xref: /openbmc/linux/fs/f2fs/recovery.c (revision 77d84ff8)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 static struct kmem_cache *fsync_entry_slab;
18 
19 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
20 {
21 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
22 			> sbi->user_block_count)
23 		return false;
24 	return true;
25 }
26 
27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
28 								nid_t ino)
29 {
30 	struct list_head *this;
31 	struct fsync_inode_entry *entry;
32 
33 	list_for_each(this, head) {
34 		entry = list_entry(this, struct fsync_inode_entry, list);
35 		if (entry->inode->i_ino == ino)
36 			return entry;
37 	}
38 	return NULL;
39 }
40 
41 static int recover_dentry(struct page *ipage, struct inode *inode)
42 {
43 	struct f2fs_node *raw_node = F2FS_NODE(ipage);
44 	struct f2fs_inode *raw_inode = &(raw_node->i);
45 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
46 	struct f2fs_dir_entry *de;
47 	struct qstr name;
48 	struct page *page;
49 	struct inode *dir, *einode;
50 	int err = 0;
51 
52 	dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
53 	if (!dir) {
54 		dir = f2fs_iget(inode->i_sb, pino);
55 		if (IS_ERR(dir)) {
56 			err = PTR_ERR(dir);
57 			goto out;
58 		}
59 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
60 		add_dirty_dir_inode(dir);
61 	}
62 
63 	name.len = le32_to_cpu(raw_inode->i_namelen);
64 	name.name = raw_inode->i_name;
65 retry:
66 	de = f2fs_find_entry(dir, &name, &page);
67 	if (de && inode->i_ino == le32_to_cpu(de->ino))
68 		goto out_unmap_put;
69 	if (de) {
70 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
71 		if (IS_ERR(einode)) {
72 			WARN_ON(1);
73 			if (PTR_ERR(einode) == -ENOENT)
74 				err = -EEXIST;
75 			goto out_unmap_put;
76 		}
77 		err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
78 		if (err) {
79 			iput(einode);
80 			goto out_unmap_put;
81 		}
82 		f2fs_delete_entry(de, page, einode);
83 		iput(einode);
84 		goto retry;
85 	}
86 	err = __f2fs_add_link(dir, &name, inode);
87 	goto out;
88 
89 out_unmap_put:
90 	kunmap(page);
91 	f2fs_put_page(page, 0);
92 out:
93 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: "
94 			"ino = %x, name = %s, dir = %lx, err = %d",
95 			ino_of_node(ipage), raw_inode->i_name,
96 			IS_ERR(dir) ? 0 : dir->i_ino, err);
97 	return err;
98 }
99 
100 static int recover_inode(struct inode *inode, struct page *node_page)
101 {
102 	struct f2fs_node *raw_node = F2FS_NODE(node_page);
103 	struct f2fs_inode *raw_inode = &(raw_node->i);
104 
105 	if (!IS_INODE(node_page))
106 		return 0;
107 
108 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
109 	i_size_write(inode, le64_to_cpu(raw_inode->i_size));
110 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
111 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
112 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
113 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
114 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
115 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
116 
117 	if (is_dent_dnode(node_page))
118 		return recover_dentry(node_page, inode);
119 
120 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
121 			ino_of_node(node_page), raw_inode->i_name);
122 	return 0;
123 }
124 
125 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
126 {
127 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
128 	struct curseg_info *curseg;
129 	struct page *page;
130 	block_t blkaddr;
131 	int err = 0;
132 
133 	/* get node pages in the current segment */
134 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
135 	blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
136 
137 	/* read node page */
138 	page = alloc_page(GFP_F2FS_ZERO);
139 	if (!page)
140 		return -ENOMEM;
141 	lock_page(page);
142 
143 	while (1) {
144 		struct fsync_inode_entry *entry;
145 
146 		err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
147 		if (err)
148 			goto out;
149 
150 		lock_page(page);
151 
152 		if (cp_ver != cpver_of_node(page))
153 			break;
154 
155 		if (!is_fsync_dnode(page))
156 			goto next;
157 
158 		entry = get_fsync_inode(head, ino_of_node(page));
