xref: /openbmc/linux/fs/f2fs/recovery.c (revision 65ee8aeb)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 /*
18  * Roll forward recovery scenarios.
19  *
20  * [Term] F: fsync_mark, D: dentry_mark
21  *
22  * 1. inode(x) | CP | inode(x) | dnode(F)
23  * -> Update the latest inode(x).
24  *
25  * 2. inode(x) | CP | inode(F) | dnode(F)
26  * -> No problem.
27  *
28  * 3. inode(x) | CP | dnode(F) | inode(x)
29  * -> Recover to the latest dnode(F), and drop the last inode(x)
30  *
31  * 4. inode(x) | CP | dnode(F) | inode(F)
32  * -> No problem.
33  *
34  * 5. CP | inode(x) | dnode(F)
35  * -> The inode(DF) was missing. Should drop this dnode(F).
36  *
37  * 6. CP | inode(DF) | dnode(F)
38  * -> No problem.
39  *
40  * 7. CP | dnode(F) | inode(DF)
41  * -> If f2fs_iget fails, then goto next to find inode(DF).
42  *
43  * 8. CP | dnode(F) | inode(x)
44  * -> If f2fs_iget fails, then goto next to find inode(DF).
45  *    But it will fail due to no inode(DF).
46  */
47 
48 static struct kmem_cache *fsync_entry_slab;
49 
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
53 			> sbi->user_block_count)
54 		return false;
55 	return true;
56 }
57 
58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
59 								nid_t ino)
60 {
61 	struct fsync_inode_entry *entry;
62 
63 	list_for_each_entry(entry, head, list)
64 		if (entry->inode->i_ino == ino)
65 			return entry;
66 
67 	return NULL;
68 }
69 
70 static int recover_dentry(struct inode *inode, struct page *ipage)
71 {
72 	struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
73 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
74 	struct f2fs_dir_entry *de;
75 	struct qstr name;
76 	struct page *page;
77 	struct inode *dir, *einode;
78 	int err = 0;
79 
80 	dir = f2fs_iget(inode->i_sb, pino);
81 	if (IS_ERR(dir)) {
82 		err = PTR_ERR(dir);
83 		goto out;
84 	}
85 
86 	name.len = le32_to_cpu(raw_inode->i_namelen);
87 	name.name = raw_inode->i_name;
88 
89 	if (unlikely(name.len > F2FS_NAME_LEN)) {
90 		WARN_ON(1);
91 		err = -ENAMETOOLONG;
92 		goto out_err;
93 	}
94 retry:
95 	de = f2fs_find_entry(dir, &name, &page);
96 	if (de && inode->i_ino == le32_to_cpu(de->ino))
97 		goto out_unmap_put;
98 
99 	if (de) {
100 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
101 		if (IS_ERR(einode)) {
102 			WARN_ON(1);
103 			err = PTR_ERR(einode);
104 			if (err == -ENOENT)
105 				err = -EEXIST;
106 			goto out_unmap_put;
107 		}
108 		err = acquire_orphan_inode(F2FS_I_SB(inode));
109 		if (err) {
110 			iput(einode);
111 			goto out_unmap_put;
112 		}
113 		f2fs_delete_entry(de, page, dir, einode);
114 		iput(einode);
115 		goto retry;
116 	}
117 	err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
118 	if (err)
119 		goto out_err;
120 
121 	if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
122 		iput(dir);
123 	} else {
124 		add_dirty_dir_inode(dir);
125 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
126 	}
127 
128 	goto out;
129 
130 out_unmap_put:
131 	f2fs_dentry_kunmap(dir, page);
132 	f2fs_put_page(page, 0);
133 out_err:
134 	iput(dir);
135 out:
136 	f2fs_msg(inode->i_sb, KERN_NOTICE,
137 			"%s: ino = %x, name = %s, dir = %lx, err = %d",
138 			__func__, ino_of_node(ipage), raw_inode->i_name,
139 			IS_ERR(dir) ? 0 : dir->i_ino, err);
140 	return err;
141 }
142 
143 static void recover_inode(struct inode *inode, struct page *page)
144 {
145 	struct f2fs_inode *raw = F2FS_INODE(page);
146 
147 	inode->i_mode = le16_to_cpu(raw->i_mode);
148 	i_size_write(inode, le64_to_cpu(raw->i_size));
149 	inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
150 	inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
151 	inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
152 	inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
153 	inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
154 	inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
155 
156 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
157 			ino_of_node(page), F2FS_INODE(page)->i_name);
158 }
159 
160 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
161 {
162 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
163 	struct curseg_info *curseg;
164 	struct page *page = NULL;
165 	block_t blkaddr;
166 	int err = 0;
167 
168 	/* get node pages in the current segment */
169 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
170 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
171 
172 	ra_meta_pages(sbi, blkaddr, 1, META_POR);
173 
174 	while (1) {
175 		struct fsync_inode_entry *entry;
176 
177 		if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
178 			return 0;
179 
180 		page = get_meta_page(sbi, blkaddr);
181 
182 		if (cp_ver != cpver_of_node(page))
183 			break;
184 
185 		if (!is_fsync_dnode(page))
186 			goto next;
187 
188 		entry = get_fsync_inode(head, ino_of_node(page));
189 		if (!entry) {
190 			if (IS_INODE(page) && is_dent_dnode(page)) {
191 				err = recover_inode_page(sbi, page);
192 				if (err)
193 					break;
194 			}
195 
196 			/* add this fsync inode to the list */
197 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
198 			if (!entry) {
199 				err = -ENOMEM;
200 				break;
201 			}
202 			/*
203 			 * CP | dnode(F) | inode(DF)
204 			 * For this case, we should not give up now.
