xref: /openbmc/linux/fs/f2fs/recovery.c (revision 275876e2)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 static struct kmem_cache *fsync_entry_slab;
18 
19 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
20 {
21 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
22 			> sbi->user_block_count)
23 		return false;
24 	return true;
25 }
26 
27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
28 								nid_t ino)
29 {
30 	struct fsync_inode_entry *entry;
31 
32 	list_for_each_entry(entry, head, list)
33 		if (entry->inode->i_ino == ino)
34 			return entry;
35 
36 	return NULL;
37 }
38 
39 static int recover_dentry(struct page *ipage, struct inode *inode)
40 {
41 	struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
42 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
43 	struct f2fs_dir_entry *de;
44 	struct qstr name;
45 	struct page *page;
46 	struct inode *dir, *einode;
47 	int err = 0;
48 
49 	dir = f2fs_iget(inode->i_sb, pino);
50 	if (IS_ERR(dir)) {
51 		err = PTR_ERR(dir);
52 		goto out;
53 	}
54 
55 	name.len = le32_to_cpu(raw_inode->i_namelen);
56 	name.name = raw_inode->i_name;
57 
58 	if (unlikely(name.len > F2FS_NAME_LEN)) {
59 		WARN_ON(1);
60 		err = -ENAMETOOLONG;
61 		goto out_err;
62 	}
63 retry:
64 	de = f2fs_find_entry(dir, &name, &page);
65 	if (de && inode->i_ino == le32_to_cpu(de->ino))
66 		goto out_unmap_put;
67 	if (de) {
68 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
69 		if (IS_ERR(einode)) {
70 			WARN_ON(1);
71 			err = PTR_ERR(einode);
72 			if (err == -ENOENT)
73 				err = -EEXIST;
74 			goto out_unmap_put;
75 		}
76 		err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
77 		if (err) {
78 			iput(einode);
79 			goto out_unmap_put;
80 		}
81 		f2fs_delete_entry(de, page, einode);
82 		iput(einode);
83 		goto retry;
84 	}
85 	err = __f2fs_add_link(dir, &name, inode);
86 	if (err)
87 		goto out_err;
88 
89 	if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
90 		iput(dir);
91 	} else {
92 		add_dirty_dir_inode(dir);
93 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
94 	}
95 
96 	goto out;
97 
98 out_unmap_put:
99 	kunmap(page);
100 	f2fs_put_page(page, 0);
101 out_err:
102 	iput(dir);
103 out:
104 	f2fs_msg(inode->i_sb, KERN_NOTICE,
105 			"%s: ino = %x, name = %s, dir = %lx, err = %d",
106 			__func__, ino_of_node(ipage), raw_inode->i_name,
107 			IS_ERR(dir) ? 0 : dir->i_ino, err);
108 	return err;
109 }
110 
111 static int recover_inode(struct inode *inode, struct page *node_page)
112 {
113 	struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
114 
115 	if (!IS_INODE(node_page))
116 		return 0;
117 
118 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
119 	i_size_write(inode, le64_to_cpu(raw_inode->i_size));
120 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
121 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
122 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
123 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
124 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
125 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
126 
127 	if (is_dent_dnode(node_page))
128 		return recover_dentry(node_page, inode);
129 
130 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
131 			ino_of_node(node_page), raw_inode->i_name);
132 	return 0;
133 }
134 
135 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
136 {
137 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
138 	struct curseg_info *curseg;
139 	struct page *page;
140 	block_t blkaddr;
141 	int err = 0;
142 
143 	/* get node pages in the current segment */
144 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
145 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
146 
147 	/* read node page */
148 	page = alloc_page(GFP_F2FS_ZERO);
149 	if (!page)
150 		return -ENOMEM;
151 	lock_page(page);
152 
153 	while (1) {
154 		struct fsync_inode_entry *entry;
155 
156 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
157 		if (err)
158 			return err;
159 
160 		lock_page(page);
161 
162 		if (cp_ver != cpver_of_node(page))
163 			break;
164 
165 		if (!is_fsync_dnode(page))
166 			goto next;
167 
168 		entry = get_fsync_inode(head, ino_of_node(page));
169 		if (entry) {
170 			if (IS_INODE(page) && is_dent_dnode(page))
171 				set_inode_flag(F2FS_I(entry->inode),
