1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 static struct kmem_cache *fsync_entry_slab; 18 19 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 20 { 21 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 22 > sbi->user_block_count) 23 return false; 24 return true; 25 } 26 27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 28 nid_t ino) 29 { 30 struct list_head *this; 31 struct fsync_inode_entry *entry; 32 33 list_for_each(this, head) { 34 entry = list_entry(this, struct fsync_inode_entry, list); 35 if (entry->inode->i_ino == ino) 36 return entry; 37 } 38 return NULL; 39 } 40 41 static int recover_dentry(struct page *ipage, struct inode *inode) 42 { 43 struct f2fs_node *raw_node = F2FS_NODE(ipage); 44 struct f2fs_inode *raw_inode = &(raw_node->i); 45 nid_t pino = le32_to_cpu(raw_inode->i_pino); 46 struct f2fs_dir_entry *de; 47 struct qstr name; 48 struct page *page; 49 struct inode *dir, *einode; 50 int err = 0; 51 52 dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino); 53 if (!dir) { 54 dir = f2fs_iget(inode->i_sb, pino); 55 if (IS_ERR(dir)) { 56 err = PTR_ERR(dir); 57 goto out; 58 } 59 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 60 add_dirty_dir_inode(dir); 61 } 62 63 name.len = le32_to_cpu(raw_inode->i_namelen); 64 name.name = raw_inode->i_name; 65 retry: 66 de = f2fs_find_entry(dir, &name, &page); 67 if (de && inode->i_ino == le32_to_cpu(de->ino)) 68 goto out_unmap_put; 69 if (de) { 70 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 71 if (IS_ERR(einode)) { 72 WARN_ON(1); 73 if (PTR_ERR(einode) == -ENOENT) 74 err = -EEXIST; 75 goto out_unmap_put; 76 } 77 err = acquire_orphan_inode(F2FS_SB(inode->i_sb)); 78 if (err) { 79 iput(einode); 80 goto out_unmap_put; 81 } 82 f2fs_delete_entry(de, page, einode); 83 iput(einode); 84 goto retry; 85 } 86 err = __f2fs_add_link(dir, &name, inode); 87 goto out; 88 89 out_unmap_put: 90 kunmap(page); 91 f2fs_put_page(page, 0); 92 out: 93 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: " 94 "ino = %x, name = %s, dir = %lx, err = %d", 95 ino_of_node(ipage), raw_inode->i_name, 96 IS_ERR(dir) ? 0 : dir->i_ino, err); 97 return err; 98 } 99 100 static int recover_inode(struct inode *inode, struct page *node_page) 101 { 102 struct f2fs_node *raw_node = F2FS_NODE(node_page); 103 struct f2fs_inode *raw_inode = &(raw_node->i); 104 105 if (!IS_INODE(node_page)) 106 return 0; 107 108 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 109 i_size_write(inode, le64_to_cpu(raw_inode->i_size)); 110 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 111 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); 112 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 113 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 114 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); 115 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 116 117 if (is_dent_dnode(node_page)) 118 return recover_dentry(node_page, inode); 119 120 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 121 ino_of_node(node_page), raw_inode->i_name); 122 return 0; 123 } 124 125 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 126 { 127 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 128 struct curseg_info *curseg; 129 struct page *page; 130 block_t blkaddr; 131 int err = 0; 132 133 /* get node pages in the current segment */ 134 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 135 blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; 136 137 /* read node page */ 138 page = alloc_page(GFP_F2FS_ZERO); 139 if (!page) 140 return -ENOMEM; 141 lock_page(page); 142 143 while (1) { 144 struct fsync_inode_entry *entry; 145 146 err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC); 147 if (err) 148 goto out; 149 150 lock_page(page); 151 152 if (cp_ver != cpver_of_node(page)) 153 break; 154 155 if (!is_fsync_dnode(page)) 156 goto next; 157 158 entry = get_fsync_inode(head, ino_of_node(page)); 