1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/recovery.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <asm/unaligned.h> 9 #include <linux/fs.h> 10 #include <linux/f2fs_fs.h> 11 #include <linux/sched/mm.h> 12 #include "f2fs.h" 13 #include "node.h" 14 #include "segment.h" 15 16 /* 17 * Roll forward recovery scenarios. 18 * 19 * [Term] F: fsync_mark, D: dentry_mark 20 * 21 * 1. inode(x) | CP | inode(x) | dnode(F) 22 * -> Update the latest inode(x). 23 * 24 * 2. inode(x) | CP | inode(F) | dnode(F) 25 * -> No problem. 26 * 27 * 3. inode(x) | CP | dnode(F) | inode(x) 28 * -> Recover to the latest dnode(F), and drop the last inode(x) 29 * 30 * 4. inode(x) | CP | dnode(F) | inode(F) 31 * -> No problem. 32 * 33 * 5. CP | inode(x) | dnode(F) 34 * -> The inode(DF) was missing. Should drop this dnode(F). 35 * 36 * 6. CP | inode(DF) | dnode(F) 37 * -> No problem. 38 * 39 * 7. CP | dnode(F) | inode(DF) 40 * -> If f2fs_iget fails, then goto next to find inode(DF). 41 * 42 * 8. CP | dnode(F) | inode(x) 43 * -> If f2fs_iget fails, then goto next to find inode(DF). 44 * But it will fail due to no inode(DF). 45 */ 46 47 static struct kmem_cache *fsync_entry_slab; 48 49 #if IS_ENABLED(CONFIG_UNICODE) 50 extern struct kmem_cache *f2fs_cf_name_slab; 51 #endif 52 53 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi) 54 { 55 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count); 56 57 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count) 58 return false; 59 if (NM_I(sbi)->max_rf_node_blocks && 60 percpu_counter_sum_positive(&sbi->rf_node_block_count) >= 61 NM_I(sbi)->max_rf_node_blocks) 62 return false; 63 return true; 64 } 65 66 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 67 nid_t ino) 68 { 69 struct fsync_inode_entry *entry; 70 71 list_for_each_entry(entry, head, list) 72 if (entry->inode->i_ino == ino) 73 return entry; 74 75 return NULL; 76 } 77 78 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi, 79 struct list_head *head, nid_t ino, bool quota_inode) 80 { 81 struct inode *inode; 82 struct fsync_inode_entry *entry; 83 int err; 84 85 inode = f2fs_iget_retry(sbi->sb, ino); 86 if (IS_ERR(inode)) 87 return ERR_CAST(inode); 88 89 err = f2fs_dquot_initialize(inode); 90 if (err) 91 goto err_out; 92 93 if (quota_inode) { 94 err = dquot_alloc_inode(inode); 95 if (err) 96 goto err_out; 97 } 98 99 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, 100 GFP_F2FS_ZERO, true, NULL); 101 entry->inode = inode; 102 list_add_tail(&entry->list, head); 103 104 return entry; 105 err_out: 106 iput(inode); 107 return ERR_PTR(err); 108 } 109 110 static void del_fsync_inode(struct fsync_inode_entry *entry, int drop) 111 { 112 if (drop) { 113 /* inode should not be recovered, drop it */ 114 f2fs_inode_synced(entry->inode); 115 } 116 iput(entry->inode); 117 list_del(&entry->list); 118 kmem_cache_free(fsync_entry_slab, entry); 119 } 120 121 static int init_recovered_filename(const struct inode *dir, 122 struct f2fs_inode *raw_inode, 123 struct f2fs_filename *fname, 124 struct qstr *usr_fname) 125 { 126 int err; 127 128 memset(fname, 0, sizeof(*fname)); 129 fname->disk_name.len = le32_to_cpu(raw_inode->i_namelen); 130 fname->disk_name.name = raw_inode->i_name; 131 132 if (WARN_ON(fname->disk_name.len > F2FS_NAME_LEN)) 133 return -ENAMETOOLONG; 134 135 if (!IS_ENCRYPTED(dir)) { 136 usr_fname->name = fname->disk_name.name; 137 usr_fname->len = fname->disk_name.len; 138 fname->usr_fname = usr_fname; 139 } 140 141 /* Compute the hash of the filename */ 142 if (IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir)) { 143 /* 144 * In this case the hash isn't computable without the key, so it 145 * was