1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 8 19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* For flag in struct node_info */ 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 /* 50 * For node information 51 */ 52 struct node_info { 53 nid_t nid; /* node id */ 54 nid_t ino; /* inode number of the node's owner */ 55 block_t blk_addr; /* block address of the node */ 56 unsigned char version; /* version of the node */ 57 unsigned char flag; /* for node information bits */ 58 }; 59 60 struct nat_entry { 61 struct list_head list; /* for clean or dirty nat list */ 62 struct node_info ni; /* in-memory node information */ 63 }; 64 65 #define nat_get_nid(nat) ((nat)->ni.nid) 66 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 67 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 68 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 69 #define nat_get_ino(nat) ((nat)->ni.ino) 70 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 71 #define nat_get_version(nat) ((nat)->ni.version) 72 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 73 74 #define inc_node_version(version) (++(version)) 75 76 static inline void copy_node_info(struct node_info *dst, 77 struct node_info *src) 78 { 79 dst->nid = src->nid; 80 dst->ino = src->ino; 81 dst->blk_addr = src->blk_addr; 82 dst->version = src->version; 83 /* should not copy flag here */ 84 } 85 86 static inline void set_nat_flag(struct nat_entry *ne, 87 unsigned int type, bool set) 88 { 89 unsigned char mask = 0x01 << type; 90 if (set) 91 ne->ni.flag |= mask; 92 else 93 ne->ni.flag &= ~mask; 94 } 95 96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 97 { 98 unsigned char mask = 0x01 << type; 99 return ne->ni.flag & mask; 100 } 101 102 static inline void nat_reset_flag(struct nat_entry *ne) 103 { 104 /* these states can be set only after checkpoint was done */ 105 set_nat_flag(ne, IS_CHECKPOINTED, true); 106 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 107 set_nat_flag(ne, HAS_LAST_FSYNC, true); 108 } 109 110 static inline void node_info_from_raw_nat(struct node_info *ni, 111 struct f2fs_nat_entry *raw_ne) 112 { 113 ni->ino = le32_to_cpu(raw_ne->ino); 114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 115 ni->version = raw_ne->version; 116 } 117 118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 119 struct node_info *ni) 120 { 121 raw_ne->ino = cpu_to_le32(ni->ino); 122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 123 raw_ne->version = ni->version; 124 } 125 126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 127 { 128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 129 NM_I(sbi)->dirty_nats_ratio / 100; 130 } 131 132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 133 { 134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 135 } 136 137 enum mem_type { 138 FREE_NIDS, /* indicates the free nid list */ 139 NAT_ENTRIES, /* indicates the cached nat entry */ 140 DIRTY_DENTS, /* indicates dirty dentry pages */ 141 INO_ENTRIES, /* indicates inode entries */ 142 EXTENT_CACHE, /* indicates extent cache */ 143 BASE_CHECK, /* check kernel status */ 144 }; 145 146 struct nat_entry_set { 147 struct list_head set_list; /* link with other nat sets */ 148 struct list_head entry_list; /* link with dirty nat entries */ 149 nid_t set; /* set number*/ 150 unsigned int entry_cnt; /* the # of nat entries in set */ 151 }; 152 153 /* 154 * For free nid mangement 155 */ 156 enum nid_state { 157 NID_NEW, /* newly added to free nid list */ 158 NID_ALLOC /* it is allocated */ 159 }; 160 161 struct free_nid { 162 struct list_head list; /* for free node id list */ 163 nid_t nid; /* node id */ 164 int state; /* in use or not: NID_NEW or NID_ALLOC */ 165 }; 166 167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 168 { 169 struct f2fs_nm_info *nm_i = NM_I(sbi); 170 struct free_nid *fnid; 171 172 spin_lock(&nm_i->nid_list_lock); 173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) { 