1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 53 54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 55 return false; 56 return true; 57 } 58 59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 60 nid_t ino) 61 { 62 struct fsync_inode_entry *entry; 63 64 list_for_each_entry(entry, head, list) 65 if (entry->inode->i_ino == ino) 66 return entry; 67 68 return NULL; 69 } 70 71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 72 struct list_head *head, nid_t ino, bool quota_inode) 73 { 74 struct inode *inode; 75 struct fsync_inode_entry *entry; 76 int err; 77 78 inode = f2fs_iget_retry(sbi->sb, ino); 79 if (IS_ERR(inode)) 80 return ERR_CAST(inode); 81 82 err = dquot_initialize(inode); 83 if (err) 84 goto err_out; 85 86 if (quota_inode) { 87 err = dquot_alloc_inode(inode); 88 if (err) 89 goto err_out; 90 } 91 92 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 93 entry->inode = inode; 94 list_add_tail(&entry->list, head); 95 96 return entry; 97 err_out: 98 iput(inode); 99 return ERR_PTR(err); 100 } 101 102 static void del_fsync_inode(struct fsync_inode_entry *entry) 103 { 104 iput(entry->inode); 105 list_del(&entry->list); 106 kmem_cache_free(fsync_entry_slab, entry); 107 } 108 109 static int recover_dentry(struct inode *inode, struct page *ipage, 110 struct list_head *dir_list) 111 { 112 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 113 nid_t pino = le32_to_cpu(raw_inode->i_pino); 114 struct f2fs_dir_entry *de; 115 struct fscrypt_name fname; 116 struct page *page; 117 struct inode *dir, *einode; 118 struct fsync_inode_entry *entry; 119 int err = 0; 120 char *name; 121 122 entry = get_fsync_inode(dir_list, pino); 123 if (!entry) { 124 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, 125 pino, false); 126 if (IS_ERR(entry)) { 127 dir = ERR_CAST(entry); 128 err = PTR_ERR(entry); 129 goto out; 130 } 131 } 132 133 dir = entry->inode; 134 135 memset(&fname, 0, sizeof(struct fscrypt_name)); 136 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen); 137 fname.disk_name.name = raw_inode->i_name; 138 139 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) { 140 WARN_ON(1); 141 err = -ENAMETOOLONG; 142 goto out; 143 } 144 retry: 145 de = __f2fs_find_entry(dir, &fname, &page); 146 if (de && inode->i_ino == le32_to_cpu(de->ino)) 147 goto out_put; 148 149 if (de) { 150 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 151 if (IS_ERR(einode)) { 152 WARN_ON(1); 153 err = PTR_ERR(einode); 154 if (err == -ENOENT) 155 err = -EEXIST; 156 goto out_put; 157 } 158 159 err = dquot_initialize(einode); 160 if (err) { 161 iput(einode); 162 goto out_put; 163 } 164 165 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); 166 if (err) { 167 iput(einode); 168 goto out_put; 169 } 170 f2fs_delete_entry(de, page, dir, einode); 171 iput(einode); 172 goto retry; 173 } else if (IS_ERR(page)) { 174 err = PTR_ERR(page); 175 } else { 176 err = f2fs_add_dentry(dir, &fname, inode, 177 inode->i_ino, inode->i_mode); 178 } 179 if (err == -ENOMEM) 180 goto retry; 181 goto out; 182 183 out_put: 184 f2fs_put_page(page, 0); 185 out: 186 if (file_enc_name(inode)) 187 name = "<encrypted>"; 188 else 189 name = raw_inode->i_name; 190 f2fs_msg(inode->i_sb, KERN_NOTICE, 191 "%s: ino = %x, name = %s, dir = %lx, err = %d", 192 __func__, ino_of_node(ipage), name, 193 IS_ERR(dir) ? 