1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/recovery.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include "f2fs.h" 11 #include "node.h" 12 #include "segment.h" 13 14 /* 15 * Roll forward recovery scenarios. 16 * 17 * [Term] F: fsync_mark, D: dentry_mark 18 * 19 * 1. inode(x) | CP | inode(x) | dnode(F) 20 * -> Update the latest inode(x). 21 * 22 * 2. inode(x) | CP | inode(F) | dnode(F) 23 * -> No problem. 24 * 25 * 3. inode(x) | CP | dnode(F) | inode(x) 26 * -> Recover to the latest dnode(F), and drop the last inode(x) 27 * 28 * 4. inode(x) | CP | dnode(F) | inode(F) 29 * -> No problem. 30 * 31 * 5. CP | inode(x) | dnode(F) 32 * -> The inode(DF) was missing. Should drop this dnode(F). 33 * 34 * 6. CP | inode(DF) | dnode(F) 35 * -> No problem. 36 * 37 * 7. CP | dnode(F) | inode(DF) 38 * -> If f2fs_iget fails, then goto next to find inode(DF). 39 * 40 * 8. CP | dnode(F) | inode(x) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * But it will fail due to no inode(DF). 43 */ 44 45 static struct kmem_cache *fsync_entry_slab; 46 47 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) 48 { 49 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 50 51 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 52 return false; 53 return true; 54 } 55 56 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 57 nid_t ino) 58 { 59 struct fsync_inode_entry *entry; 60 61 list_for_each_entry(entry, head, list) 62 if (entry->inode->i_ino == ino) 63 return entry; 64 65 return NULL; 66 } 67 68 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 69 struct list_head *head, nid_t ino, bool quota_inode) 70 { 71 struct inode *inode; 72 struct fsync_inode_entry *entry; 73 int err; 74 75 inode = f2fs_iget_retry(sbi->sb, ino); 76 if (IS_ERR(inode)) 77 return ERR_CAST(inode); 78 79 err = dquot_initialize(inode); 80 if (err) 81 goto err_out; 82 83 if (quota_inode) { 84 err = dquot_alloc_inode(inode); 85 if (err) 86 goto err_out; 87 } 88 89 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 90 entry->inode = inode; 91 list_add_tail(&entry->list, head); 92 93 return entry; 94 err_out: 95 iput(inode); 96 return ERR_PTR(err); 97 } 98 99 static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) 100 { 101 if (drop) { 102 /* inode should not be recovered, drop it */ 103 f2fs_inode_synced(entry->inode); 104 } 105 iput(entry->inode); 106 list_del(&entry->list); 107 kmem_cache_free(fsync_entry_slab, entry); 108 } 109 110 static int recover_dentry(struct inode *inode, struct page *ipage, 111 struct list_head *dir_list) 112 { 113 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 114 nid_t pino = le32_to_cpu(raw_inode->i_pino); 115 struct f2fs_dir_entry *de; 116 struct fscrypt_name fname; 117 struct page *page; 118 struct inode *dir, *einode; 119 struct fsync_inode_entry *entry; 120 int err = 0; 121 char *name; 122 123 entry = get_fsync_inode(dir_list, pino); 124 if (!entry) { 125 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, 126 pino, false); 127 if (IS_ERR(entry)) { 128 dir = ERR_CAST(entry); 129 err = PTR_ERR(entry); 130 goto out; 131 } 132 } 133 134 dir = entry->inode; 135 136 memset(&fname, 0, sizeof(struct fscrypt_name)); 137 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen); 138 fname.disk_name.name = raw_inode->i_name; 139 140 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) { 141 WARN_ON(1); 142 err = -ENAMETOOLONG; 143 goto out; 144 } 145 retry: 146 de = __f2fs_find_entry(dir, &fname, &page); 147 if (de && inode->i_ino == le32_to_cpu(de->ino)) 148 goto out_put; 149 150 if (de) { 151 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 