saved on-disk. 146 */ 147 if (fname->disk_name.len + sizeof(f2fs_hash_t) > F2FS_NAME_LEN) 148 return -EINVAL; 149 fname->hash = get_unaligned((f2fs_hash_t *) 150 &raw_inode->i_name[fname->disk_name.len]); 151 } else if (IS_CASEFOLDED(dir)) { 152 err = f2fs_init_casefolded_name(dir, fname); 153 if (err) 154 return err; 155 f2fs_hash_filename(dir, fname); 156 #if IS_ENABLED(CONFIG_UNICODE) 157 /* Case-sensitive match is fine for recovery */ 158 kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name); 159 fname->cf_name.name = NULL; 160 #endif 161 } else { 162 f2fs_hash_filename(dir, fname); 163 } 164 return 0; 165 } 166 167 static int recover_dentry(struct inode *inode, struct page *ipage, 168 struct list_head *dir_list) 169 { 170 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 171 nid_t pino = le32_to_cpu(raw_inode->i_pino); 172 struct f2fs_dir_entry *de; 173 struct f2fs_filename fname; 174 struct qstr usr_fname; 175 struct page *page; 176 struct inode *dir, *einode; 177 struct fsync_inode_entry *entry; 178 int err = 0; 179 char *name; 180 181 entry = get_fsync_inode(dir_list, pino); 182 if (!entry) { 183 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, 184 pino, false); 185 if (IS_ERR(entry)) { 186 dir = ERR_CAST(entry); 187 err = PTR_ERR(entry); 188 goto out; 189 } 190 } 191 192 dir = entry->inode; 193 err = init_recovered_filename(dir, raw_inode, &fname, &usr_fname); 194 if (err) 195 goto out; 196 retry: 197 de = __f2fs_find_entry(dir, &fname, &page); 198 if (de && inode->i_ino == le32_to_cpu(de->ino)) 199 goto out_put; 200 201 if (de) { 202 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino)); 203 if (IS_ERR(einode)) { 204 WARN_ON(1); 205 err = PTR_ERR(einode); 206 if (err == -ENOENT) 207 err = -EEXIST; 208 goto out_put; 209 } 210 211 err = f2fs_dquot_initialize(einode); 212 if (err) { 213 iput(einode); 214 goto out_put; 215 } 216 217 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode)); 218 if (err) { 219 iput(einode); 220 goto out_put; 221 } 222 f2fs_delete_entry(de, page, dir, einode); 223 iput(einode); 224 goto retry; 225 } else if (IS_ERR(page)) { 226 err = PTR_ERR(page); 227 } else { 228 err = f2fs_add_dentry(dir, &fname, inode, 229 inode->i_ino, inode->i_mode); 230 } 231 if (err == -ENOMEM) 232 goto retry; 233 goto out; 234 235 out_put: 236 f2fs_put_page(page, 0); 237 out: 238 if (file_enc_name(inode)) 239 name = "<encrypted>"; 240 else 241 name = raw_inode->i_name; 242 f2fs_notice(F2FS_I_SB(inode), "%s: ino = %x, name = %s, dir = %lx, err = %d", 243 __func__, ino_of_node(ipage), name, 244 IS_ERR(dir) ? 0 : dir->i_ino, err); 245 return err; 246 } 247 248 static int recover_quota_data(struct inode *inode, struct page *page) 249 { 250 struct f2fs_inode *raw = F2FS_INODE(page); 251 struct iattr attr; 252 uid_t i_uid = le32_to_cpu(raw->i_uid); 253 gid_t i_gid = le32_to_cpu(raw->i_gid); 254 int err; 255 256 memset(&attr, 0, sizeof(attr)); 257 258 attr.ia_vfsuid = VFSUIDT_INIT(make_kuid(inode->i_sb->s_user_ns, i_uid)); 259 attr.ia_vfsgid = VFSGIDT_INIT(make_kgid(inode->i_sb->s_user_ns, i_gid)); 260 261 if (!vfsuid_eq(attr.ia_vfsuid, i_uid_into_vfsuid(&nop_mnt_idmap, inode))) 262 attr.ia_valid |= ATTR_UID; 263 if (!vfsgid_eq(attr.ia_vfsgid, i_gid_into_vfsgid(&nop_mnt_idmap, inode))) 264 attr.ia_valid |= ATTR_GID; 265 266 if (!attr.ia_valid) 267 return 0; 268 269 err = dquot_transfer(&nop_mnt_idmap, inode, &attr); 270 if (err) 271 set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); 272 return err; 273 } 274 275 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri) 276 { 277 if (ri->i_inline & F2FS_PIN_FILE) 278 set_inode_flag(inode, FI_PIN_FILE); 279 else 280 