1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 static struct kmem_cache *fsync_entry_slab; 18 19 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 20 { 21 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 22 > sbi->user_block_count) 23 return false; 24 return true; 25 } 26 27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 28 nid_t ino) 29 { 30 struct list_head *this; 31 struct fsync_inode_entry *entry; 32 33 list_for_each(this, head) { 34 entry = list_entry(this, struct fsync_inode_entry, list); 35 if (entry->inode->i_ino == ino) 36 return entry; 37 } 38 return NULL; 39 } 40 41 static int recover_dentry(struct page *ipage, struct inode *inode) 42 { 43 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 44 nid_t pino = le32_to_cpu(raw_inode->i_pino); 45 struct f2fs_dir_entry *de; 46 struct qstr name; 47 struct page *page; 48 struct inode *dir, *einode; 49 int err = 0; 50 51 dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino); 52 if (!dir) { 53 dir = f2fs_iget(inode->i_sb, pino); 54 if (IS_ERR(dir)) { 55 err = PTR_ERR(dir); 56 goto out; 57 } 58 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 59 add_dirty_dir_inode(dir); 60 } 61 62 name.len = le32_to_cpu(raw_inode->i_namelen); 63 name.name = raw_inode->i_name; 64 65 if (unlikely(name.len > F2FS_NAME_LEN)) { 66 WARN_ON(1); 67 err = -ENAMETOOLONG; 68 goto out; 69 } 70 retry: 71 de = f2fs_find_entry(dir, &name, &page); 72 if (de && inode->i_ino == le32_to_cpu(de->ino)) 73 goto out_unmap_put; 74 if (de) { 75 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 76 if (IS_ERR(einode)) { 77 WARN_ON(1); 78 if (PTR_ERR(einode) == -ENOENT) 79 err = -EEXIST; 80 goto out_unmap_put; 81 } 82 err = acquire_orphan_inode(F2FS_SB(inode->i_sb)); 83 if (err) { 84 iput(einode); 85 goto out_unmap_put; 86 } 87 f2fs_delete_entry(de, page, einode); 88 iput(einode); 89 goto retry; 90 } 91 err = __f2fs_add_link(dir, &name, inode); 92 goto out; 93 94 out_unmap_put: 95 kunmap(page); 96 f2fs_put_page(page, 0); 97 out: 98 f2fs_msg(inode->i_sb, KERN_NOTICE, 99 "%s: ino = %x, name = %s, dir = %lx, err = %d", 100 __func__, ino_of_node(ipage), raw_inode->i_name, 101 IS_ERR(dir) ? 0 : dir->i_ino, err); 102 return err; 103 } 104 105 static int recover_inode(struct inode *inode, struct page *node_page) 106 { 107 struct f2fs_inode *raw_inode = F2FS_INODE(node_page); 108 109 if (!IS_INODE(node_page)) 110 return 0; 111 112 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 113 i_size_write(inode, le64_to_cpu(raw_inode->i_size)); 114 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 115 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); 116 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 117 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 118 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); 119 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 120 121 if (is_dent_dnode(node_page)) 122 return recover_dentry(node_page, inode); 123 124 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 125 ino_of_node(node_page), raw_inode->i_name); 126 return 0; 127 } 128 129 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 130 { 131 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 132 struct curseg_info *curseg; 133 struct page *page; 134 block_t blkaddr; 135 int err = 0; 136 137 /* get node pages in the current segment */ 138 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 139 blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; 140 141 /* read node page */ 142 page = alloc_page(GFP_F2FS_ZERO); 143 if (!page) 144 return -ENOMEM; 145 lock_page(page); 146 147 while (1) { 148 struct fsync_inode_entry *entry; 149 150 err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC); 151 if (err) 152 return err; 153 154 lock_page(page); 155 156 if (cp_ver != cpver_of_node(page)) 157 break; 158 159 if (!is_fsync_dnode(page)) 160 goto next; 161 162 entry = get_fsync_inode(head, ino_of_node(page)); 