172 							FI_INC_LINK);
173 		} else {
174 			if (IS_INODE(page) && is_dent_dnode(page)) {
175 				err = recover_inode_page(sbi, page);
176 				if (err)
177 					break;
178 			}
179 
180 			/* add this fsync inode to the list */
181 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
182 			if (!entry) {
183 				err = -ENOMEM;
184 				break;
185 			}
186 
187 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
188 			if (IS_ERR(entry->inode)) {
189 				err = PTR_ERR(entry->inode);
190 				kmem_cache_free(fsync_entry_slab, entry);
191 				break;
192 			}
193 			list_add_tail(&entry->list, head);
194 		}
195 		entry->blkaddr = blkaddr;
196 
197 		err = recover_inode(entry->inode, page);
198 		if (err && err != -ENOENT)
199 			break;
200 next:
201 		/* check next segment */
202 		blkaddr = next_blkaddr_of_node(page);
203 	}
204 
205 	unlock_page(page);
206 	__free_pages(page, 0);
207 
208 	return err;
209 }
210 
211 static void destroy_fsync_dnodes(struct list_head *head)
212 {
213 	struct fsync_inode_entry *entry, *tmp;
214 
215 	list_for_each_entry_safe(entry, tmp, head, list) {
216 		iput(entry->inode);
217 		list_del(&entry->list);
218 		kmem_cache_free(fsync_entry_slab, entry);
219 	}
220 }
221 
222 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
223 			block_t blkaddr, struct dnode_of_data *dn)
224 {
225 	struct seg_entry *sentry;
226 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
227 	unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
228 	struct f2fs_summary_block *sum_node;
229 	struct f2fs_summary sum;
230 	struct page *sum_page, *node_page;
231 	nid_t ino, nid;
232 	struct inode *inode;
233 	unsigned int offset;
234 	block_t bidx;
235 	int i;
236 
237 	sentry = get_seg_entry(sbi, segno);
238 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
239 		return 0;
240 
241 	/* Get the previous summary */
242 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
243 		struct curseg_info *curseg = CURSEG_I(sbi, i);
244 		if (curseg->segno == segno) {
245 			sum = curseg->sum_blk->entries[blkoff];
246 			goto got_it;
247 		}
248 	}
249 
250 	sum_page = get_sum_page(sbi, segno);
251 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
252 	sum = sum_node->entries[blkoff];
253 	f2fs_put_page(sum_page, 1);
254 got_it:
255 	/* Use the locked dnode page and inode */
256 	nid = le32_to_cpu(sum.nid);
257 	if (dn->inode->i_ino == nid) {
258 		struct dnode_of_data tdn = *dn;
259 		tdn.nid = nid;
260 		tdn.node_page = dn->inode_page;
261 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
262 		truncate_data_blocks_range(&tdn, 1);
263 		return 0;
264 	} else if (dn->nid == nid) {
265 		struct dnode_of_data tdn = *dn;
266 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
267 		truncate_data_blocks_range(&tdn, 1);
268 		return 0;
269 	}
270 
271 	/* Get the node page */
272 	node_page = get_node_page(sbi, nid);
273 	if (IS_ERR(node_page))
274 		return PTR_ERR(node_page);
275 
276 	offset = ofs_of_node(node_page);
277 	ino = ino_of_node(node_page);
278 	f2fs_put_page(node_page, 1);
279 
280 	/* Deallocate previous index in the node page */
281 	inode = f2fs_iget(sbi->sb, ino);
282 	if (IS_ERR(inode))
283 		return PTR_ERR(inode);
284 
285 	bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
286 					le16_to_cpu(sum.ofs_in_node);
287 
288 	truncate_hole(inode, bidx, bidx + 1);
289 	iput(inode);
290 	return 0;
291 }
292 
293 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
294 					struct page *page, block_t blkaddr)
295 {
296 	struct f2fs_inode_info *fi = F2FS_I(inode);
297 	unsigned int start, end;
298 	struct dnode_of_data dn;
299 	struct f2fs_summary sum;
300 	struct node_info ni;
301 	int err = 0, recovered = 0;
302 
303 	recover_inline_xattr(inode, page);
304 
305 	if (recover_inline_data(inode, page))
306 		goto out;
307 
308 	if (recover_xattr_data(inode, page, blkaddr))
309 		goto out;
310 
311 	start = start_bidx_of_node(ofs_of_node(page), fi);
312 	end = start + ADDRS_PER_PAGE(page, fi);
313 
314 	f2fs_lock_op(sbi);
315 
316 	set_new_dnode(&dn, inode, NULL, NULL, 0);
317 
318 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
319 	if (err) {
320 		f2fs_unlock_op(sbi);
321 		goto out;
322 	}
323 
324 	f2fs_wait_on_page_writeback(dn.node_page, NODE);
325 
326 	get_node_info(sbi, dn.nid, &ni);