152 if (IS_ERR(einode)) { 153 WARN_ON(1); 154 err = PTR_ERR(einode); 155 if (err == -ENOENT) 156 err = -EEXIST; 157 goto out_put; 158 } 159 160 err = dquot_initialize(einode); 161 if (err) { 162 iput(einode); 163 goto out_put; 164 } 165 166 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); 167 if (err) { 168 iput(einode); 169 goto out_put; 170 } 171 f2fs_delete_entry(de, page, dir, einode); 172 iput(einode); 173 goto retry; 174 } else if (IS_ERR(page)) { 175 err = PTR_ERR(page); 176 } else { 177 err = f2fs_add_dentry(dir, &fname, inode, 178 inode->i_ino, inode->i_mode); 179 } 180 if (err == -ENOMEM) 181 goto retry; 182 goto out; 183 184 out_put: 185 f2fs_put_page(page, 0); 186 out: 187 if (file_enc_name(inode)) 188 name = "<encrypted>"; 189 else 190 name = raw_inode->i_name; 191 f2fs_notice(F2FS_I_SB(inode), "%s: ino = %x, name = %s, dir = %lx, err = %d", 192 __func__, ino_of_node(ipage), name, 193 IS_ERR(dir) ? 0 : dir->i_ino, err); 194 return err; 195 } 196 197 static int recover_quota_data(struct inode *inode, struct page *page) 198 { 199 struct f2fs_inode *raw = F2FS_INODE(page); 200 struct iattr attr; 201 uid_t i_uid = le32_to_cpu(raw->i_uid); 202 gid_t i_gid = le32_to_cpu(raw->i_gid); 203 int err; 204 205 memset(&attr, 0, sizeof(attr)); 206 207 attr.ia_uid = make_kuid(inode->i_sb->s_user_ns, i_uid); 208 attr.ia_gid = make_kgid(inode->i_sb->s_user_ns, i_gid); 209 210 if (!uid_eq(attr.ia_uid, inode->i_uid)) 211 attr.ia_valid |= ATTR_UID; 212 if (!gid_eq(attr.ia_gid, inode->i_gid)) 213 attr.ia_valid |= ATTR_GID; 214 215 if (!attr.ia_valid) 216 return 0; 217 218 err = dquot_transfer(inode, &attr); 219 if (err) 220 set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); 221 return err; 222 } 223 224 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) 225 { 226 if (ri->i_inline & F2FS_PIN_FILE) 227 set_inode_flag(inode, FI_PIN_FILE); 228 else 229 clear_inode_flag(inode, FI_PIN_FILE); 230 if (ri->i_inline & F2FS_DATA_EXIST) 231 set_inode_flag(inode, FI_DATA_EXIST); 232 else 233 clear_inode_flag(inode, FI_DATA_EXIST); 234 } 235 236 static int recover_inode(struct inode *inode, struct page *page) 237 { 238 struct f2fs_inode *raw = F2FS_INODE(page); 239 char *name; 240 int err; 241 242 inode->i_mode = le16_to_cpu(raw->i_mode); 243 244 err = recover_quota_data(inode, page); 245 if (err) 246 return err; 247 248 i_uid_write(inode, le32_to_cpu(raw->i_uid)); 249 i_gid_write(inode, le32_to_cpu(raw->i_gid)); 250 251 if (raw->i_inline & F2FS_EXTRA_ATTR) { 252 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && 253 F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), 254 i_projid)) { 255 projid_t i_projid; 256 kprojid_t kprojid; 257 258 i_projid = (projid_t)le32_to_cpu(raw->i_projid); 259 kprojid = make_kprojid(&init_user_ns, i_projid); 260 261 if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) { 262 err = f2fs_transfer_project_quota(inode, 263 kprojid); 264 if (err) 265 return err; 266 F2FS_I(inode)->i_projid = kprojid; 267 } 268 } 269 } 270 271 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 272 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 273 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 274 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 275 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 276 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 277 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 278 279 F2FS_I(inode)->i_advise = raw->i_advise; 280 F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags); 281 f2fs_set_inode_flags(inode); 282 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 