0 : dir->i_ino, err); 194 return err; 195 } 196 197 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) 198 { 199 if (ri->i_inline & F2FS_PIN_FILE) 200 set_inode_flag(inode, FI_PIN_FILE); 201 else 202 clear_inode_flag(inode, FI_PIN_FILE); 203 if (ri->i_inline & F2FS_DATA_EXIST) 204 set_inode_flag(inode, FI_DATA_EXIST); 205 else 206 clear_inode_flag(inode, FI_DATA_EXIST); 207 } 208 209 static void recover_inode(struct inode *inode, struct page *page) 210 { 211 struct f2fs_inode *raw = F2FS_INODE(page); 212 char *name; 213 214 inode->i_mode = le16_to_cpu(raw->i_mode); 215 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 216 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 217 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 218 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 219 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 220 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 221 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 222 223 F2FS_I(inode)->i_advise = raw->i_advise; 224 225 recover_inline_flags(inode, raw); 226 227 if (file_enc_name(inode)) 228 name = "<encrypted>"; 229 else 230 name = F2FS_INODE(page)->i_name; 231 232 f2fs_msg(inode->i_sb, KERN_NOTICE, 233 "recover_inode: ino = %x, name = %s, inline = %x", 234 ino_of_node(page), name, raw->i_inline); 235 } 236 237 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, 238 bool check_only) 239 { 240 struct curseg_info *curseg; 241 struct page *page = NULL; 242 block_t blkaddr; 243 unsigned int loop_cnt = 0; 244 unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg - 245 valid_user_blocks(sbi); 246 int err = 0; 247 248 /* get node pages in the current segment */ 249 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 250 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 251 252 while (1) { 253 struct fsync_inode_entry *entry; 254 255 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 256 return 0; 257 258 page = f2fs_get_tmp_page(sbi, blkaddr); 259 if (IS_ERR(page)) { 260 err = PTR_ERR(page); 261 break; 262 } 263 264 if (!is_recoverable_dnode(page)) 265 break; 266 267 if (!is_fsync_dnode(page)) 268 goto next; 269 270 entry = get_fsync_inode(head, ino_of_node(page)); 271 if (!entry) { 272 bool quota_inode = false; 273 274 if (!check_only && 275 IS_INODE(page) && is_dent_dnode(page)) { 276 err = f2fs_recover_inode_page(sbi, page); 277 if (err) 278 break; 279 quota_inode = true; 280 } 281 282 /* 283 * CP | dnode(F) | inode(DF) 284 * For this case, we should not give up now. 285 */ 286 entry = add_fsync_inode(sbi, head, ino_of_node(page), 287 quota_inode); 288 if (IS_ERR(entry)) { 289 err = PTR_ERR(entry); 290 if (err == -ENOENT) { 291 err = 0; 292 goto next; 293 } 294 break; 295 } 296 } 297 entry->blkaddr = blkaddr; 298 299 if (IS_INODE(page) && is_dent_dnode(page)) 300 entry->last_dentry = blkaddr; 301 next: 302 /* sanity check in order to detect looped node chain */ 303 if (++loop_cnt >= free_blocks || 304 blkaddr == next_blkaddr_of_node(page)) { 305 f2fs_msg(sbi->sb, KERN_NOTICE, 306 "%s: detect looped node chain, " 307 "blkaddr:%u, next:%u", 308 __func__, blkaddr, next_blkaddr_of_node(page)); 309 err = -EINVAL; 310 break; 311 } 312 313 /* check next segment */ 314 blkaddr = next_blkaddr_of_node(page); 315 f2fs_put_page(page, 1); 316 317 f2fs_ra_meta_pages_cond(sbi, blkaddr); 318 } 319 f2fs_put_page(page, 1); 320 return err; 321 } 322 323 static void destroy_fsync_dnodes(struct list_head *head) 324 { 325 struct fsync_inode_entry *entry, *tmp; 326 327 list_for_each_entry_safe(entry, tmp, head, list) 