1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 static struct kmem_cache *fsync_entry_slab; 18 19 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 20 { 21 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 22 > sbi->user_block_count) 23 return false; 24 return true; 25 } 26 27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 28 nid_t ino) 29 { 30 struct list_head *this; 31 struct fsync_inode_entry *entry; 32 33 list_for_each(this, head) { 34 entry = list_entry(this, struct fsync_inode_entry, list); 35 if (entry->inode->i_ino == ino) 36 return entry; 37 } 38 return NULL; 39 } 40 41 static int recover_dentry(struct page *ipage, struct inode *inode) 42 { 43 struct f2fs_node *raw_node = F2FS_NODE(ipage); 44 struct f2fs_inode *raw_inode = &(raw_node->i); 45 nid_t pino = le32_to_cpu(raw_inode->i_pino); 46 struct f2fs_dir_entry *de; 47 struct qstr name; 48 struct page *page; 49 struct inode *dir, *einode; 50 int err = 0; 51 52 dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino); 53 if (!dir) { 54 dir = f2fs_iget(inode->i_sb, pino); 55 if (IS_ERR(dir)) { 56 err = PTR_ERR(dir); 57 goto out; 58 } 59 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 60 add_dirty_dir_inode(dir); 61 } 62 63 name.len = le32_to_cpu(raw_inode->i_namelen); 64 name.name = raw_inode->i_name; 65 retry: 66 de = f2fs_find_entry(dir, &name, &page); 67 if (de && inode->i_ino == le32_to_cpu(de->ino)) { 68 kunmap(page); 69 f2fs_put_page(page, 0); 70 goto out; 71 } 72 if (de) { 73 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 74 if (IS_ERR(einode)) { 75 WARN_ON(1); 76 if (PTR_ERR(einode) == -ENOENT) 77 err = -EEXIST; 78 goto out; 79 } 80 f2fs_delete_entry(de, page, einode); 81 iput(einode); 82 goto retry; 83 } 84 err = __f2fs_add_link(dir, &name, inode); 85 out: 86 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: " 87 "ino = %x, name = %s, dir = %lx, err = %d", 88 ino_of_node(ipage), raw_inode->i_name, 89 IS_ERR(dir) ? 0 : dir->i_ino, err); 90 return err; 91 } 92 93 static int recover_inode(struct inode *inode, struct page *node_page) 94 { 95 struct f2fs_node *raw_node = F2FS_NODE(node_page); 96 struct f2fs_inode *raw_inode = &(raw_node->i); 97 98 if (!IS_INODE(node_page)) 99 return 0; 100 101 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 102 i_size_write(inode, le64_to_cpu(raw_inode->i_size)); 103 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 104 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); 105 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); 106 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 107 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); 108 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); 109 110 if (is_dent_dnode(node_page)) 111 return recover_dentry(node_page, inode); 112 113 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 114 ino_of_node(node_page), raw_inode->i_name); 115 return 0; 116 } 117 118 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 119 { 120 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 121 struct curseg_info *curseg; 122 struct page *page; 123 block_t blkaddr; 124 int err = 0; 125 126 /* get node pages in the current segment */ 127 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 128 blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; 129 130 /* read node page */ 131 page = alloc_page(GFP_F2FS_ZERO); 132 if (!page) 133 return -ENOMEM; 134 lock_page(page); 135 136 while (1) { 137 struct fsync_inode_entry *entry; 138 139 err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC); 140 if (err) 141 goto out; 142 143 lock_page(page); 144 145 if (cp_ver != cpver_of_node(page)) 146 break; 147 148 if (!is_fsync_dnode(page)) 149 goto next; 150 151 entry = get_fsync_inode(head, ino_of_node(page)); 152 if (entry) { 153 if (IS_INODE(page) && is_dent_dnode(page)) 154 