283 le16_to_cpu(raw->i_gc_failures); 284 285 recover_inline_flags(inode, raw); 286 287 f2fs_mark_inode_dirty_sync(inode, true); 288 289 if (file_enc_name(inode)) 290 name = "<encrypted>"; 291 else 292 name = F2FS_INODE(page)->i_name; 293 294 f2fs_notice(F2FS_I_SB(inode), "recover_inode: ino = %x, name = %s, inline = %x", 295 ino_of_node(page), name, raw->i_inline); 296 return 0; 297 } 298 299 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, 300 bool check_only) 301 { 302 struct curseg_info *curseg; 303 struct page *page = NULL; 304 block_t blkaddr; 305 unsigned int loop_cnt = 0; 306 unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg - 307 valid_user_blocks(sbi); 308 int err = 0; 309 310 /* get node pages in the current segment */ 311 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 312 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 313 314 while (1) { 315 struct fsync_inode_entry *entry; 316 317 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 318 return 0; 319 320 page = f2fs_get_tmp_page(sbi, blkaddr); 321 if (IS_ERR(page)) { 322 err = PTR_ERR(page); 323 break; 324 } 325 326 if (!is_recoverable_dnode(page)) { 327 f2fs_put_page(page, 1); 328 break; 329 } 330 331 if (!is_fsync_dnode(page)) 332 goto next; 333 334 entry = get_fsync_inode(head, ino_of_node(page)); 335 if (!entry) { 336 bool quota_inode = false; 337 338 if (!check_only && 339 IS_INODE(page) && is_dent_dnode(page)) { 340 err = f2fs_recover_inode_page(sbi, page); 341 if (err) { 342 f2fs_put_page(page, 1); 343 break; 344 } 345 quota_inode = true; 346 } 347 348 /* 349 * CP | dnode(F) | inode(DF) 350 * For this case, we should not give up now. 351 */ 352 entry = add_fsync_inode(sbi, head, ino_of_node(page), 353 quota_inode); 354 if (IS_ERR(entry)) { 355 err = PTR_ERR(entry); 356 if (err == -ENOENT) { 357 err = 0; 358 goto next; 359 } 360 f2fs_put_page(page, 1); 361 break; 362 } 363 } 364 entry->blkaddr = blkaddr; 365 366 if (IS_INODE(page) && is_dent_dnode(page)) 367 entry->last_dentry = blkaddr; 368 next: 369 /* sanity check in order to detect looped node chain */ 370 if (++loop_cnt >= free_blocks || 371 blkaddr == next_blkaddr_of_node(page)) { 372 f2fs_notice(sbi, "%s: detect looped node chain, blkaddr:%u, next:%u", 373 __func__, blkaddr, 374 next_blkaddr_of_node(page)); 375 f2fs_put_page(page, 1); 376 err = -EINVAL; 377 break; 378 } 379 380 /* check next segment */ 381 blkaddr = next_blkaddr_of_node(page); 382 f2fs_put_page(page, 1); 383 384 f2fs_ra_meta_pages_cond(sbi, blkaddr); 385 } 386 return err; 387 } 388 389 static void destroy_fsync_dnodes(struct list_head *head, int drop) 390 { 391 struct fsync_inode_entry *entry, *tmp; 392 393 list_for_each_entry_safe(entry, tmp, head, list) 394 del_fsync_inode(entry, drop); 395 } 396 397 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 398 block_t blkaddr, struct dnode_of_data *dn) 399 { 400 struct seg_entry *sentry; 401 unsigned int segno = GET_SEGNO(sbi, blkaddr); 402 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 403 struct f2fs_summary_block *sum_node; 404 struct f2fs_summary sum; 405 struct page *sum_page, *node_page; 406 struct dnode_of_data tdn = *dn; 407 nid_t ino, nid; 408 struct inode *inode; 409 unsigned int offset; 410 block_t bidx; 411 int i; 412 413 sentry = get_seg_entry(sbi, segno); 414 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 415 return 0; 416 417 /* Get the previous summary */ 418 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 419 struct curseg_info *curseg = CURSEG_I(sbi, i); 420 if (curseg->segno == segno) { 421 sum = curseg->sum_blk->entries[blkoff]; 422 