328 del_fsync_inode(entry); 329 } 330 331 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 332 block_t blkaddr, struct dnode_of_data *dn) 333 { 334 struct seg_entry *sentry; 335 unsigned int segno = GET_SEGNO(sbi, blkaddr); 336 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 337 struct f2fs_summary_block *sum_node; 338 struct f2fs_summary sum; 339 struct page *sum_page, *node_page; 340 struct dnode_of_data tdn = *dn; 341 nid_t ino, nid; 342 struct inode *inode; 343 unsigned int offset; 344 block_t bidx; 345 int i; 346 347 sentry = get_seg_entry(sbi, segno); 348 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 349 return 0; 350 351 /* Get the previous summary */ 352 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 353 struct curseg_info *curseg = CURSEG_I(sbi, i); 354 if (curseg->segno == segno) { 355 sum = curseg->sum_blk->entries[blkoff]; 356 goto got_it; 357 } 358 } 359 360 sum_page = f2fs_get_sum_page(sbi, segno); 361 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 362 sum = sum_node->entries[blkoff]; 363 f2fs_put_page(sum_page, 1); 364 got_it: 365 /* Use the locked dnode page and inode */ 366 nid = le32_to_cpu(sum.nid); 367 if (dn->inode->i_ino == nid) { 368 tdn.nid = nid; 369 if (!dn->inode_page_locked) 370 lock_page(dn->inode_page); 371 tdn.node_page = dn->inode_page; 372 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 373 goto truncate_out; 374 } else if (dn->nid == nid) { 375 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 376 goto truncate_out; 377 } 378 379 /* Get the node page */ 380 node_page = f2fs_get_node_page(sbi, nid); 381 if (IS_ERR(node_page)) 382 return PTR_ERR(node_page); 383 384 offset = ofs_of_node(node_page); 385 ino = ino_of_node(node_page); 386 f2fs_put_page(node_page, 1); 387 388 if (ino != dn->inode->i_ino) { 389 int ret; 390 391 /* Deallocate previous index in the node page */ 392 inode = f2fs_iget_retry(sbi->sb, ino); 393 if (IS_ERR(inode)) 394 return PTR_ERR(inode); 395 396 ret = dquot_initialize(inode); 397 if (ret) { 398 iput(inode); 399 return ret; 400 } 401 } else { 402 inode = dn->inode; 403 } 404 405 bidx = f2fs_start_bidx_of_node(offset, inode) + 406 le16_to_cpu(sum.ofs_in_node); 407 408 /* 409 * if inode page is locked, unlock temporarily, but its reference 410 * count keeps alive. 411 */ 412 if (ino == dn->inode->i_ino && dn->inode_page_locked) 413 unlock_page(dn->inode_page); 414 415 set_new_dnode(&tdn, inode, NULL, NULL, 0); 416 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 417 goto out; 418 419 if (tdn.data_blkaddr == blkaddr) 420 f2fs_truncate_data_blocks_range(&tdn, 1); 421 422 f2fs_put_dnode(&tdn); 423 out: 424 if (ino != dn->inode->i_ino) 425 iput(inode); 426 else if (dn->inode_page_locked) 427 lock_page(dn->inode_page); 428 return 0; 429 430 truncate_out: 431 if (datablock_addr(tdn.inode, tdn.node_page, 432 tdn.ofs_in_node) == blkaddr) 433 f2fs_truncate_data_blocks_range(&tdn, 1); 434 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 435 unlock_page(dn->inode_page); 436 return 0; 437 } 438 439 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 440 struct page *page) 441 { 442 struct dnode_of_data dn; 443 struct node_info ni; 444 unsigned int start, end; 445 int err = 0, recovered = 0; 446 447 /* step 1: recover xattr */ 448 if (IS_INODE(page)) { 449 f2fs_recover_inline_xattr(inode, page); 450 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 451 err = f2fs_recover_xattr_data(inode, page); 452 if (!err) 453 recovered++; 454 goto out; 455 } 456 457 /* step 2: recover inline data */ 458 if (f2fs_recover_inline_data(inode, page)) 459 goto out; 460 461 /* step 3: recover data indices */ 462 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); 463 end = start + ADDRS_PER_PAGE(page, inode); 464 465 set_new_dnode(&dn, inode, NULL, NULL, 0); 466 retry_dn: 467 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); 468 if (err) { 469 if (err == -ENOMEM) { 470 congestion_wait(BLK_RW_ASYNC, HZ/50); 471 goto retry_dn; 472 } 473 goto out; 474 } 475 476 f2fs_wait_on_page_writeback(dn.node_page, NODE, true); 477 478 err = f2fs_get_node_info(sbi, dn.nid, &ni); 479 if (err) 480 goto err; 481 482 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 483 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 484 485 for (; start < end; start++, dn.ofs_in_node++) { 486 block_t src, dest; 487 488 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 489 dest = datablock_addr(dn.inode, page, dn.ofs_in_node); 490 491 /* skip recovering if dest is the same as src */ 492 if (src == dest) 493 continue; 494 495 /* dest is invalid, just invalidate src block */ 496 if (dest == NULL_ADDR) { 497 f2fs_truncate_data_blocks_range(&dn, 1); 498 continue; 499 } 500 501 if (!file_keep_isize(inode) && 502 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 503 f2fs_i_size_write(inode, 504 (loff_t)(start + 1) << PAGE_SHIFT); 505 506 /* 507 * dest is reserved block, invalidate src block 508 * and then reserve one new block in dnode page. 509 */ 510 if (dest == NEW_ADDR) { 511 f2fs_truncate_data_blocks_range(&dn, 1); 512 f2fs_reserve_new_block(&dn); 513 continue; 514 } 515 516 /* dest is valid block, try to recover from src to dest */ 517 if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 518 519 if (src == NULL_ADDR) { 520 err = f2fs_reserve_new_block(&dn); 521 while (err && 522 IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) 523 err = f2fs_reserve_new_block(&dn); 524 /* We should not get -ENOSPC */ 525 f2fs_bug_on(sbi, err); 526 if (err) 527 goto err; 528 } 529 retry_prev: 530 /* Check the previous node page having this index */ 531 err = check_index_in_prev_nodes(sbi, dest, &dn); 532 if (err) { 533 if (err == -ENOMEM) { 534 congestion_wait(BLK_RW_ASYNC, HZ/50); 535 goto retry_prev; 536 } 537 goto err; 538 } 539 540 /* write dummy data page */ 541 f2fs_replace_block(sbi, &dn, src, dest, 542 ni.version, false, false); 543 recovered++; 544 } 545 } 546 547 copy_node_footer(dn.node_page, page); 548 fill_node_footer(dn.node_page, dn.nid, ni.ino, 549 ofs_of_node(page), false); 550 set_page_dirty(dn.node_page); 551 err: 552 f2fs_put_dnode(&dn); 553 out: 554 f2fs_msg(sbi->sb, KERN_NOTICE, 555 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 556 inode->i_ino, 557 file_keep_isize(inode) ? "keep" : "recover", 558 recovered, err); 559 return err; 560 } 561 562 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 563 struct list_head *dir_list) 564 { 565 struct curseg_info *curseg; 566 struct page *page = NULL; 567 int err = 0; 568 block_t blkaddr; 569 570 /* get node pages in the current segment */ 571 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 572 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 573 574 while (1) { 575 struct fsync_inode_entry *entry; 576 577 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 578 break; 579 580 f2fs_ra_meta_pages_cond(sbi, blkaddr); 581 582 page = f2fs_get_tmp_page(sbi, blkaddr); 583 if (IS_ERR(page)) { 584 err = PTR_ERR(page); 585 break; 586 } 587 588 if (!is_recoverable_dnode(page)) { 589 f2fs_put_page(page, 1); 590 break; 591 } 592 593 entry = get_fsync_inode(inode_list, ino_of_node(page)); 594 if (!entry) 595 goto next; 596 /* 597 * inode(x) | CP | inode(x) | dnode(F) 598 * In this case, we can lose the latest inode(x). 