159 if (entry) { 160 if (IS_INODE(page) && is_dent_dnode(page)) 161 set_inode_flag(F2FS_I(entry->inode), 162 FI_INC_LINK); 163 } else { 164 if (IS_INODE(page) && is_dent_dnode(page)) { 165 err = recover_inode_page(sbi, page); 166 if (err) 167 break; 168 } 169 170 /* add this fsync inode to the list */ 171 entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); 172 if (!entry) { 173 err = -ENOMEM; 174 break; 175 } 176 177 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 178 if (IS_ERR(entry->inode)) { 179 err = PTR_ERR(entry->inode); 180 kmem_cache_free(fsync_entry_slab, entry); 181 break; 182 } 183 list_add_tail(&entry->list, head); 184 } 185 entry->blkaddr = blkaddr; 186 187 err = recover_inode(entry->inode, page); 188 if (err && err != -ENOENT) 189 break; 190 next: 191 /* check next segment */ 192 blkaddr = next_blkaddr_of_node(page); 193 } 194 unlock_page(page); 195 out: 196 __free_pages(page, 0); 197 return err; 198 } 199 200 static void destroy_fsync_dnodes(struct list_head *head) 201 { 202 struct fsync_inode_entry *entry, *tmp; 203 204 list_for_each_entry_safe(entry, tmp, head, list) { 205 iput(entry->inode); 206 list_del(&entry->list); 207 kmem_cache_free(fsync_entry_slab, entry); 208 } 209 } 210 211 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 212 block_t blkaddr, struct dnode_of_data *dn) 213 { 214 struct seg_entry *sentry; 215 unsigned int segno = GET_SEGNO(sbi, blkaddr); 216 unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & 217 (sbi->blocks_per_seg - 1); 218 struct f2fs_summary sum; 219 nid_t ino, nid; 220 void *kaddr; 221 struct inode *inode; 222 struct page *node_page; 223 unsigned int offset; 224 block_t bidx; 225 int i; 226 227 sentry = get_seg_entry(sbi, segno); 228 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 229 return 0; 230 231 /* Get the previous summary */ 232 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 233 struct curseg_info *curseg = CURSEG_I(sbi, i); 234 if (curseg->segno == segno) { 235 sum = curseg->sum_blk->entries[blkoff]; 236 break; 237 } 238 } 239 if (i > CURSEG_COLD_DATA) { 240 struct page *sum_page = get_sum_page(sbi, segno); 241 struct f2fs_summary_block *sum_node; 242 kaddr = page_address(sum_page); 243 sum_node = (struct f2fs_summary_block *)kaddr; 244 sum = sum_node->entries[blkoff]; 245 f2fs_put_page(sum_page, 1); 246 } 247 248 /* Use the locked dnode page and inode */ 249 nid = le32_to_cpu(sum.nid); 250 if (dn->inode->i_ino == nid) { 251 struct dnode_of_data tdn = *dn; 252 tdn.nid = nid; 253 tdn.node_page = dn->inode_page; 254 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 255 truncate_data_blocks_range(&tdn, 1); 256 return 0; 257 } else if (dn->nid == nid) { 258 struct dnode_of_data tdn = *dn; 259 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 260 truncate_data_blocks_range(&tdn, 1); 261 return 0; 262 } 263 264 /* Get the node page */ 265 node_page = get_node_page(sbi, nid); 266 if (IS_ERR(node_page)) 267 return PTR_ERR(node_page); 268 269 offset = ofs_of_node(node_page); 270 ino = ino_of_node(node_page); 271 f2fs_put_page(node_page, 1); 272 273 /* Deallocate previous index in the node page */ 274 inode = f2fs_iget(sbi->sb, ino); 275 if (IS_ERR(inode)) 276 return PTR_ERR(inode); 277 278 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 279 le16_to_cpu(sum.ofs_in_node); 280 281 truncate_hole(inode, bidx, bidx + 1); 282 iput(inode); 283 return 0; 284 } 285 286 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 287 struct page *page, block_t blkaddr) 288 { 289 struct f2fs_inode_info *fi = F2FS_I(inode); 290 unsigned int start, end; 291 struct dnode_of_data dn; 292 struct f2fs_summary sum; 293 struct node_info ni; 294 int err = 0, recovered = 0; 295 296 start = start_bidx_of_node(ofs_of_node(page), fi); 297 if (IS_INODE(page)) 298 end = start + ADDRS_PER_INODE(fi); 299 else 300 end = start + ADDRS_PER_BLOCK; 301 302 f2fs_lock_op(sbi); 