174 spin_unlock(&nm_i->nid_list_lock); 175 return; 176 } 177 fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 178 struct free_nid, list); 179 *nid = fnid->nid; 180 spin_unlock(&nm_i->nid_list_lock); 181 } 182 183 /* 184 * inline functions 185 */ 186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 187 { 188 struct f2fs_nm_info *nm_i = NM_I(sbi); 189 190 #ifdef CONFIG_F2FS_CHECK_FS 191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 192 nm_i->bitmap_size)) 193 f2fs_bug_on(sbi, 1); 194 #endif 195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 196 } 197 198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 199 { 200 struct f2fs_nm_info *nm_i = NM_I(sbi); 201 pgoff_t block_off; 202 pgoff_t block_addr; 203 204 /* 205 * block_off = segment_off * 512 + off_in_segment 206 * OLD = (segment_off * 512) * 2 + off_in_segment 207 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 208 */ 209 block_off = NAT_BLOCK_OFFSET(start); 210 211 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 212 (block_off << 1) - 213 (block_off & (sbi->blocks_per_seg - 1))); 214 215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 216 block_addr += sbi->blocks_per_seg; 217 218 return block_addr; 219 } 220 221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 222 pgoff_t block_addr) 223 { 224 struct f2fs_nm_info *nm_i = NM_I(sbi); 225 226 block_addr -= nm_i->nat_blkaddr; 227 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 228 block_addr -= sbi->blocks_per_seg; 229 else 230 block_addr += sbi->blocks_per_seg; 231 232 return block_addr + nm_i->nat_blkaddr; 233 } 234 235 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 236 { 237 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 238 239 f2fs_change_bit(block_off, nm_i->nat_bitmap); 240 #ifdef CONFIG_F2FS_CHECK_FS 241 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 242 #endif 243 } 244 245 static inline nid_t ino_of_node(struct page *node_page) 246 { 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 return le32_to_cpu(rn->footer.ino); 249 } 250 251 static inline nid_t nid_of_node(struct page *node_page) 252 { 253 struct f2fs_node *rn = F2FS_NODE(node_page); 254 return le32_to_cpu(rn->footer.nid); 255 } 256 257 static inline unsigned int ofs_of_node(struct page *node_page) 258 { 259 struct f2fs_node *rn = F2FS_NODE(node_page); 260 unsigned flag = le32_to_cpu(rn->footer.flag); 261 return flag >> OFFSET_BIT_SHIFT; 262 } 263 264 static inline __u64 cpver_of_node(struct page *node_page) 265 { 266 struct f2fs_node *rn = F2FS_NODE(node_page); 267 return le64_to_cpu(rn->footer.cp_ver); 268 } 269 270 static inline block_t next_blkaddr_of_node(struct page *node_page) 271 { 272 struct f2fs_node *rn = F2FS_NODE(node_page); 273 return le32_to_cpu(rn->footer.next_blkaddr); 274 } 275 276 static inline void fill_node_footer(struct page *page, nid_t nid, 277 nid_t ino, unsigned int ofs, bool reset) 278 { 279 struct f2fs_node *rn = F2FS_NODE(page); 280 unsigned int old_flag = 0; 281 282 if (reset) 283 memset(rn, 0, sizeof(*rn)); 284 else 285 old_flag = le32_to_cpu(rn->footer.flag); 286 287 rn->footer.nid = cpu_to_le32(nid); 288 rn->footer.ino = cpu_to_le32(ino); 289 290 /* should remain old flag bits such as COLD_BIT_SHIFT */ 291 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 292 (old_flag & OFFSET_BIT_MASK)); 293 } 294 295 static inline void copy_node_footer(struct page *dst, struct page *src) 296 { 297 struct f2fs_node *src_rn = F2FS_NODE(src); 298 struct f2fs_node *dst_rn = F2FS_NODE(dst); 299 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 300 } 301 302 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 303 { 304 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 305 struct f2fs_node *rn = F2FS_NODE(page); 306 __u64 cp_ver = cur_cp_version(ckpt); 307 308 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 309 cp_ver |= (cur_cp_crc(ckpt) << 32); 310 311 rn->footer.cp_ver = cpu_to_le64(cp_ver); 312 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 313 } 314 315 static inline bool is_recoverable_dnode(struct page *page) 316 { 317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 318 __u64 cp_ver = cur_cp_version(ckpt); 319 320 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 321 cp_ver |= (cur_cp_crc(ckpt) << 32); 322 323 return cp_ver == cpver_of_node(page); 324 } 325 326 /* 327 * f2fs assigns the following node offsets described as (num). 