599 * So, call recover_inode for the inode update. 600 */ 601 if (IS_INODE(page)) 602 recover_inode(entry->inode, page); 603 if (entry->last_dentry == blkaddr) { 604 err = recover_dentry(entry->inode, page, dir_list); 605 if (err) { 606 f2fs_put_page(page, 1); 607 break; 608 } 609 } 610 err = do_recover_data(sbi, entry->inode, page); 611 if (err) { 612 f2fs_put_page(page, 1); 613 break; 614 } 615 616 if (entry->blkaddr == blkaddr) 617 del_fsync_inode(entry); 618 next: 619 /* check next segment */ 620 blkaddr = next_blkaddr_of_node(page); 621 f2fs_put_page(page, 1); 622 } 623 if (!err) 624 f2fs_allocate_new_segments(sbi); 625 return err; 626 } 627 628 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 629 { 630 struct list_head inode_list; 631 struct list_head dir_list; 632 int err; 633 int ret = 0; 634 unsigned long s_flags = sbi->sb->s_flags; 635 bool need_writecp = false; 636 #ifdef CONFIG_QUOTA 637 int quota_enabled; 638 #endif 639 640 if (s_flags & SB_RDONLY) { 641 f2fs_msg(sbi->sb, KERN_INFO, 642 "recover fsync data on readonly fs"); 643 sbi->sb->s_flags &= ~SB_RDONLY; 644 } 645 646 #ifdef CONFIG_QUOTA 647 /* Needed for iput() to work correctly and not trash data */ 648 sbi->sb->s_flags |= SB_ACTIVE; 649 /* Turn on quotas so that they are updated correctly */ 650 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 651 #endif 652 653 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 654 sizeof(struct fsync_inode_entry)); 655 if (!fsync_entry_slab) { 656 err = -ENOMEM; 657 goto out; 658 } 659 660 INIT_LIST_HEAD(&inode_list); 661 INIT_LIST_HEAD(&dir_list); 662 663 /* prevent checkpoint */ 664 mutex_lock(&sbi->cp_mutex); 665 666 /* step #1: find fsynced inode numbers */ 667 err = find_fsync_dnodes(sbi, &inode_list, check_only); 668 if (err || list_empty(&inode_list)) 669 goto skip; 670 671 if (check_only) { 672 ret = 1; 673 goto skip; 674 } 675 676 need_writecp = true; 677 678 /* step #2: recover data */ 679 err = recover_data(sbi, &inode_list, &dir_list); 680 if (!err) 681 f2fs_bug_on(sbi, !list_empty(&inode_list)); 682 skip: 683 destroy_fsync_dnodes(&inode_list); 684 685 /* truncate meta pages to be used by the recovery */ 686 truncate_inode_pages_range(META_MAPPING(sbi), 687 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 688 689 if (err) { 690 truncate_inode_pages_final(NODE_MAPPING(sbi)); 691 truncate_inode_pages_final(META_MAPPING(sbi)); 692 } 693 694 clear_sbi_flag(sbi, SBI_POR_DOING); 695 mutex_unlock(&sbi->cp_mutex); 696 697 /* let's drop all the directory inodes for clean checkpoint */ 698 destroy_fsync_dnodes(&dir_list); 699 700 if (!err && need_writecp) { 701 struct cp_control cpc = { 702 .reason = CP_RECOVERY, 703 }; 704 err = f2fs_write_checkpoint(sbi, &cpc); 705 } 706 707 kmem_cache_destroy(fsync_entry_slab); 708 out: 709 #ifdef CONFIG_QUOTA 710 /* Turn quotas off */ 711 if (quota_enabled) 712 f2fs_quota_off_umount(sbi->sb); 713 #endif 714 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 715 716 return ret ? ret: err; 717 } 718