303 set_new_dnode(&dn, inode, NULL, NULL, 0); 304 305 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 306 if (err) { 307 f2fs_unlock_op(sbi); 308 return err; 309 } 310 311 wait_on_page_writeback(dn.node_page); 312 313 get_node_info(sbi, dn.nid, &ni); 314 f2fs_bug_on(ni.ino != ino_of_node(page)); 315 f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page)); 316 317 for (; start < end; start++) { 318 block_t src, dest; 319 320 src = datablock_addr(dn.node_page, dn.ofs_in_node); 321 dest = datablock_addr(page, dn.ofs_in_node); 322 323 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 324 if (src == NULL_ADDR) { 325 err = reserve_new_block(&dn); 326 /* We should not get -ENOSPC */ 327 f2fs_bug_on(err); 328 } 329 330 /* Check the previous node page having this index */ 331 err = check_index_in_prev_nodes(sbi, dest, &dn); 332 if (err) 333 goto err; 334 335 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 336 337 /* write dummy data page */ 338 recover_data_page(sbi, NULL, &sum, src, dest); 339 update_extent_cache(dest, &dn); 340 recovered++; 341 } 342 dn.ofs_in_node++; 343 } 344 345 /* write node page in place */ 346 set_summary(&sum, dn.nid, 0, 0); 347 if (IS_INODE(dn.node_page)) 348 sync_inode_page(&dn); 349 350 copy_node_footer(dn.node_page, page); 351 fill_node_footer(dn.node_page, dn.nid, ni.ino, 352 ofs_of_node(page), false); 353 set_page_dirty(dn.node_page); 354 355 recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); 356 err: 357 f2fs_put_dnode(&dn); 358 f2fs_unlock_op(sbi); 359 360 f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, " 361 "recovered_data = %d blocks, err = %d", 362 inode->i_ino, recovered, err); 363 return err; 364 } 365 366 static int recover_data(struct f2fs_sb_info *sbi, 367 struct list_head *head, int type) 368 { 369 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 370 struct curseg_info *curseg; 371 struct page *page; 372 int err = 0; 373 block_t blkaddr; 374 375 /* get node pages in the current segment */ 376 curseg = CURSEG_I(sbi, type); 377 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 378 379 /* read node page */ 380 page = alloc_page(GFP_NOFS | __GFP_ZERO); 381 if (!page) 382 return -ENOMEM; 383 384 lock_page(page); 385 386 while (1) { 387 struct fsync_inode_entry *entry; 388 389 err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC); 390 if (err) 391 goto out; 392 393 lock_page(page); 394 395 if (cp_ver != cpver_of_node(page)) 396 break; 397 398 entry = get_fsync_inode(head, ino_of_node(page)); 399 if (!entry) 400 goto next; 401 402 err = do_recover_data(sbi, entry->inode, page, blkaddr); 403 if (err) 404 break; 405 406 if (entry->blkaddr == blkaddr) { 407 iput(entry->inode); 408 list_del(&entry->list); 409 kmem_cache_free(fsync_entry_slab, entry); 410 } 411 next: 412 /* check next segment */ 413 blkaddr = next_blkaddr_of_node(page); 414 } 415 unlock_page(page); 416 out: 417 __free_pages(page, 0); 418 419 if (!err) 420 allocate_new_segments(sbi); 421 return err; 422 } 423 424 int recover_fsync_data(struct f2fs_sb_info *sbi) 425 { 426 struct list_head inode_list; 427 int err; 428 bool need_writecp = false; 429 430 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 431 sizeof(struct fsync_inode_entry), NULL); 432 if (unlikely(!fsync_entry_slab)) 433 return -ENOMEM; 434 435 INIT_LIST_HEAD(&inode_list); 436 437 /* step #1: find fsynced inode numbers */ 438 sbi->por_doing = true; 439 err = find_fsync_dnodes(sbi, &inode_list); 440 if (err) 441 goto out; 442 443 if (list_empty(&inode_list)) 444 goto out; 445 446 need_writecp = true; 447 448 /* step #2: recover data */ 449 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 450 f2fs_bug_on(!list_empty(&inode_list)); 451 out: 452 destroy_fsync_dnodes(&inode_list); 453 kmem_cache_destroy(fsync_entry_slab); 454 sbi->por_doing = false; 455 if (!err && need_writecp) 456 write_checkpoint(sbi, false); 457 return err; 458 } 459