328 * N = NIDS_PER_BLOCK 329 * 330 * Inode block (0) 331 * |- direct node (1) 332 * |- direct node (2) 333 * |- indirect node (3) 334 * | `- direct node (4 => 4 + N - 1) 335 * |- indirect node (4 + N) 336 * | `- direct node (5 + N => 5 + 2N - 1) 337 * `- double indirect node (5 + 2N) 338 * `- indirect node (6 + 2N) 339 * `- direct node 340 * ...... 341 * `- indirect node ((6 + 2N) + x(N + 1)) 342 * `- direct node 343 * ...... 344 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 345 * `- direct node 346 */ 347 static inline bool IS_DNODE(struct page *node_page) 348 { 349 unsigned int ofs = ofs_of_node(node_page); 350 351 if (f2fs_has_xattr_block(ofs)) 352 return true; 353 354 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 355 ofs == 5 + 2 * NIDS_PER_BLOCK) 356 return false; 357 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 358 ofs -= 6 + 2 * NIDS_PER_BLOCK; 359 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 360 return false; 361 } 362 return true; 363 } 364 365 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 366 { 367 struct f2fs_node *rn = F2FS_NODE(p); 368 369 f2fs_wait_on_page_writeback(p, NODE, true); 370 371 if (i) 372 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 373 else 374 rn->in.nid[off] = cpu_to_le32(nid); 375 return set_page_dirty(p); 376 } 377 378 static inline nid_t get_nid(struct page *p, int off, bool i) 379 { 380 struct f2fs_node *rn = F2FS_NODE(p); 381 382 if (i) 383 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 384 return le32_to_cpu(rn->in.nid[off]); 385 } 386 387 /* 388 * Coldness identification: 389 * - Mark cold files in f2fs_inode_info 390 * - Mark cold node blocks in their node footer 391 * - Mark cold data pages in page cache 392 */ 393 static inline int is_cold_data(struct page *page) 394 { 395 return PageChecked(page); 396 } 397 398 static inline void set_cold_data(struct page *page) 399 { 400 SetPageChecked(page); 401 } 402 403 static inline void clear_cold_data(struct page *page) 404 { 405 ClearPageChecked(page); 406 } 407 408 static inline int is_node(struct page *page, int type) 409 { 410 struct f2fs_node *rn = F2FS_NODE(page); 411 return le32_to_cpu(rn->footer.flag) & (1 << type); 412 } 413 414 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 415 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 416 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 417 418 static inline int is_inline_node(struct page *page) 419 { 420 return PageChecked(page); 421 } 422 423 static inline void set_inline_node(struct page *page) 424 { 425 SetPageChecked(page); 426 } 427 428 static inline void clear_inline_node(struct page *page) 429 { 430 ClearPageChecked(page); 431 } 432 433 static inline void set_cold_node(struct inode *inode, struct page *page) 434 { 435 struct f2fs_node *rn = F2FS_NODE(page); 436 unsigned int flag = le32_to_cpu(rn->footer.flag); 437 438 if (S_ISDIR(inode->i_mode)) 439 flag &= ~(0x1 << COLD_BIT_SHIFT); 440 else 441 flag |= (0x1 << COLD_BIT_SHIFT); 442 rn->footer.flag = cpu_to_le32(flag); 443 } 444 445 static inline void set_mark(struct page *page, int mark, int type) 446 { 447 struct f2fs_node *rn = F2FS_NODE(page); 448 unsigned int flag = le32_to_cpu(rn->footer.flag); 449 if (mark) 450 flag |= (0x1 << type); 451 else 452 flag &= ~(0x1 << type); 453 rn->footer.flag = cpu_to_le32(flag); 454 } 455 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 456 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 457