327 	f2fs_bug_on(ni.ino != ino_of_node(page));
328 	f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
329 
330 	for (; start < end; start++) {
331 		block_t src, dest;
332 
333 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
334 		dest = datablock_addr(page, dn.ofs_in_node);
335 
336 		if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
337 			if (src == NULL_ADDR) {
338 				err = reserve_new_block(&dn);
339 				/* We should not get -ENOSPC */
340 				f2fs_bug_on(err);
341 			}
342 
343 			/* Check the previous node page having this index */
344 			err = check_index_in_prev_nodes(sbi, dest, &dn);
345 			if (err)
346 				goto err;
347 
348 			set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
349 
350 			/* write dummy data page */
351 			recover_data_page(sbi, NULL, &sum, src, dest);
352 			update_extent_cache(dest, &dn);
353 			recovered++;
354 		}
355 		dn.ofs_in_node++;
356 	}
357 
358 	/* write node page in place */
359 	set_summary(&sum, dn.nid, 0, 0);
360 	if (IS_INODE(dn.node_page))
361 		sync_inode_page(&dn);
362 
363 	copy_node_footer(dn.node_page, page);
364 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
365 					ofs_of_node(page), false);
366 	set_page_dirty(dn.node_page);
367 
368 	recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
369 err:
370 	f2fs_put_dnode(&dn);
371 	f2fs_unlock_op(sbi);
372 out:
373 	f2fs_msg(sbi->sb, KERN_NOTICE,
374 		"recover_data: ino = %lx, recovered = %d blocks, err = %d",
375 		inode->i_ino, recovered, err);
376 	return err;
377 }
378 
379 static int recover_data(struct f2fs_sb_info *sbi,
380 				struct list_head *head, int type)
381 {
382 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
383 	struct curseg_info *curseg;
384 	struct page *page;
385 	int err = 0;
386 	block_t blkaddr;
387 
388 	/* get node pages in the current segment */
389 	curseg = CURSEG_I(sbi, type);
390 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
391 
392 	/* read node page */
393 	page = alloc_page(GFP_F2FS_ZERO);
394 	if (!page)
395 		return -ENOMEM;
396 
397 	lock_page(page);
398 
399 	while (1) {
400 		struct fsync_inode_entry *entry;
401 
402 		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
403 		if (err)
404 			return err;
405 
406 		lock_page(page);
407 
408 		if (cp_ver != cpver_of_node(page))
409 			break;
410 
411 		entry = get_fsync_inode(head, ino_of_node(page));
412 		if (!entry)
413 			goto next;
414 
415 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
416 		if (err)
417 			break;
418 
419 		if (entry->blkaddr == blkaddr) {
420 			iput(entry->inode);
421 			list_del(&entry->list);
422 			kmem_cache_free(fsync_entry_slab, entry);
423 		}
424 next:
425 		/* check next segment */
426 		blkaddr = next_blkaddr_of_node(page);
427 	}
428 
429 	unlock_page(page);
430 	__free_pages(page, 0);
431 
432 	if (!err)
433 		allocate_new_segments(sbi);
434 	return err;
435 }
436 
437 int recover_fsync_data(struct f2fs_sb_info *sbi)
438 {
439 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
440 	struct list_head inode_list;
441 	block_t blkaddr;
442 	int err;
443 	bool need_writecp = false;
444 
445 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
446 			sizeof(struct fsync_inode_entry));
447 	if (!fsync_entry_slab)
448 		return -ENOMEM;
449 
450 	INIT_LIST_HEAD(&inode_list);
451 
452 	/* step #1: find fsynced inode numbers */
453 	sbi->por_doing = true;
454 
455 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
456 
457 	err = find_fsync_dnodes(sbi, &inode_list);
458 	if (err)
459 		goto out;
460 
461 	if (list_empty(&inode_list))
462 		goto out;
463 
464 	need_writecp = true;
465 
466 	/* step #2: recover data */
467 	err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
468 	f2fs_bug_on(!list_empty(&inode_list));
469 out:
470 	destroy_fsync_dnodes(&inode_list);
471 	kmem_cache_destroy(fsync_entry_slab);
472 
473 	if (err) {
474 		truncate_inode_pages_final(NODE_MAPPING(sbi));
475 		truncate_inode_pages_final(META_MAPPING(sbi));
476 	}
477 
478 	sbi->por_doing = false;
479 	if (err) {
480 		discard_next_dnode(sbi, blkaddr);
481 
482 		/* Flush all the NAT/SIT pages */
483 		while (get_pages(sbi, F2FS_DIRTY_META))
484 			sync_meta_pages(sbi, META, LONG_MAX);
485 	} else if (need_writecp) {
486 		write_checkpoint(sbi, false);
487 	}
488 	return err;
489 }
490