in the node page */ 310 inode = f2fs_iget(sbi->sb, ino); 311 if (IS_ERR(inode)) 312 return PTR_ERR(inode); 313 } else { 314 inode = dn->inode; 315 } 316 317 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 318 le16_to_cpu(sum.ofs_in_node); 319 320 if (ino != dn->inode->i_ino) { 321 truncate_hole(inode, bidx, bidx + 1); 322 iput(inode); 323 } else { 324 struct dnode_of_data tdn; 325 set_new_dnode(&tdn, inode, dn->inode_page, NULL, 0); 326 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 327 return 0; 328 if (tdn.data_blkaddr != NULL_ADDR) 329 truncate_data_blocks_range(&tdn, 1); 330 f2fs_put_page(tdn.node_page, 1); 331 } 332 return 0; 333 } 334 335 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 336 struct page *page, block_t blkaddr) 337 { 338 struct f2fs_inode_info *fi = F2FS_I(inode); 339 unsigned int start, end; 340 struct dnode_of_data dn; 341 struct f2fs_summary sum; 342 struct node_info ni; 343 int err = 0, recovered = 0; 344 345 /* step 1: recover xattr */ 346 if (IS_INODE(page)) { 347 recover_inline_xattr(inode, page); 348 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 349 recover_xattr_data(inode, page, blkaddr); 350 goto out; 351 } 352 353 /* step 2: recover inline data */ 354 if (recover_inline_data(inode, page)) 355 goto out; 356 357 /* step 3: recover data indices */ 358 start = start_bidx_of_node(ofs_of_node(page), fi); 359 end = start + ADDRS_PER_PAGE(page, fi); 360 361 f2fs_lock_op(sbi); 362 363 set_new_dnode(&dn, inode, NULL, NULL, 0); 364 365 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 366 if (err) { 367 f2fs_unlock_op(sbi); 368 goto out; 369 } 370 371 f2fs_wait_on_page_writeback(dn.node_page, NODE); 372 373 get_node_info(sbi, dn.nid, &ni); 374 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 375 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 376 377 for (; start < end; start++) { 378 block_t src, dest; 379 380 src = datablock_addr(dn.node_page, dn.ofs_in_node); 381 dest = datablock_addr(page, dn.ofs_in_node); 382 383 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 384 if (src == NULL_ADDR) { 385 err = reserve_new_block(&dn); 386 /* We should not get -ENOSPC */ 387 f2fs_bug_on(sbi, err); 388 } 389 390 /* Check the previous node page having this index */ 391 err = check_index_in_prev_nodes(sbi, dest, &dn); 392 if (err) 393 goto err; 394 395 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 396 397 /* write dummy data page */ 398 recover_data_page(sbi, NULL, &sum, src, dest); 399 update_extent_cache(dest, &dn); 400 recovered++; 401 } 402 dn.ofs_in_node++; 403 } 404 405 /* write node page in place */ 406 set_summary(&sum, dn.nid, 0, 0); 407 if (IS_INODE(dn.node_page)) 408 sync_inode_page(&dn); 409 410 copy_node_footer(dn.node_page, page); 411 fill_node_footer(dn.node_page, dn.nid, ni.ino, 412 ofs_of_node(page), false); 413 set_page_dirty(dn.node_page); 414 err: 415 f2fs_put_dnode(&dn); 416 f2fs_unlock_op(sbi); 417 out: 418 f2fs_msg(sbi->sb, KERN_NOTICE, 419 "recover_data: ino = %lx, recovered = %d blocks, err = %d", 420 inode->i_ino, recovered, err); 421 return err; 422 } 423 424 static int recover_data(struct f2fs_sb_info *sbi, 425 struct list_head *head, int type) 426 { 427 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 428 struct curseg_info *curseg; 429 struct page *page = NULL; 430 int err = 0; 431 block_t blkaddr; 432 433 /* get node pages in the current segment */ 434 curseg = CURSEG_I(sbi, type); 435 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 436 437 while (1) { 438 struct fsync_inode_entry *entry; 439 440 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi)) 441 break; 442 443 ra_meta_pages_cond(sbi, blkaddr); 444 445 page = get_meta_page(sbi, blkaddr); 446 447 if (cp_ver != cpver_of_node(page)) { 448 f2fs_put_page(page, 1); 449 break; 450 } 451 452 entry = get_fsync_inode(head, ino_of_node(page)); 453 if (!entry) 454 goto next; 455 /* 456 * inode(x) | CP | inode(x) | dnode(F) 457 * In this case, we can lose the latest inode(x). 458 * So, call recover_inode for the inode update. 459 */ 460 if (entry->last_inode == blkaddr) 461 recover_inode(entry->inode, page); 462 if (entry->last_dentry == blkaddr) { 463 err = recover_dentry(entry->inode, page); 464 if (err) { 465 f2fs_put_page(page, 1); 466 break; 467 } 468 } 469 err = do_recover_data(sbi, entry->inode, page, blkaddr); 470 if (err) { 471 f2fs_put_page(page, 1); 472 break; 473 } 474 475 if (entry->blkaddr == blkaddr) { 476 iput(entry->inode); 477 list_del(&entry->list); 478 kmem_cache_free(fsync_entry_slab, entry); 479 } 480 next: 481 /* check next segment */ 482 blkaddr = next_blkaddr_of_node(page); 483 f2fs_put_page(page, 1); 484 } 485 if (!err) 486 allocate_new_segments(sbi); 487 return err; 488 } 489 490 int recover_fsync_data(struct f2fs_sb_info *sbi) 491 { 492 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 493 struct list_head inode_list; 494 block_t blkaddr; 495 int err; 496 bool need_writecp = false; 497 498 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 499 sizeof(struct fsync_inode_entry)); 500 if (!fsync_entry_slab) 501 return -ENOMEM; 502 503 INIT_LIST_HEAD(&inode_list); 504 505 /* step #1: find fsynced inode numbers */ 506 sbi->por_doing = true; 507 508 /* prevent checkpoint */ 509 mutex_lock(&sbi->cp_mutex); 510 511 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 512 513 err = find_fsync_dnodes(sbi, &inode_list); 514 if (err) 515 goto out; 516 517 if (list_empty(&inode_list)) 518 goto out; 519 520 need_writecp = true; 521 522 /* step #2: recover data */ 523 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 524 if (!err) 525 f2fs_bug_on(sbi, !list_empty(&inode_list)); 526 out: 527 destroy_fsync_dnodes(&inode_list); 528 kmem_cache_destroy(fsync_entry_slab); 529 530 /* truncate meta pages to be used by the recovery */ 531 truncate_inode_pages_range(META_MAPPING(sbi), 532 MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1); 533 534 if (err) { 535 truncate_inode_pages_final(NODE_MAPPING(sbi)); 536 truncate_inode_pages_final(META_MAPPING(sbi)); 537 } 538 539 sbi->por_doing = false; 540 if (err) { 541 discard_next_dnode(sbi, blkaddr); 542 543 /* Flush all the NAT/SIT pages */ 544 while (get_pages(sbi, F2FS_DIRTY_META)) 545 sync_meta_pages(sbi, META, LONG_MAX); 546 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 547 mutex_unlock(&sbi->cp_mutex); 548 } else if (need_writecp) { 549 struct cp_control cpc = { 550 .reason = CP_SYNC, 551 }; 552 mutex_unlock(&sbi->cp_mutex); 553 write_checkpoint(sbi, &cpc); 554 } else { 555 mutex_unlock(&sbi->cp_mutex); 556 } 557 return err; 558 } 559