goto got_it; 423 } 424 } 425 426 sum_page = f2fs_get_sum_page(sbi, segno); 427 if (IS_ERR(sum_page)) 428 return PTR_ERR(sum_page); 429 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 430 sum = sum_node->entries[blkoff]; 431 f2fs_put_page(sum_page, 1); 432 got_it: 433 /* Use the locked dnode page and inode */ 434 nid = le32_to_cpu(sum.nid); 435 if (dn->inode->i_ino == nid) { 436 tdn.nid = nid; 437 if (!dn->inode_page_locked) 438 lock_page(dn->inode_page); 439 tdn.node_page = dn->inode_page; 440 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 441 goto truncate_out; 442 } else if (dn->nid == nid) { 443 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 444 goto truncate_out; 445 } 446 447 /* Get the node page */ 448 node_page = f2fs_get_node_page(sbi, nid); 449 if (IS_ERR(node_page)) 450 return PTR_ERR(node_page); 451 452 offset = ofs_of_node(node_page); 453 ino = ino_of_node(node_page); 454 f2fs_put_page(node_page, 1); 455 456 if (ino != dn->inode->i_ino) { 457 int ret; 458 459 /* Deallocate previous index in the node page */ 460 inode = f2fs_iget_retry(sbi->sb, ino); 461 if (IS_ERR(inode)) 462 return PTR_ERR(inode); 463 464 ret = dquot_initialize(inode); 465 if (ret) { 466 iput(inode); 467 return ret; 468 } 469 } else { 470 inode = dn->inode; 471 } 472 473 bidx = f2fs_start_bidx_of_node(offset, inode) + 474 le16_to_cpu(sum.ofs_in_node); 475 476 /* 477 * if inode page is locked, unlock temporarily, but its reference 478 * count keeps alive. 479 */ 480 if (ino == dn->inode->i_ino && dn->inode_page_locked) 481 unlock_page(dn->inode_page); 482 483 set_new_dnode(&tdn, inode, NULL, NULL, 0); 484 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 485 goto out; 486 487 if (tdn.data_blkaddr == blkaddr) 488 f2fs_truncate_data_blocks_range(&tdn, 1); 489 490 f2fs_put_dnode(&tdn); 491 out: 492 if (ino != dn->inode->i_ino) 493 iput(inode); 494 else if (dn->inode_page_locked) 495 lock_page(dn->inode_page); 496 return 0; 497 498 truncate_out: 499 if (datablock_addr(tdn.inode, tdn.node_page, 500 tdn.ofs_in_node) == blkaddr) 501 f2fs_truncate_data_blocks_range(&tdn, 1); 502 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 503 unlock_page(dn->inode_page); 504 return 0; 505 } 506 507 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 508 struct page *page) 509 { 510 struct dnode_of_data dn; 511 struct node_info ni; 512 unsigned int start, end; 513 int err = 0, recovered = 0; 514 515 /* step 1: recover xattr */ 516 if (IS_INODE(page)) { 517 f2fs_recover_inline_xattr(inode, page); 518 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 519 err = f2fs_recover_xattr_data(inode, page); 520 if (!err) 521 recovered++; 522 goto out; 523 } 524 525 /* step 2: recover inline data */ 526 if (f2fs_recover_inline_data(inode, page)) 527 goto out; 528 529 /* step 3: recover data indices */ 530 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); 531 end = start + ADDRS_PER_PAGE(page, inode); 532 533 set_new_dnode(&dn, inode, NULL, NULL, 0); 534 retry_dn: 535 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); 536 if (err) { 537 if (err == -ENOMEM) { 538 congestion_wait(BLK_RW_ASYNC, HZ/50); 539 goto retry_dn; 540 } 541 goto out; 542 } 543 544 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 545 546 err = f2fs_get_node_info(sbi, dn.nid, &ni); 547 if (err) 548 goto err; 549 550 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 551 552 if (ofs_of_node(dn.node_page) != ofs_of_node(page)) { 553 f2fs_warn(sbi, "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u", 554 inode->i_ino, ofs_of_node(dn.node_page), 555 ofs_of_node(page)); 556 err = -EFSCORRUPTED; 557 goto err; 558 } 559 560 for (; start < end; start++, dn.ofs_in_node++) { 561 block_t src, dest; 562 563 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 564 dest = datablock_addr(dn.inode, page, dn.ofs_in_node); 565 566 if (__is_valid_data_blkaddr(src) && 567 !f2fs_is_valid_blkaddr(sbi, src, META_POR)) { 568 err = -EFSCORRUPTED; 569 goto err; 570 } 571 572 if (__is_valid_data_blkaddr(dest) && 573 !f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 574 err = -EFSCORRUPTED; 575 goto err; 576 } 577 578 /* skip recovering if dest is the same as src */ 579 if (src == dest) 580 continue; 581 582 /* dest is invalid, just invalidate src block */ 583 if (dest == NULL_ADDR) { 584 f2fs_truncate_data_blocks_range(&dn, 1); 585 continue; 586 } 587 588 if (!file_keep_isize(inode) && 589 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 590 f2fs_i_size_write(inode, 591 (loff_t)(start + 1) << PAGE_SHIFT); 592 593 /* 594 * dest is reserved block, invalidate src block 595 * and then reserve one new block in dnode page. 596 */ 597 if (dest == NEW_ADDR) { 598 f2fs_truncate_data_blocks_range(&dn, 1); 599 f2fs_reserve_new_block(&dn); 600 continue; 601 } 602 603 /* dest is valid block, try to recover from src to dest */ 604 if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 605 606 if (src == NULL_ADDR) { 607 err = f2fs_reserve_new_block(&dn); 608 while (err && 609 IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) 610 err = f2fs_reserve_new_block(&dn); 611 /* We should not get -ENOSPC */ 612 f2fs_bug_on(sbi, err); 613 if (err) 614 goto err; 615 } 616 retry_prev: 617 /* Check the previous node page having this index */ 618 err = check_index_in_prev_nodes(sbi, dest, &dn); 619 if (err) { 620 if (err == -ENOMEM) { 621 congestion_wait(BLK_RW_ASYNC, HZ/50); 622 goto retry_prev; 623 } 624 goto err; 625 } 626 627 /* write dummy data page */ 628 f2fs_replace_block(sbi, &dn, src, dest, 629 ni.version, false, false); 630 recovered++; 631 } 632 } 633 634 copy_node_footer(dn.node_page, page); 635 fill_node_footer(dn.node_page, dn.nid, ni.ino, 636 ofs_of_node(page), false); 637 set_page_dirty(dn.node_page); 638 err: 639 f2fs_put_dnode(&dn); 640 out: 641 f2fs_notice(sbi, "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 642 inode->i_ino, file_keep_isize(inode) ? "keep" : "recover", 643 recovered, err); 644 return err; 645 } 646 647 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 648 struct list_head *tmp_inode_list, struct list_head *dir_list) 649 { 650 struct curseg_info *curseg; 651 struct page *page = NULL; 652 int err = 0; 653 block_t blkaddr; 654 655 /* get node pages in the current segment */ 656 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 657 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 658 659 while (1) { 660 struct fsync_inode_entry *entry; 661 662 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 663 break; 664 665 f2fs_ra_meta_pages_cond(sbi, blkaddr); 666 667 page = f2fs_get_tmp_page(sbi, blkaddr); 668 if (IS_ERR(page)) { 669 err = PTR_ERR(page); 670 break; 671 } 672 673 if (!is_recoverable_dnode(page)) { 674 f2fs_put_page(page, 1); 675 break; 676 } 677 678 entry = get_fsync_inode(inode_list, ino_of_node(page)); 679 if (!entry) 680 goto next; 681 /* 682 * inode(x) | CP | inode(x) | dnode(F) 683 * In this case, we can lose the latest inode(x). 684 * So, call recover_inode for the inode update. 