clear_inode_flag(inode, FI_PIN_FILE); 281 if (ri->i_inline & F2FS_DATA_EXIST) 282 set_inode_flag(inode, FI_DATA_EXIST); 283 else 284 clear_inode_flag(inode, FI_DATA_EXIST); 285 } 286 287 static int recover_inode(struct inode *inode, struct page *page) 288 { 289 struct f2fs_inode *raw = F2FS_INODE(page); 290 char *name; 291 int err; 292 293 inode->i_mode = le16_to_cpu(raw->i_mode); 294 295 err = recover_quota_data(inode, page); 296 if (err) 297 return err; 298 299 i_uid_write(inode, le32_to_cpu(raw->i_uid)); 300 i_gid_write(inode, le32_to_cpu(raw->i_gid)); 301 302 if (raw->i_inline & F2FS_EXTRA_ATTR) { 303 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) && 304 F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize), 305 i_projid)) { 306 projid_t i_projid; 307 kprojid_t kprojid; 308 309 i_projid = (projid_t)le32_to_cpu(raw->i_projid); 310 kprojid = make_kprojid(&init_user_ns, i_projid); 311 312 if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) { 313 err = f2fs_transfer_project_quota(inode, 314 kprojid); 315 if (err) 316 return err; 317 F2FS_I(inode)->i_projid = kprojid; 318 } 319 } 320 } 321 322 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size)); 323 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime); 324 inode_set_ctime(inode, le64_to_cpu(raw->i_ctime), 325 le32_to_cpu(raw->i_ctime_nsec)); 326 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 327 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec); 328 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 329 330 F2FS_I(inode)->i_advise = raw->i_advise; 331 F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags); 332 f2fs_set_inode_flags(inode); 333 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 334 le16_to_cpu(raw->i_gc_failures); 335 336 recover_inline_flags(inode, raw); 337 338 f2fs_mark_inode_dirty_sync(inode, true); 339 340 if (file_enc_name(inode)) 341 name = "<encrypted>"; 342 else 343 name = F2FS_INODE(page)->i_name; 344 345 f2fs_notice(F2FS_I_SB(inode), "recover_inode: ino = %x, name = %s, inline = %x", 346 ino_of_node(page), name, raw->i_inline); 347 return 0; 348 } 349 350 static unsigned int adjust_por_ra_blocks(struct f2fs_sb_info *sbi, 351 unsigned int ra_blocks, unsigned int blkaddr, 352 unsigned int next_blkaddr) 353 { 354 if (blkaddr + 1 == next_blkaddr) 355 ra_blocks = min_t(unsigned int, RECOVERY_MAX_RA_BLOCKS, 356 ra_blocks * 2); 357 else if (next_blkaddr % BLKS_PER_SEG(sbi)) 358 ra_blocks = max_t(unsigned int, RECOVERY_MIN_RA_BLOCKS, 359 ra_blocks / 2); 360 return ra_blocks; 361 } 362 363 /* Detect looped node chain with Floyd's cycle detection algorithm. */ 364 static int sanity_check_node_chain(struct f2fs_sb_info *sbi, block_t blkaddr, 365 block_t *blkaddr_fast, bool *is_detecting) 366 { 367 unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; 368 struct page *page = NULL; 369 int i; 370 371 if (!*is_detecting) 372 return 0; 373 374 for (i = 0; i < 2; i++) { 375 if (!f2fs_is_valid_blkaddr(sbi, *blkaddr_fast, META_POR)) { 376 *is_detecting = false; 377 return 0; 378 } 379 380 page = f2fs_get_tmp_page(sbi, *blkaddr_fast); 381 if (IS_ERR(page)) 382 return PTR_ERR(page); 383 384 if (!is_recoverable_dnode(page)) { 385 f2fs_put_page(page, 1); 386 *is_detecting = false; 387 return 0; 388 } 389 390 ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, *blkaddr_fast, 391 next_blkaddr_of_node(page)); 392 393 *blkaddr_fast = next_blkaddr_of_node(page); 394 f2fs_put_page(page, 1); 395 396 f2fs_ra_meta_pages_cond(sbi, *blkaddr_fast, ra_blocks); 397 } 398 399 if (*blkaddr_fast == blkaddr) { 400 f2fs_notice(sbi, "%s: Detect looped node chain on blkaddr:%u." 401 " Run fsck to fix