205 			 */
206 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
207 			if (IS_ERR(entry->inode)) {
208 				err = PTR_ERR(entry->inode);
209 				kmem_cache_free(fsync_entry_slab, entry);
210 				if (err == -ENOENT) {
211 					err = 0;
212 					goto next;
213 				}
214 				break;
215 			}
216 			list_add_tail(&entry->list, head);
217 		}
218 		entry->blkaddr = blkaddr;
219 
220 		if (IS_INODE(page)) {
221 			entry->last_inode = blkaddr;
222 			if (is_dent_dnode(page))
223 				entry->last_dentry = blkaddr;
224 		}
225 next:
226 		/* check next segment */
227 		blkaddr = next_blkaddr_of_node(page);
228 		f2fs_put_page(page, 1);
229 
230 		ra_meta_pages_cond(sbi, blkaddr);
231 	}
232 	f2fs_put_page(page, 1);
233 	return err;
234 }
235 
236 static void destroy_fsync_dnodes(struct list_head *head)
237 {
238 	struct fsync_inode_entry *entry, *tmp;
239 
240 	list_for_each_entry_safe(entry, tmp, head, list) {
241 		iput(entry->inode);
242 		list_del(&entry->list);
243 		kmem_cache_free(fsync_entry_slab, entry);
244 	}
245 }
246 
247 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
248 			block_t blkaddr, struct dnode_of_data *dn)
249 {
250 	struct seg_entry *sentry;
251 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
252 	unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
253 	struct f2fs_summary_block *sum_node;
254 	struct f2fs_summary sum;
255 	struct page *sum_page, *node_page;
256 	struct dnode_of_data tdn = *dn;
257 	nid_t ino, nid;
258 	struct inode *inode;
259 	unsigned int offset;
260 	block_t bidx;
261 	int i;
262 
263 	sentry = get_seg_entry(sbi, segno);
264 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
265 		return 0;
266 
267 	/* Get the previous summary */
268 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
269 		struct curseg_info *curseg = CURSEG_I(sbi, i);
270 		if (curseg->segno == segno) {
271 			sum = curseg->sum_blk->entries[blkoff];
272 			goto got_it;
273 		}
274 	}
275 
276 	sum_page = get_sum_page(sbi, segno);
277 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
278 	sum = sum_node->entries[blkoff];
279 	f2fs_put_page(sum_page, 1);
280 got_it:
281 	/* Use the locked dnode page and inode */
282 	nid = le32_to_cpu(sum.nid);
283 	if (dn->inode->i_ino == nid) {
284 		tdn.nid = nid;
285 		if (!dn->inode_page_locked)
286 			lock_page(dn->inode_page);
287 		tdn.node_page = dn->inode_page;
288 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
289 		goto truncate_out;
290 	} else if (dn->nid == nid) {
291 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
292 		goto truncate_out;
293 	}
294 
295 	/* Get the node page */
296 	node_page = get_node_page(sbi, nid);
297 	if (IS_ERR(node_page))
298 		return PTR_ERR(node_page);
299 
300 	offset = ofs_of_node(node_page);
301 	ino = ino_of_node(node_page);
302 	f2fs_put_page(node_page, 1);
303 
304 	if (ino != dn->inode->i_ino) {
305 		/* Deallocate previous index in the node page */
306 		inode = f2fs_iget(sbi->sb, ino);
307 		if (IS_ERR(inode))
308 			return PTR_ERR(inode);
309 	} else {
310 		inode = dn->inode;
311 	}
312 
313 	bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
314 			le16_to_cpu(sum.ofs_in_node);
315 
316 	/*
317 	 * if inode page is locked, unlock temporarily, but its reference
318 	 * count keeps alive.