159 		if (entry) {
160 			if (IS_INODE(page) && is_dent_dnode(page))
161 				set_inode_flag(F2FS_I(entry->inode),
162 							FI_INC_LINK);
163 		} else {
164 			if (IS_INODE(page) && is_dent_dnode(page)) {
165 				err = recover_inode_page(sbi, page);
166 				if (err)
167 					break;
168 			}
169 
170 			/* add this fsync inode to the list */
171 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
172 			if (!entry) {
173 				err = -ENOMEM;
174 				break;
175 			}
176 
177 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
178 			if (IS_ERR(entry->inode)) {
179 				err = PTR_ERR(entry->inode);
180 				kmem_cache_free(fsync_entry_slab, entry);
181 				break;
182 			}
183 			list_add_tail(&entry->list, head);
184 		}
185 		entry->blkaddr = blkaddr;
186 
187 		err = recover_inode(entry->inode, page);
188 		if (err && err != -ENOENT)
189 			break;
190 next:
191 		/* check next segment */
192 		blkaddr = next_blkaddr_of_node(page);
193 	}
194 	unlock_page(page);
195 out:
196 	__free_pages(page, 0);
197 	return err;
198 }
199 
200 static void destroy_fsync_dnodes(struct list_head *head)
201 {
202 	struct fsync_inode_entry *entry, *tmp;
203 
204 	list_for_each_entry_safe(entry, tmp, head, list) {
205 		iput(entry->inode);
206 		list_del(&entry->list);
207 		kmem_cache_free(fsync_entry_slab, entry);
208 	}
209 }
210 
211 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
212 			block_t blkaddr, struct dnode_of_data *dn)
213 {
214 	struct seg_entry *sentry;
215 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
216 	unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
217 					(sbi->blocks_per_seg - 1);
218 	struct f2fs_summary sum;
219 	nid_t ino, nid;
220 	void *kaddr;
221 	struct inode *inode;
222 	struct page *node_page;
223 	unsigned int offset;
224 	block_t bidx;
225 	int i;
226 
227 	sentry = get_seg_entry(sbi, segno);
228 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
229 		return 0;
230 
231 	/* Get the previous summary */
232 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
233 		struct curseg_info *curseg = CURSEG_I(sbi, i);
234 		if (curseg->segno == segno) {
235 			sum = curseg->sum_blk->entries[blkoff];
236 			break;
237 		}
238 	}
239 	if (i > CURSEG_COLD_DATA) {
240 		struct page *sum_page = get_sum_page(sbi, segno);
241 		struct f2fs_summary_block *sum_node;
242 		kaddr = page_address(sum_page);
243 		sum_node = (struct f2fs_summary_block *)kaddr;
244 		sum = sum_node->entries[blkoff];
245 		f2fs_put_page(sum_page, 1);
246 	}
247 
248 	/* Use the locked dnode page and inode */
249 	nid = le32_to_cpu(sum.nid);
250 	if (dn->inode->i_ino == nid) {
251 		struct dnode_of_data tdn = *dn;
252 		tdn.nid = nid;
253 		tdn.node_page = dn->inode_page;
254 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
255 		truncate_data_blocks_range(&tdn, 1);
256 		return 0;
257 	} else if (dn->nid == nid) {
258 		struct dnode_of_data tdn = *dn;
259 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
260 		truncate_data_blocks_range(&tdn, 1);
261 		return 0;
262 	}
263 
264 	/* Get the node page */
265 	node_page = get_node_page(sbi, nid);
266 	if (IS_ERR(node_page))
267 		return PTR_ERR(node_page);
268 
269 	offset = ofs_of_node(node_page);
270 	ino = ino_of_node(node_page);
271 	f2fs_put_page(node_page, 1);
272 
273 	/* Deallocate previous index in the node page */
274 	inode = f2fs_iget(sbi->sb, ino);
275 	if (IS_ERR(inode))
276 		return PTR_ERR(inode);
277 
278 	bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
279 					le16_to_cpu(sum.ofs_in_node);
280 
281 	truncate_hole(inode, bidx, bidx + 1);
282 	iput(inode);
283 	return 0;
284 }
285 
286 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
287 					struct page *page, block_t blkaddr)
288 {
289 	struct f2fs_inode_info *fi = F2FS_I(inode);
290 	unsigned int start, end;
291 	struct dnode_of_data dn;
292 	struct f2fs_summary sum;
293 	struct node_info ni;
294 	int err = 0, recovered = 0;
295 
296 	start = start_bidx_of_node(ofs_of_node(page), fi);
297 	if (IS_INODE(page))
298 		end = start + ADDRS_PER_INODE(fi);
299 	else
300 		end = start + ADDRS_PER_BLOCK;
301 
302 	f2fs_lock_op(sbi);