it.", __func__, blkaddr); 402 return -EINVAL; 403 } 404 return 0; 405 } 406 407 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head, 408 bool check_only) 409 { 410 struct curseg_info *curseg; 411 struct page *page = NULL; 412 block_t blkaddr, blkaddr_fast; 413 bool is_detecting = true; 414 int err = 0; 415 416 /* get node pages in the current segment */ 417 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 418 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 419 blkaddr_fast = blkaddr; 420 421 while (1) { 422 struct fsync_inode_entry *entry; 423 424 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 425 return 0; 426 427 page = f2fs_get_tmp_page(sbi, blkaddr); 428 if (IS_ERR(page)) { 429 err = PTR_ERR(page); 430 break; 431 } 432 433 if (!is_recoverable_dnode(page)) { 434 f2fs_put_page(page, 1); 435 break; 436 } 437 438 if (!is_fsync_dnode(page)) 439 goto next; 440 441 entry = get_fsync_inode(head, ino_of_node(page)); 442 if (!entry) { 443 bool quota_inode = false; 444 445 if (!check_only && 446 IS_INODE(page) && is_dent_dnode(page)) { 447 err = f2fs_recover_inode_page(sbi, page); 448 if (err) { 449 f2fs_put_page(page, 1); 450 break; 451 } 452 quota_inode = true; 453 } 454 455 /* 456 * CP | dnode(F) | inode(DF) 457 * For this case, we should not give up now. 458 */ 459 entry = add_fsync_inode(sbi, head, ino_of_node(page), 460 quota_inode); 461 if (IS_ERR(entry)) { 462 err = PTR_ERR(entry); 463 if (err == -ENOENT) 464 goto next; 465 f2fs_put_page(page, 1); 466 break; 467 } 468 } 469 entry->blkaddr = blkaddr; 470 471 if (IS_INODE(page) && is_dent_dnode(page)) 472 entry->last_dentry = blkaddr; 473 next: 474 /* check next segment */ 475 blkaddr = next_blkaddr_of_node(page); 476 f2fs_put_page(page, 1); 477 478 err = sanity_check_node_chain(sbi, blkaddr, &blkaddr_fast, 479 &is_detecting); 480 if (err) 481 break; 482 } 483 return err; 484 } 485 486 static void destroy_fsync_dnodes(struct list_head *head, int drop) 487 { 488 struct fsync_inode_entry *entry, *tmp; 489 490 list_for_each_entry_safe(entry, tmp, head, list) 491 del_fsync_inode(entry, drop); 492 } 493 494 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 495 block_t blkaddr, struct dnode_of_data *dn) 496 { 497 struct seg_entry *sentry; 498 unsigned int segno = GET_SEGNO(sbi, blkaddr); 499 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 500 struct f2fs_summary_block *sum_node; 501 struct f2fs_summary sum; 502 struct page *sum_page, *node_page; 503 struct dnode_of_data tdn = *dn; 504 nid_t ino, nid; 505 struct inode *inode; 506 unsigned int offset, ofs_in_node, max_addrs; 507 block_t bidx; 508 int i; 509 510 sentry = get_seg_entry(sbi, segno); 511 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 512 return 0; 513 514 /* Get the previous summary */ 515 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 516 struct curseg_info *curseg = CURSEG_I(sbi, i); 517 518 if (curseg->segno == segno) { 519 sum = curseg->sum_blk->entries[blkoff]; 520 goto got_it; 521 } 522 } 523 524 sum_page = f2fs_get_sum_page(sbi, segno); 525 if (IS_ERR(sum_page)) 526 return PTR_ERR(sum_page); 527 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 528 sum = sum_node->entries[blkoff]; 529 f2fs_put_page(sum_page, 1); 530 got_it: 531 /* Use the locked dnode page and inode */ 532 nid = le32_to_cpu(sum.nid); 533 ofs_in_node = le16_to_cpu(sum.ofs_in_node); 534 535 max_addrs = ADDRS_PER_PAGE(dn->node_page, dn->inode); 536 if (ofs_in_node >= max_addrs) { 537 f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%lu, nid:%u, max:%u", 538 ofs_in_node, dn->inode->i_ino, nid, max_addrs); 539 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUMMARY); 540 