set_inode_flag(F2FS_I(entry->inode), 155 FI_INC_LINK); 156 } else { 157 if (IS_INODE(page) && is_dent_dnode(page)) { 158 err = recover_inode_page(sbi, page); 159 if (err) 160 break; 161 } 162 163 /* add this fsync inode to the list */ 164 entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); 165 if (!entry) { 166 err = -ENOMEM; 167 break; 168 } 169 170 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 171 if (IS_ERR(entry->inode)) { 172 err = PTR_ERR(entry->inode); 173 kmem_cache_free(fsync_entry_slab, entry); 174 break; 175 } 176 list_add_tail(&entry->list, head); 177 } 178 entry->blkaddr = blkaddr; 179 180 err = recover_inode(entry->inode, page); 181 if (err && err != -ENOENT) 182 break; 183 next: 184 /* check next segment */ 185 blkaddr = next_blkaddr_of_node(page); 186 } 187 unlock_page(page); 188 out: 189 __free_pages(page, 0); 190 return err; 191 } 192 193 static void destroy_fsync_dnodes(struct list_head *head) 194 { 195 struct fsync_inode_entry *entry, *tmp; 196 197 list_for_each_entry_safe(entry, tmp, head, list) { 198 iput(entry->inode); 199 list_del(&entry->list); 200 kmem_cache_free(fsync_entry_slab, entry); 201 } 202 } 203 204 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 205 block_t blkaddr, struct dnode_of_data *dn) 206 { 207 struct seg_entry *sentry; 208 unsigned int segno = GET_SEGNO(sbi, blkaddr); 209 unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & 210 (sbi->blocks_per_seg - 1); 211 struct f2fs_summary sum; 212 nid_t ino, nid; 213 void *kaddr; 214 struct inode *inode; 215 struct page *node_page; 216 unsigned int offset; 217 block_t bidx; 218 int i; 219 220 sentry = get_seg_entry(sbi, segno); 221 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 222 return 0; 223 224 /* Get the previous summary */ 225 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 226 struct curseg_info *curseg = CURSEG_I(sbi, i); 227 if (curseg->segno == segno) { 228 sum = curseg->sum_blk->entries[blkoff]; 229 break; 230 } 231 } 232 if (i > CURSEG_COLD_DATA) { 233 struct page *sum_page = get_sum_page(sbi, segno); 234 struct f2fs_summary_block *sum_node; 235 kaddr = page_address(sum_page); 236 sum_node = (struct f2fs_summary_block *)kaddr; 237 sum = sum_node->entries[blkoff]; 238 f2fs_put_page(sum_page, 1); 239 } 240 241 /* Use the locked dnode page and inode */ 242 nid = le32_to_cpu(sum.nid); 243 if (dn->inode->i_ino == nid) { 244 struct dnode_of_data tdn = *dn; 245 tdn.nid = nid; 246 tdn.node_page = dn->inode_page; 247 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 248 truncate_data_blocks_range(&tdn, 1); 249 return 0; 250 } else if (dn->nid == nid) { 251 struct dnode_of_data tdn = *dn; 252 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 253 truncate_data_blocks_range(&tdn, 1); 254 return 0; 255 } 256 257 /* Get the node page */ 258 node_page = get_node_page(sbi, nid); 259 if (IS_ERR(node_page)) 260 return PTR_ERR(node_page); 261 262 offset = ofs_of_node(node_page); 263 ino = ino_of_node(node_page); 264 f2fs_put_page(node_page, 1); 265 266 /* Deallocate previous index in the node page */ 267 inode = f2fs_iget(sbi->sb, ino); 268 if (IS_ERR(inode)) 269 return PTR_ERR(inode); 270 271 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 272 le16_to_cpu(sum.ofs_in_node); 273 274 truncate_hole(inode, bidx, bidx + 1); 275 iput(inode); 276 return 0; 277 } 278 279 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 280 struct page *page, block_t blkaddr) 281 { 282 struct f2fs_inode_info *fi = F2FS_I(inode); 283 unsigned int start, end; 284 struct dnode_of_data dn; 285 struct f2fs_summary sum; 286 struct node_info ni; 287 int err = 0, recovered = 0; 288 int ilock; 289 290 start = start_bidx_of_node(ofs_of_node(page), fi); 291 if (IS_INODE(page)) 292 end = start + ADDRS_PER_INODE(fi); 293 else 294 end = start + ADDRS_PER_BLOCK; 295 296 ilock = mutex_lock_op(sbi); 