319 	 */
320 	if (ino == dn->inode->i_ino && dn->inode_page_locked)
321 		unlock_page(dn->inode_page);
322 
323 	set_new_dnode(&tdn, inode, NULL, NULL, 0);
324 	if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
325 		goto out;
326 
327 	if (tdn.data_blkaddr == blkaddr)
328 		truncate_data_blocks_range(&tdn, 1);
329 
330 	f2fs_put_dnode(&tdn);
331 out:
332 	if (ino != dn->inode->i_ino)
333 		iput(inode);
334 	else if (dn->inode_page_locked)
335 		lock_page(dn->inode_page);
336 	return 0;
337 
338 truncate_out:
339 	if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
340 		truncate_data_blocks_range(&tdn, 1);
341 	if (dn->inode->i_ino == nid && !dn->inode_page_locked)
342 		unlock_page(dn->inode_page);
343 	return 0;
344 }
345 
346 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
347 					struct page *page, block_t blkaddr)
348 {
349 	struct f2fs_inode_info *fi = F2FS_I(inode);
350 	unsigned int start, end;
351 	struct dnode_of_data dn;
352 	struct f2fs_summary sum;
353 	struct node_info ni;
354 	int err = 0, recovered = 0;
355 
356 	/* step 1: recover xattr */
357 	if (IS_INODE(page)) {
358 		recover_inline_xattr(inode, page);
359 	} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
360 		/*
361 		 * Deprecated; xattr blocks should be found from cold log.
362 		 * But, we should remain this for backward compatibility.
363 		 */
364 		recover_xattr_data(inode, page, blkaddr);
365 		goto out;
366 	}
367 
368 	/* step 2: recover inline data */
369 	if (recover_inline_data(inode, page))
370 		goto out;
371 
372 	/* step 3: recover data indices */
373 	start = start_bidx_of_node(ofs_of_node(page), fi);
374 	end = start + ADDRS_PER_PAGE(page, fi);
375 
376 	f2fs_lock_op(sbi);
377 
378 	set_new_dnode(&dn, inode, NULL, NULL, 0);
379 
380 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
381 	if (err) {
382 		f2fs_unlock_op(sbi);
383 		goto out;
384 	}
385 
386 	f2fs_wait_on_page_writeback(dn.node_page, NODE);
387 
388 	get_node_info(sbi, dn.nid, &ni);
389 	f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
390 	f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
391 
392 	for (; start < end; start++) {
393 		block_t src, dest;
394 
395 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
396 		dest = datablock_addr(page, dn.ofs_in_node);
397 
398 		if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR &&
399 			dest >= MAIN_BLKADDR(sbi) && dest < MAX_BLKADDR(sbi)) {
400 
401 			if (src == NULL_ADDR) {
402 				err = reserve_new_block(&dn);
403 				/* We should not get -ENOSPC */
404 				f2fs_bug_on(sbi, err);
405 			}
406 
407 			/* Check the previous node page having this index */
408 			err = check_index_in_prev_nodes(sbi, dest, &dn);
409 			if (err)
410 				goto err;
411 
412 			set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
413 
414 			/* write dummy data page */
415 			recover_data_page(sbi, NULL, &sum, src, dest);
416 			dn.data_blkaddr = dest;
417 			set_data_blkaddr(&dn);
418 			f2fs_update_extent_cache(&dn);
419 			recovered++;
420 		}
421 		dn.ofs_in_node++;
422 	}
423 
424 	if (IS_INODE(dn.node_page))
425 		sync_inode_page(&dn);
426 
427 	copy_node_footer(dn.node_page, page);
428 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
429 					ofs_of_node(page), false);
430 	set_page_dirty(dn.node_page);
431 err:
432 	f2fs_put_dnode(&dn);
433 	f2fs_unlock_op(sbi);
434 out:
435 	f2fs_msg(sbi->sb, KERN_NOTICE,
436 		"recover_data: ino = %lx, recovered = %d blocks, err = %d",
437 		inode->i_ino, recovered, err);
438 	return err;
439 }
440 
441 static int recover_data(struct f2fs_sb_info *sbi,
442 				struct list_head *head, int type)
443 {
444 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
445 	struct curseg_info *curseg;
446 	struct page *page = NULL;
447 	int err = 0;
448 	block_t blkaddr;
449 
450 	/* get node pages in the current segment */
451 	curseg = CURSEG_I(sbi, type);
452 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
453 
454 	while (1) {
455 		struct fsync_inode_entry *entry;
456 
457 		if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
458 			break;
459 
460 		ra_meta_pages_cond(sbi, blkaddr);
461 
462 		page = get_meta_page(sbi, blkaddr);
463 
464 		if (cp_ver != cpver_of_node(page)) {
465 			f2fs_put_page(page, 1);
466 			break;
467 		}
468 
469 		entry = get_fsync_inode(head, ino_of_node(page));
470 		if (!entry)
471 			goto next;
472 		/*
473 		 * inode(x) | CP | inode(x) | dnode(F)
474 		 * In this case, we can lose the latest inode(x).