return -EFSCORRUPTED; 541 } 542 543 if (dn->inode->i_ino == nid) { 544 tdn.nid = nid; 545 if (!dn->inode_page_locked) 546 lock_page(dn->inode_page); 547 tdn.node_page = dn->inode_page; 548 tdn.ofs_in_node = ofs_in_node; 549 goto truncate_out; 550 } else if (dn->nid == nid) { 551 tdn.ofs_in_node = ofs_in_node; 552 goto truncate_out; 553 } 554 555 /* Get the node page */ 556 node_page = f2fs_get_node_page(sbi, nid); 557 if (IS_ERR(node_page)) 558 return PTR_ERR(node_page); 559 560 offset = ofs_of_node(node_page); 561 ino = ino_of_node(node_page); 562 f2fs_put_page(node_page, 1); 563 564 if (ino != dn->inode->i_ino) { 565 int ret; 566 567 /* Deallocate previous index in the node page */ 568 inode = f2fs_iget_retry(sbi->sb, ino); 569 if (IS_ERR(inode)) 570 return PTR_ERR(inode); 571 572 ret = f2fs_dquot_initialize(inode); 573 if (ret) { 574 iput(inode); 575 return ret; 576 } 577 } else { 578 inode = dn->inode; 579 } 580 581 bidx = f2fs_start_bidx_of_node(offset, inode) + 582 le16_to_cpu(sum.ofs_in_node); 583 584 /* 585 * if inode page is locked, unlock temporarily, but its reference 586 * count keeps alive. 587 */ 588 if (ino == dn->inode->i_ino && dn->inode_page_locked) 589 unlock_page(dn->inode_page); 590 591 set_new_dnode(&tdn, inode, NULL, NULL, 0); 592 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 593 goto out; 594 595 if (tdn.data_blkaddr == blkaddr) 596 f2fs_truncate_data_blocks_range(&tdn, 1); 597 598 f2fs_put_dnode(&tdn); 599 out: 600 if (ino != dn->inode->i_ino) 601 iput(inode); 602 else if (dn->inode_page_locked) 603 lock_page(dn->inode_page); 604 return 0; 605 606 truncate_out: 607 if (f2fs_data_blkaddr(&tdn) == blkaddr) 608 f2fs_truncate_data_blocks_range(&tdn, 1); 609 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 610 unlock_page(dn->inode_page); 611 return 0; 612 } 613 614 static int f2fs_reserve_new_block_retry(struct dnode_of_data *dn) 615 { 616 int i, err = 0; 617 618 for (i = DEFAULT_FAILURE_RETRY_COUNT; i > 0; i--) { 619 err = f2fs_reserve_new_block(dn); 620 if (!err) 621 break; 622 } 623 624 return err; 625 } 626 627 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 628 struct page *page) 629 { 630 struct dnode_of_data dn; 631 struct node_info ni; 632 unsigned int start, end; 633 int err = 0, recovered = 0; 634 635 /* step 1: recover xattr */ 636 if (IS_INODE(page)) { 637 err = f2fs_recover_inline_xattr(inode, page); 638 if (err) 639 goto out; 640 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 641 err = f2fs_recover_xattr_data(inode, page); 642 if (!err) 643 recovered++; 644 goto out; 645 } 646 647 /* step 2: recover inline data */ 648 err = f2fs_recover_inline_data(inode, page); 649 if (err) { 650 if (err == 1) 651 err = 0; 652 goto out; 653 } 654 655 /* step 3: recover data indices */ 656 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode); 657 end = start + ADDRS_PER_PAGE(page, inode); 658 659 set_new_dnode(&dn, inode, NULL, NULL, 0); 660 retry_dn: 661 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE); 662 if (err) { 663 if (err == -ENOMEM) { 664 memalloc_retry_wait(GFP_NOFS); 665 goto retry_dn; 666 } 667 goto out; 668 } 669 670 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 671 672 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 673 if (err) 674 goto err; 675 676 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 677 678 if (ofs_of_node(dn.node_page) != ofs_of_node(page)) { 679 f2fs_warn(sbi, "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u", 680 inode->i_ino, ofs_of_node(dn.node_page), 681 ofs_of_node(page)); 682 err = -EFSCORRUPTED; 683 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 684 goto err; 685 } 686 687 