xref: /openbmc/linux/fs/f2fs/node.h (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES	8
19 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE	64
36 #define SETVEC_SIZE	32
37 
38 /* return value for read_node_page */
39 #define LOCKED_PAGE	1
40 
41 /* For flag in struct node_info */
42 enum {
43 	IS_CHECKPOINTED,	/* is it checkpointed before? */
44 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
45 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
46 	IS_DIRTY,		/* this nat entry is dirty? */
47 };
48 
49 /*
50  * For node information
51  */
52 struct node_info {
53 	nid_t nid;		/* node id */
54 	nid_t ino;		/* inode number of the node's owner */
55 	block_t	blk_addr;	/* block address of the node */
56 	unsigned char version;	/* version of the node */
57 	unsigned char flag;	/* for node information bits */
58 };
59 
60 struct nat_entry {
61 	struct list_head list;	/* for clean or dirty nat list */
62 	struct node_info ni;	/* in-memory node information */
63 };
64 
65 #define nat_get_nid(nat)		(nat->ni.nid)
66 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
67 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
69 #define nat_get_ino(nat)		(nat->ni.ino)
70 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
71 #define nat_get_version(nat)		(nat->ni.version)
72 #define nat_set_version(nat, v)		(nat->ni.version = v)
73 
74 #define inc_node_version(version)	(++version)
75 
76 static inline void copy_node_info(struct node_info *dst,
77 						struct node_info *src)
78 {
79 	dst->nid = src->nid;
80 	dst->ino = src->ino;
81 	dst->blk_addr = src->blk_addr;
82 	dst->version = src->version;
83 	/* should not copy flag here */
84 }
85 
86 static inline void set_nat_flag(struct nat_entry *ne,
87 				unsigned int type, bool set)
88 {
89 	unsigned char mask = 0x01 << type;
90 	if (set)
91 		ne->ni.flag |= mask;
92 	else
93 		ne->ni.flag &= ~mask;
94 }
95 
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 	unsigned char mask = 0x01 << type;
99 	return ne->ni.flag & mask;
100 }
101 
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 	/* these states can be set only after checkpoint was done */
105 	set_nat_flag(ne, IS_CHECKPOINTED, true);
106 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109 
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 						struct f2fs_nat_entry *raw_ne)
112 {
113 	ni->ino = le32_to_cpu(raw_ne->ino);
114 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 	ni->version = raw_ne->version;
116 }
117 
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 						struct node_info *ni)
120 {
121 	raw_ne->ino = cpu_to_le32(ni->ino);
122 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 	raw_ne->version = ni->version;
124 }
125 
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 					NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131 
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136 
137 enum mem_type {
138 	FREE_NIDS,	/* indicates the free nid list */
139 	NAT_ENTRIES,	/* indicates the cached nat entry */
140 	DIRTY_DENTS,	/* indicates dirty dentry pages */
141 	INO_ENTRIES,	/* indicates inode entries */
142 	EXTENT_CACHE,	/* indicates extent cache */
143 	BASE_CHECK,	/* check kernel status */
144 };
145 
146 struct nat_entry_set {
147 	struct list_head set_list;	/* link with other nat sets */
148 	struct list_head entry_list;	/* link with dirty nat entries */
149 	nid_t set;			/* set number*/
150 	unsigned int entry_cnt;		/* the # of nat entries in set */
151 };
152 
153 /*
154  * For free nid mangement
155  */
156 enum nid_state {
157 	NID_NEW,	/* newly added to free nid list */
158 	NID_ALLOC	/* it is allocated */
159 };
160 
161 struct free_nid {
162 	struct list_head list;	/* for free node id list */
163 	nid_t nid;		/* node id */
164 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
165 };
166 
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 	struct f2fs_nm_info *nm_i = NM_I(sbi);
170 	struct free_nid *fnid;
171 
172 	spin_lock(&nm_i->nid_list_lock);
173 	if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 		spin_unlock(&nm_i->nid_list_lock);
175 		return;
176 	}
177 	fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
178 						struct free_nid, list);
179 	*nid = fnid->nid;
180 	spin_unlock(&nm_i->nid_list_lock);
181 }
182 
183 /*
184  * inline functions
185  */
186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 	struct f2fs_nm_info *nm_i = NM_I(sbi);
189 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
190 }
191 
192 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 	pgoff_t block_off;
196 	pgoff_t block_addr;
197 	int seg_off;
198 
199 	block_off = NAT_BLOCK_OFFSET(start);
200 	seg_off = block_off >> sbi->log_blocks_per_seg;
201 
202 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
203 		(seg_off << sbi->log_blocks_per_seg << 1) +
204 		(block_off & (sbi->blocks_per_seg - 1)));
205 
206 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
207 		block_addr += sbi->blocks_per_seg;
208 
209 	return block_addr;
210 }
211 
212 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
213 						pgoff_t block_addr)
214 {
215 	struct f2fs_nm_info *nm_i = NM_I(sbi);
216 
217 	block_addr -= nm_i->nat_blkaddr;