475 		 * So, call recover_inode for the inode update.
476 		 */
477 		if (entry->last_inode == blkaddr)
478 			recover_inode(entry->inode, page);
479 		if (entry->last_dentry == blkaddr) {
480 			err = recover_dentry(entry->inode, page);
481 			if (err) {
482 				f2fs_put_page(page, 1);
483 				break;
484 			}
485 		}
486 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
487 		if (err) {
488 			f2fs_put_page(page, 1);
489 			break;
490 		}
491 
492 		if (entry->blkaddr == blkaddr) {
493 			iput(entry->inode);
494 			list_del(&entry->list);
495 			kmem_cache_free(fsync_entry_slab, entry);
496 		}
497 next:
498 		/* check next segment */
499 		blkaddr = next_blkaddr_of_node(page);
500 		f2fs_put_page(page, 1);
501 	}
502 	if (!err)
503 		allocate_new_segments(sbi);
504 	return err;
505 }
506 
507 int recover_fsync_data(struct f2fs_sb_info *sbi)
508 {
509 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
510 	struct list_head inode_list;
511 	block_t blkaddr;
512 	int err;
513 	bool need_writecp = false;
514 
515 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
516 			sizeof(struct fsync_inode_entry));
517 	if (!fsync_entry_slab)
518 		return -ENOMEM;
519 
520 	INIT_LIST_HEAD(&inode_list);
521 
522 	/* step #1: find fsynced inode numbers */
523 	set_sbi_flag(sbi, SBI_POR_DOING);
524 
525 	/* prevent checkpoint */
526 	mutex_lock(&sbi->cp_mutex);
527 
528 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
529 
530 	err = find_fsync_dnodes(sbi, &inode_list);
531 	if (err)
532 		goto out;
533 
534 	if (list_empty(&inode_list))
535 		goto out;
536 
537 	need_writecp = true;
538 
539 	/* step #2: recover data */
540 	err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
541 	if (!err)
542 		f2fs_bug_on(sbi, !list_empty(&inode_list));
543 out:
544 	destroy_fsync_dnodes(&inode_list);
545 	kmem_cache_destroy(fsync_entry_slab);
546 
547 	/* truncate meta pages to be used by the recovery */
548 	truncate_inode_pages_range(META_MAPPING(sbi),
549 			MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
550 
551 	if (err) {
552 		truncate_inode_pages_final(NODE_MAPPING(sbi));
553 		truncate_inode_pages_final(META_MAPPING(sbi));
554 	}
555 
556 	clear_sbi_flag(sbi, SBI_POR_DOING);
557 	if (err) {
558 		discard_next_dnode(sbi, blkaddr);
559 
560 		/* Flush all the NAT/SIT pages */
561 		while (get_pages(sbi, F2FS_DIRTY_META))
562 			sync_meta_pages(sbi, META, LONG_MAX);
563 		set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
564 		mutex_unlock(&sbi->cp_mutex);
565 	} else if (need_writecp) {
566 		struct cp_control cpc = {
567 			.reason = CP_RECOVERY,
568 		};
569 		mutex_unlock(&sbi->cp_mutex);
570 		write_checkpoint(sbi, &cpc);
571 	} else {
572 		mutex_unlock(&sbi->cp_mutex);
573 	}
574 	return err;
575 }
576