303 	set_new_dnode(&dn, inode, NULL, NULL, 0);
304 
305 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
306 	if (err) {
307 		f2fs_unlock_op(sbi);
308 		return err;
309 	}
310 
311 	wait_on_page_writeback(dn.node_page);
312 
313 	get_node_info(sbi, dn.nid, &ni);
314 	f2fs_bug_on(ni.ino != ino_of_node(page));
315 	f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
316 
317 	for (; start < end; start++) {
318 		block_t src, dest;
319 
320 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
321 		dest = datablock_addr(page, dn.ofs_in_node);
322 
323 		if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
324 			if (src == NULL_ADDR) {
325 				err = reserve_new_block(&dn);
326 				/* We should not get -ENOSPC */
327 				f2fs_bug_on(err);
328 			}
329 
330 			/* Check the previous node page having this index */
331 			err = check_index_in_prev_nodes(sbi, dest, &dn);
332 			if (err)
333 				goto err;
334 
335 			set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
336 
337 			/* write dummy data page */
338 			recover_data_page(sbi, NULL, &sum, src, dest);
339 			update_extent_cache(dest, &dn);
340 			recovered++;
341 		}
342 		dn.ofs_in_node++;
343 	}
344 
345 	/* write node page in place */
346 	set_summary(&sum, dn.nid, 0, 0);
347 	if (IS_INODE(dn.node_page))
348 		sync_inode_page(&dn);
349 
350 	copy_node_footer(dn.node_page, page);
351 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
352 					ofs_of_node(page), false);
353 	set_page_dirty(dn.node_page);
354 
355 	recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
356 err:
357 	f2fs_put_dnode(&dn);
358 	f2fs_unlock_op(sbi);
359 
360 	f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, "
361 			"recovered_data = %d blocks, err = %d",
362 			inode->i_ino, recovered, err);
363 	return err;
364 }
365 
366 static int recover_data(struct f2fs_sb_info *sbi,
367 				struct list_head *head, int type)
368 {
369 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
370 	struct curseg_info *curseg;
371 	struct page *page;
372 	int err = 0;
373 	block_t blkaddr;
374 
375 	/* get node pages in the current segment */
376 	curseg = CURSEG_I(sbi, type);
377 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
378 
379 	/* read node page */
380 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
381 	if (!page)
382 		return -ENOMEM;
383 
384 	lock_page(page);
385 
386 	while (1) {
387 		struct fsync_inode_entry *entry;
388 
389 		err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
390 		if (err)
391 			goto out;
392 
393 		lock_page(page);
394 
395 		if (cp_ver != cpver_of_node(page))
396 			break;
397 
398 		entry = get_fsync_inode(head, ino_of_node(page));
399 		if (!entry)
400 			goto next;
401 
402 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
403 		if (err)
404 			break;
405 
406 		if (entry->blkaddr == blkaddr) {
407 			iput(entry->inode);
408 			list_del(&entry->list);
409 			kmem_cache_free(fsync_entry_slab, entry);
410 		}
411 next:
412 		/* check next segment */
413 		blkaddr = next_blkaddr_of_node(page);
414 	}
415 	unlock_page(page);
416 out:
417 	__free_pages(page, 0);
418 
419 	if (!err)
420 		allocate_new_segments(sbi);
421 	return err;
422 }
423 
424 int recover_fsync_data(struct f2fs_sb_info *sbi)
425 {
426 	struct list_head inode_list;
427 	int err;
428 	bool need_writecp = false;
429 
430 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
431 			sizeof(struct fsync_inode_entry), NULL);
432 	if (unlikely(!fsync_entry_slab))
433 		return -ENOMEM;
434 
435 	INIT_LIST_HEAD(&inode_list);
436 
437 	/* step #1: find fsynced inode numbers */
438 	sbi->por_doing = true;
439 	err = find_fsync_dnodes(sbi, &inode_list);
440 	if (err)
441 		goto out;
442 
443 	if (list_empty(&inode_list))
444 		goto out;
445 
446 	need_writecp = true;
447 
448 	/* step #2: recover data */
449 	err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
450 	f2fs_bug_on(!list_empty(&inode_list));
451 out:
452 	destroy_fsync_dnodes(&inode_list);
453 	kmem_cache_destroy(fsync_entry_slab);
454 	sbi->por_doing = false;
455 	if (!err && need_writecp)
456 		write_checkpoint(sbi, false);
457 	return err;
458 }
459