297 set_new_dnode(&dn, inode, NULL, NULL, 0); 298 299 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 300 if (err) { 301 mutex_unlock_op(sbi, ilock); 302 return err; 303 } 304 305 wait_on_page_writeback(dn.node_page); 306 307 get_node_info(sbi, dn.nid, &ni); 308 BUG_ON(ni.ino != ino_of_node(page)); 309 BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page)); 310 311 for (; start < end; start++) { 312 block_t src, dest; 313 314 src = datablock_addr(dn.node_page, dn.ofs_in_node); 315 dest = datablock_addr(page, dn.ofs_in_node); 316 317 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 318 if (src == NULL_ADDR) { 319 int err = reserve_new_block(&dn); 320 /* We should not get -ENOSPC */ 321 BUG_ON(err); 322 } 323 324 /* Check the previous node page having this index */ 325 err = check_index_in_prev_nodes(sbi, dest, &dn); 326 if (err) 327 goto err; 328 329 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 330 331 /* write dummy data page */ 332 recover_data_page(sbi, NULL, &sum, src, dest); 333 update_extent_cache(dest, &dn); 334 recovered++; 335 } 336 dn.ofs_in_node++; 337 } 338 339 /* write node page in place */ 340 set_summary(&sum, dn.nid, 0, 0); 341 if (IS_INODE(dn.node_page)) 342 sync_inode_page(&dn); 343 344 copy_node_footer(dn.node_page, page); 345 fill_node_footer(dn.node_page, dn.nid, ni.ino, 346 ofs_of_node(page), false); 347 set_page_dirty(dn.node_page); 348 349 recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); 350 err: 351 f2fs_put_dnode(&dn); 352 mutex_unlock_op(sbi, ilock); 353 354 f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, " 355 "recovered_data = %d blocks, err = %d", 356 inode->i_ino, recovered, err); 357 return err; 358 } 359 360 static int recover_data(struct f2fs_sb_info *sbi, 361 struct list_head *head, int type) 362 { 363 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 364 struct curseg_info *curseg; 365 struct page *page; 366 int err = 0; 367 block_t blkaddr; 368 369 /* get node pages in the current segment */ 370 curseg = CURSEG_I(sbi, type); 371 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 372 373 /* read node page */ 374 page = alloc_page(GFP_NOFS | __GFP_ZERO); 375 if (!page) 376 return -ENOMEM; 377 378 lock_page(page); 379 380 while (1) { 381 struct fsync_inode_entry *entry; 382 383 err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC); 384 if (err) 385 goto out; 386 387 lock_page(page); 388 389 if (cp_ver != cpver_of_node(page)) 390 break; 391 392 entry = get_fsync_inode(head, ino_of_node(page)); 393 if (!entry) 394 goto next; 395 396 err = do_recover_data(sbi, entry->inode, page, blkaddr); 397 if (err) 398 break; 399 400 if (entry->blkaddr == blkaddr) { 401 iput(entry->inode); 402 list_del(&entry->list); 403 kmem_cache_free(fsync_entry_slab, entry); 404 } 405 next: 406 /* check next segment */ 407 blkaddr = next_blkaddr_of_node(page); 408 } 409 unlock_page(page); 410 out: 411 __free_pages(page, 0); 412 413 if (!err) 414 allocate_new_segments(sbi); 415 return err; 416 } 417 418 int recover_fsync_data(struct f2fs_sb_info *sbi) 419 { 420 struct list_head inode_list; 421 int err; 422 423 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 424 sizeof(struct fsync_inode_entry), NULL); 425 if (unlikely(!fsync_entry_slab)) 426 return -ENOMEM; 427 428 INIT_LIST_HEAD(&inode_list); 429 430 /* step #1: find fsynced inode numbers */ 431 sbi->por_doing = 1; 432 err = find_fsync_dnodes(sbi, &inode_list); 433 if (err) 434 goto out; 435 436 if (list_empty(&inode_list)) 437 goto out; 438 439 /* step #2: recover data */ 440 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 441 BUG_ON(!list_empty(&inode_list)); 442 out: 443 destroy_fsync_dnodes(&inode_list); 444 kmem_cache_destroy(fsync_entry_slab); 445 sbi->por_doing = 0; 446 if (!err) 447 write_checkpoint(sbi, false); 448 return err; 449 } 450