163 if (entry) { 164 if (IS_INODE(page) && is_dent_dnode(page)) 165 set_inode_flag(F2FS_I(entry->inode), 166 FI_INC_LINK); 167 } else { 168 if (IS_INODE(page) && is_dent_dnode(page)) { 169 err = recover_inode_page(sbi, page); 170 if (err) 171 break; 172 } 173 174 /* add this fsync inode to the list */ 175 entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); 176 if (!entry) { 177 err = -ENOMEM; 178 break; 179 } 180 181 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 182 if (IS_ERR(entry->inode)) { 183 err = PTR_ERR(entry->inode); 184 kmem_cache_free(fsync_entry_slab, entry); 185 break; 186 } 187 list_add_tail(&entry->list, head); 188 } 189 entry->blkaddr = blkaddr; 190 191 err = recover_inode(entry->inode, page); 192 if (err && err != -ENOENT) 193 break; 194 next: 195 /* check next segment */ 196 blkaddr = next_blkaddr_of_node(page); 197 } 198 199 unlock_page(page); 200 __free_pages(page, 0); 201 202 return err; 203 } 204 205 static void destroy_fsync_dnodes(struct list_head *head) 206 { 207 struct fsync_inode_entry *entry, *tmp; 208 209 list_for_each_entry_safe(entry, tmp, head, list) { 210 iput(entry->inode); 211 list_del(&entry->list); 212 kmem_cache_free(fsync_entry_slab, entry); 213 } 214 } 215 216 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 217 block_t blkaddr, struct dnode_of_data *dn) 218 { 219 struct seg_entry *sentry; 220 unsigned int segno = GET_SEGNO(sbi, blkaddr); 221 unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & 222 (sbi->blocks_per_seg - 1); 223 struct f2fs_summary sum; 224 nid_t ino, nid; 225 void *kaddr; 226 struct inode *inode; 227 struct page *node_page; 228 unsigned int offset; 229 block_t bidx; 230 int i; 231 232 sentry = get_seg_entry(sbi, segno); 233 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 234 return 0; 235 236 /* Get the previous summary */ 237 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 238 struct curseg_info *curseg = CURSEG_I(sbi, i); 239 if (curseg->segno == segno) { 240 sum = curseg->sum_blk->entries[blkoff]; 241 break; 242 } 243 } 244 if (i > CURSEG_COLD_DATA) { 245 struct page *sum_page = get_sum_page(sbi, segno); 246 struct f2fs_summary_block *sum_node; 247 kaddr = page_address(sum_page); 248 sum_node = (struct f2fs_summary_block *)kaddr; 249 sum = sum_node->entries[blkoff]; 250 f2fs_put_page(sum_page, 1); 251 } 252 253 /* Use the locked dnode page and inode */ 254 nid = le32_to_cpu(sum.nid); 255 if (dn->inode->i_ino == nid) { 256 struct dnode_of_data tdn = *dn; 257 tdn.nid = nid; 258 tdn.node_page = dn->inode_page; 259 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 260 truncate_data_blocks_range(&tdn, 1); 261 return 0; 262 } else if (dn->nid == nid) { 263 struct dnode_of_data tdn = *dn; 264 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 265 truncate_data_blocks_range(&tdn, 1); 266 return 0; 267 } 268 269 /* Get the node page */ 270 node_page = get_node_page(sbi, nid); 271 if (IS_ERR(node_page)) 272 return PTR_ERR(node_page); 273 274 offset = ofs_of_node(node_page); 275 ino = ino_of_node(node_page); 276 f2fs_put_page(node_page, 1); 277 278 /* Deallocate previous index in the node page */ 279 inode = f2fs_iget(sbi->sb, ino); 280 if (IS_ERR(inode)) 281 return PTR_ERR(inode); 282 283 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 284 le16_to_cpu(sum.ofs_in_node); 285 286 truncate_hole(inode, bidx, bidx + 1); 287 iput(inode); 288 return 0; 289 } 290 291 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 292 struct page *page, block_t blkaddr) 293 { 294 struct f2fs_inode_info *fi = F2FS_I(inode); 295 unsigned int start, end; 296 struct dnode_of_data dn; 297 struct f2fs_summary sum; 298 struct node_info ni; 299 int err = 0, recovered = 0; 300 301 if (recover_inline_data(inode, page)) 302 goto out; 303 304 start = start_bidx_of_node(ofs_of_node(page), fi); 305 if (IS_INODE(page)) 306 end = start + ADDRS_PER_INODE(fi); 307 else 308 end = start + ADDRS_PER_BLOCK; 309 310 f2fs_lock_op(sbi); 311 312 set_new_dnode(&dn, inode, NULL, NULL, 0); 313 314 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 315 if (err) { 316 f2fs_unlock_op(sbi); 317 goto out; 318 } 319 320 wait_on_page_writeback(dn.node_page); 321 322 get_node_info(sbi, dn.nid, &ni); 323 f2fs_bug_on(ni.ino != ino_of_node(page)); 324 f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page)); 325 326 for (; start < end; start++) { 327 block_t src, dest; 328 329 src = datablock_addr(dn.node_page, dn.ofs_in_node); 330 dest = datablock_addr(page, dn.ofs_in_node); 331 332 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 333 if (src == NULL_ADDR) { 334 err = reserve_new_block(&dn); 335 /* We should not get -ENOSPC */ 336 f2fs_bug_on(err); 337 } 338 339 /* Check the previous node page having this index */ 340 err = check_index_in_prev_nodes(sbi, dest, &dn); 341 if (err) 342 goto err; 343 344 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 345 346 /* write dummy data page */ 347 recover_data_page(sbi, NULL, &sum, src, dest); 348 update_extent_cache(dest, &dn); 349 recovered++; 350 } 351 dn.ofs_in_node++; 352 } 353 354 /* write node page in place */ 355 set_summary(&sum, dn.nid, 0, 0); 356 if (IS_INODE(dn.node_page)) 357 sync_inode_page(&dn); 358 359 copy_node_footer(dn.node_page, page); 360 fill_node_footer(dn.node_page, dn.nid, ni.ino, 361 ofs_of_node(page), false); 362 set_page_dirty(dn.node_page); 363 364 recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); 365 err: 366 f2fs_put_dnode(&dn); 367 f2fs_unlock_op(sbi); 368 out: 369 f2fs_msg(sbi->sb, KERN_NOTICE, 370 "recover_data: ino = %lx, recovered = %d blocks, err = %d", 371 inode->i_ino, recovered, err); 372 return err; 373 } 374 375 static int recover_data(struct f2fs_sb_info *sbi, 376 struct list_head *head, int type) 377 { 378 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 379 struct curseg_info *curseg; 380 struct page *page; 381 int err = 0; 382 block_t blkaddr; 383 384 /* get node pages in the current segment */ 385 curseg = CURSEG_I(sbi, type); 386 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 387 388 /* read node page */ 389 page = alloc_page(GFP_F2FS_ZERO); 390 if (!page) 391 return -ENOMEM; 392 393 lock_page(page); 394 395 while (1) { 396 struct fsync_inode_entry *entry; 397 398 err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC); 399 if (err) 400 return err; 401 402 lock_page(page); 403 404 if (cp_ver != cpver_of_node(page)) 405 break; 406 407 entry = get_fsync_inode(head, ino_of_node(page)); 408 if (!entry) 409 goto next; 410 411 err = do_recover_data(sbi, entry->inode, page, blkaddr); 412 if (err) 413 break; 414 415 if (entry->blkaddr == blkaddr) { 416 iput(entry->inode); 417 list_del(&entry->list); 418 kmem_cache_free(fsync_entry_slab, entry); 419 } 420 next: 421 /* check next segment */ 422 blkaddr = next_blkaddr_of_node(page); 423 } 424 425 unlock_page(page); 426 __free_pages(page, 0); 427 428 if (!err) 429 allocate_new_segments(sbi); 430 return err; 431 } 432 433 int recover_fsync_data(struct f2fs_sb_info *sbi) 434 { 435 struct list_head inode_list; 436 int err; 437 bool need_writecp = false; 438 439 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 440 sizeof(struct fsync_inode_entry), NULL); 441 if (!fsync_entry_slab) 442 return -ENOMEM; 443 444 INIT_LIST_HEAD(&inode_list); 445 446 /* step #1: find fsynced inode numbers */ 447 sbi->por_doing = true; 448 err = find_fsync_dnodes(sbi, &inode_list); 449 if (err) 450 goto out; 451 452 if (list_empty(&inode_list)) 453 goto out; 454 455 need_writecp = true; 456 457 /* step #2: recover data */ 458 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 459 f2fs_bug_on(!list_empty(&inode_list)); 460 out: 461 destroy_fsync_dnodes(&inode_list); 462 kmem_cache_destroy(fsync_entry_slab); 463 sbi->por_doing = false; 464 if (!err && need_writecp) 465 write_checkpoint(sbi, false); 466 return err; 467 } 468