685 */ 686 if (IS_INODE(page)) { 687 err = recover_inode(entry->inode, page); 688 if (err) { 689 f2fs_put_page(page, 1); 690 break; 691 } 692 } 693 if (entry->last_dentry == blkaddr) { 694 err = recover_dentry(entry->inode, page, dir_list); 695 if (err) { 696 f2fs_put_page(page, 1); 697 break; 698 } 699 } 700 err = do_recover_data(sbi, entry->inode, page); 701 if (err) { 702 f2fs_put_page(page, 1); 703 break; 704 } 705 706 if (entry->blkaddr == blkaddr) 707 list_move_tail(&entry->list, tmp_inode_list); 708 next: 709 /* check next segment */ 710 blkaddr = next_blkaddr_of_node(page); 711 f2fs_put_page(page, 1); 712 } 713 if (!err) 714 f2fs_allocate_new_segments(sbi, NO_CHECK_TYPE); 715 return err; 716 } 717 718 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 719 { 720 struct list_head inode_list, tmp_inode_list; 721 struct list_head dir_list; 722 int err; 723 int ret = 0; 724 unsigned long s_flags = sbi->sb->s_flags; 725 bool need_writecp = false; 726 bool fix_curseg_write_pointer = false; 727 #ifdef CONFIG_QUOTA 728 int quota_enabled; 729 #endif 730 731 if (s_flags & SB_RDONLY) { 732 f2fs_info(sbi, "recover fsync data on readonly fs"); 733 sbi->sb->s_flags &= ~SB_RDONLY; 734 } 735 736 #ifdef CONFIG_QUOTA 737 /* Needed for iput() to work correctly and not trash data */ 738 sbi->sb->s_flags |= SB_ACTIVE; 739 /* Turn on quotas so that they are updated correctly */ 740 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 741 #endif 742 743 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 744 sizeof(struct fsync_inode_entry)); 745 if (!fsync_entry_slab) { 746 err = -ENOMEM; 747 goto out; 748 } 749 750 INIT_LIST_HEAD(&inode_list); 751 INIT_LIST_HEAD(&tmp_inode_list); 752 INIT_LIST_HEAD(&dir_list); 753 754 /* prevent checkpoint */ 755 mutex_lock(&sbi->cp_mutex); 756 757 /* step #1: find fsynced inode numbers */ 758 err = find_fsync_dnodes(sbi, &inode_list, check_only); 759 if (err || list_empty(&inode_list)) 760 goto skip; 761 762 if (check_only) { 763 ret = 1; 764 goto skip; 765 } 766 767 need_writecp = true; 768 769 /* step #2: recover data */ 770 err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); 771 if (!err) 772 f2fs_bug_on(sbi, !list_empty(&inode_list)); 773 else { 774 /* restore s_flags to let iput() trash data */ 775 sbi->sb->s_flags = s_flags; 776 } 777 skip: 778 fix_curseg_write_pointer = !check_only || list_empty(&inode_list); 779 780 destroy_fsync_dnodes(&inode_list, err); 781 destroy_fsync_dnodes(&tmp_inode_list, err); 782 783 /* truncate meta pages to be used by the recovery */ 784 truncate_inode_pages_range(META_MAPPING(sbi), 785 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 786 787 if (err) { 788 truncate_inode_pages_final(NODE_MAPPING(sbi)); 789 truncate_inode_pages_final(META_MAPPING(sbi)); 790 } 791 792 /* 793 * If fsync data succeeds or there is no fsync data to recover, 794 * and the f2fs is not read only, check and fix zoned block devices' 795 * write pointer consistency. 796 */ 797 if (!err && fix_curseg_write_pointer && !f2fs_readonly(sbi->sb) && 798 f2fs_sb_has_blkzoned(sbi)) { 799 err = f2fs_fix_curseg_write_pointer(sbi); 800 ret = err; 801 } 802 803 if (!err) 804 clear_sbi_flag(sbi, SBI_POR_DOING); 805 806 mutex_unlock(&sbi->cp_mutex); 807 808 /* let's drop all the directory inodes for clean checkpoint */ 809 destroy_fsync_dnodes(&dir_list, err); 810 811 if (need_writecp) { 812 set_sbi_flag(sbi, SBI_IS_RECOVERED); 813 814 if (!err) { 815 struct cp_control cpc = { 816 .reason = CP_RECOVERY, 817 }; 818 err = f2fs_write_checkpoint(sbi, &cpc); 819 } 820 } 821 822 kmem_cache_destroy(fsync_entry_slab); 823 out: 824 #ifdef CONFIG_QUOTA 825 /* Turn quotas off */ 826 if (quota_enabled) 827 f2fs_quota_off_umount(sbi->sb); 828 #endif 829 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 830 831 return ret ? ret: err; 832 } 833