for (; start < end; start++, dn.ofs_in_node++) { 688 block_t src, dest; 689 690 src = f2fs_data_blkaddr(&dn); 691 dest = data_blkaddr(dn.inode, page, dn.ofs_in_node); 692 693 if (__is_valid_data_blkaddr(src) && 694 !f2fs_is_valid_blkaddr(sbi, src, META_POR)) { 695 err = -EFSCORRUPTED; 696 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 697 goto err; 698 } 699 700 if (__is_valid_data_blkaddr(dest) && 701 !f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 702 err = -EFSCORRUPTED; 703 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 704 goto err; 705 } 706 707 /* skip recovering if dest is the same as src */ 708 if (src == dest) 709 continue; 710 711 /* dest is invalid, just invalidate src block */ 712 if (dest == NULL_ADDR) { 713 f2fs_truncate_data_blocks_range(&dn, 1); 714 continue; 715 } 716 717 if (!file_keep_isize(inode) && 718 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT))) 719 f2fs_i_size_write(inode, 720 (loff_t)(start + 1) << PAGE_SHIFT); 721 722 /* 723 * dest is reserved block, invalidate src block 724 * and then reserve one new block in dnode page. 725 */ 726 if (dest == NEW_ADDR) { 727 f2fs_truncate_data_blocks_range(&dn, 1); 728 729 err = f2fs_reserve_new_block_retry(&dn); 730 if (err) 731 goto err; 732 continue; 733 } 734 735 /* dest is valid block, try to recover from src to dest */ 736 if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) { 737 if (src == NULL_ADDR) { 738 err = f2fs_reserve_new_block_retry(&dn); 739 if (err) 740 goto err; 741 } 742 retry_prev: 743 /* Check the previous node page having this index */ 744 err = check_index_in_prev_nodes(sbi, dest, &dn); 745 if (err) { 746 if (err == -ENOMEM) { 747 memalloc_retry_wait(GFP_NOFS); 748 goto retry_prev; 749 } 750 goto err; 751 } 752 753 if (f2fs_is_valid_blkaddr(sbi, dest, 754 DATA_GENERIC_ENHANCE_UPDATE)) { 755 f2fs_err(sbi, "Inconsistent dest blkaddr:%u, ino:%lu, ofs:%u", 756 dest, inode->i_ino, dn.ofs_in_node); 757 err = -EFSCORRUPTED; 758 f2fs_handle_error(sbi, 759 ERROR_INVALID_BLKADDR); 760 goto err; 761 } 762 763 /* write dummy data page */ 764 f2fs_replace_block(sbi, &dn, src, dest, 765 ni.version, false, false); 766 recovered++; 767 } 768 } 769 770 copy_node_footer(dn.node_page, page); 771 fill_node_footer(dn.node_page, dn.nid, ni.ino, 772 ofs_of_node(page), false); 773 set_page_dirty(dn.node_page); 774 err: 775 f2fs_put_dnode(&dn); 776 out: 777 f2fs_notice(sbi, "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d", 778 inode->i_ino, file_keep_isize(inode) ? "keep" : "recover", 779 recovered, err); 780 return err; 781 } 782 783 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list, 784 struct list_head *tmp_inode_list, struct list_head *dir_list) 785 { 786 struct curseg_info *curseg; 787 struct page *page = NULL; 788 int err = 0; 789 block_t blkaddr; 790 unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS; 791 792 /* get node pages in the current segment */ 793 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 794 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 795 796 while (1) { 797 struct fsync_inode_entry *entry; 798 799 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) 800 break; 801 802 page = f2fs_get_tmp_page(sbi, blkaddr); 803 if (IS_ERR(page)) { 804 err = PTR_ERR(page); 805 break; 806 } 807 808 if (!is_recoverable_dnode(page)) { 809 f2fs_put_page(page, 1); 810 break; 811 } 812 813 entry = get_fsync_inode(inode_list, ino_of_node(page)); 814 if (!entry) 815 goto next; 816 /* 817 * inode(x) | CP | inode(x) | dnode(F) 818 * In this case, we can lose the latest inode(x). 819 * So, call recover_inode for the inode update. 820 */ 821 if (IS_INODE(page)) { 822 err = recover_inode(entry->inode, page); 823 if (err) { 824 f2fs_put_page(page, 1); 825 break; 826 } 827 } 828 if (entry->last_dentry == blkaddr) { 829 err = recover_dentry(entry->inode, page, dir_list); 830 if (err) { 831 f2fs_put_page(page, 1); 832 break; 833 } 834 } 835 err = do_recover_data(sbi, entry->inode, page); 836 if (err) { 837 f2fs_put_page(page, 1); 838 break; 839 } 840 841 if (entry->blkaddr == blkaddr) 842 list_move_tail(&entry->list, tmp_inode_list); 843 next: 844 ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, blkaddr, 845 next_blkaddr_of_node(page)); 846 847 /* check next segment */ 848 blkaddr = next_blkaddr_of_node(page); 849 f2fs_put_page(page, 1); 850 851 f2fs_ra_meta_pages_cond(sbi, blkaddr, ra_blocks); 852 } 853 if (!err) 854 f2fs_allocate_new_segments(sbi); 855 return err; 856 } 857 858 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only) 859 { 860 struct list_head inode_list, tmp_inode_list; 861 struct list_head dir_list; 862 int err; 863 int ret = 0; 864 unsigned long s_flags = sbi->sb->s_flags; 865 bool need_writecp = false; 866 bool fix_curseg_write_pointer = false; 867 868 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 869 f2fs_info(sbi, "recover fsync data on readonly fs"); 870 871 INIT_LIST_HEAD(&inode_list); 872 INIT_LIST_HEAD(&tmp_inode_list); 873 INIT_LIST_HEAD(&dir_list); 874 875 /* prevent checkpoint */ 876 f2fs_down_write(&sbi->cp_global_sem); 877 878 /* step #1: find fsynced inode numbers */ 879 err = find_fsync_dnodes(sbi, &inode_list, check_only); 880 if (err || list_empty(&inode_list)) 881 goto skip; 882 883 if (check_only) { 884 ret = 1; 885 goto skip; 886 } 887 888 need_writecp = true; 889 890 /* step #2: recover data */ 891 err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list); 892 if (!err) 893 f2fs_bug_on(sbi, !list_empty(&inode_list)); 894 else 895 f2fs_bug_on(sbi, sbi->sb->s_flags & SB_ACTIVE); 896 skip: 897 fix_curseg_write_pointer = !check_only || list_empty(&inode_list); 898 899 destroy_fsync_dnodes(&inode_list, err); 900 destroy_fsync_dnodes(&tmp_inode_list, err); 901 902 /* truncate meta pages to be used by the recovery */ 903 truncate_inode_pages_range(META_MAPPING(sbi), 904 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 905 906 if (err) { 907 truncate_inode_pages_final(NODE_MAPPING(sbi)); 908 truncate_inode_pages_final(META_MAPPING(sbi)); 909 } 910 911 /* 912 * If fsync data succeeds or there is no fsync data to recover, 913 * and the f2fs is not read only, check and fix zoned block devices' 914 * write pointer consistency. 915 */ 916 if (!err && fix_curseg_write_pointer && !f2fs_readonly(sbi->sb) && 917 f2fs_sb_has_blkzoned(sbi)) { 918 err = f2fs_fix_curseg_write_pointer(sbi); 919 if (!err) 920 err = f2fs_check_write_pointer(sbi); 921 ret = err; 922 } 923 924 if (!err) 925 clear_sbi_flag(sbi, SBI_POR_DOING); 926 927 f2fs_up_write(&sbi->cp_global_sem); 928 929 /* let's drop all the directory inodes for clean checkpoint */ 930 destroy_fsync_dnodes(&dir_list, err); 931 932 if (need_writecp) { 933 set_sbi_flag(sbi, SBI_IS_RECOVERED); 934 935 if (!err) { 936 struct cp_control cpc = { 937 .reason = CP_RECOVERY, 938 }; 939 stat_inc_cp_call_count(sbi, TOTAL_CALL); 940 err = f2fs_write_checkpoint(sbi, &cpc); 941 } 942 } 943 944 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 945 946 return ret ? ret : err; 947 } 948 949 int __init f2fs_create_recovery_cache(void) 950 { 951 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 952 sizeof(struct fsync_inode_entry)); 953 return fsync_entry_slab ? 0 : -ENOMEM; 954 } 955 956 void f2fs_destroy_recovery_cache(void) 957 { 958 kmem_cache_destroy(fsync_entry_slab); 959 } 960