218 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
219 		block_addr -= sbi->blocks_per_seg;
220 	else
221 		block_addr += sbi->blocks_per_seg;
222 
223 	return block_addr + nm_i->nat_blkaddr;
224 }
225 
226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227 {
228 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229 
230 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
231 }
232 
233 static inline nid_t ino_of_node(struct page *node_page)
234 {
235 	struct f2fs_node *rn = F2FS_NODE(node_page);
236 	return le32_to_cpu(rn->footer.ino);
237 }
238 
239 static inline nid_t nid_of_node(struct page *node_page)
240 {
241 	struct f2fs_node *rn = F2FS_NODE(node_page);
242 	return le32_to_cpu(rn->footer.nid);
243 }
244 
245 static inline unsigned int ofs_of_node(struct page *node_page)
246 {
247 	struct f2fs_node *rn = F2FS_NODE(node_page);
248 	unsigned flag = le32_to_cpu(rn->footer.flag);
249 	return flag >> OFFSET_BIT_SHIFT;
250 }
251 
252 static inline __u64 cpver_of_node(struct page *node_page)
253 {
254 	struct f2fs_node *rn = F2FS_NODE(node_page);
255 	return le64_to_cpu(rn->footer.cp_ver);
256 }
257 
258 static inline block_t next_blkaddr_of_node(struct page *node_page)
259 {
260 	struct f2fs_node *rn = F2FS_NODE(node_page);
261 	return le32_to_cpu(rn->footer.next_blkaddr);
262 }
263 
264 static inline void fill_node_footer(struct page *page, nid_t nid,
265 				nid_t ino, unsigned int ofs, bool reset)
266 {
267 	struct f2fs_node *rn = F2FS_NODE(page);
268 	unsigned int old_flag = 0;
269 
270 	if (reset)
271 		memset(rn, 0, sizeof(*rn));
272 	else
273 		old_flag = le32_to_cpu(rn->footer.flag);
274 
275 	rn->footer.nid = cpu_to_le32(nid);
276 	rn->footer.ino = cpu_to_le32(ino);
277 
278 	/* should remain old flag bits such as COLD_BIT_SHIFT */
279 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 					(old_flag & OFFSET_BIT_MASK));
281 }
282 
283 static inline void copy_node_footer(struct page *dst, struct page *src)
284 {
285 	struct f2fs_node *src_rn = F2FS_NODE(src);
286 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288 }
289 
290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291 {
292 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 	struct f2fs_node *rn = F2FS_NODE(page);
294 	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
295 	__u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
296 
297 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
298 		__u64 crc = le32_to_cpu(*((__le32 *)
299 				((unsigned char *)ckpt + crc_offset)));
300 		cp_ver |= (crc << 32);
301 	}
302 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304 }
305 
306 static inline bool is_recoverable_dnode(struct page *page)
307 {
308 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
310 	__u64 cp_ver = cur_cp_version(ckpt);
311 
312 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
313 		__u64 crc = le32_to_cpu(*((__le32 *)
314 				((unsigned char *)ckpt + crc_offset)));
315 		cp_ver |= (crc << 32);
316 	}
317 	return cp_ver == cpver_of_node(page);
318 }
319 
320 /*
321  * f2fs assigns the following node offsets described as (num).
322  * N = NIDS_PER_BLOCK
323  *
324  *  Inode block (0)
325  *    |- direct node (1)
326  *    |- direct node (2)
327  *    |- indirect node (3)
328  *    |            `- direct node (4 => 4 + N - 1)
329  *    |- indirect node (4 + N)
330  *    |            `- direct node (5 + N => 5 + 2N - 1)
331  *    `- double indirect node (5 + 2N)
332  *                 `- indirect node (6 + 2N)
333  *                       `- direct node
334  *                 ......
335  *                 `- indirect node ((6 + 2N) + x(N + 1))
336  *                       `- direct node
337  *                 ......
338  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
339  *                       `- direct node
340  */
341 static inline bool IS_DNODE(struct page *node_page)
342 {
343 	unsigned int ofs = ofs_of_node(node_page);
344 
345 	if (f2fs_has_xattr_block(ofs))
346 		return false;
347 
348 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
349 			ofs == 5 + 2 * NIDS_PER_BLOCK)
350 		return false;
351 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
352 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
353 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
354 			return false;
355 	}
356 	return true;
357 }
358 
359 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
360 {
361 	struct f2fs_node *rn = F2FS_NODE(p);
362 
363 	f2fs_wait_on_page_writeback(p, NODE, true);
364 
365 	if (i)
366 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
367 	else
368 		rn->in.nid[off] = cpu_to_le32(nid);
369 	return set_page_dirty(p);
370 }
371 
372 static inline nid_t get_nid(struct page *p, int off, bool i)
373 {
374 	struct f2fs_node *rn = F2FS_NODE(p);
375 
376 	if (i)
377 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
378 	return le32_to_cpu(rn->in.nid[off]);
379 }
380 
381 /*
382  * Coldness identification:
383  *  - Mark cold files in f2fs_inode_info
384  *  - Mark cold node blocks in their node footer
385  *  - Mark cold data pages in page cache
386  */
387 static inline int is_cold_data(struct page *page)
388 {
389 	return PageChecked(page);
390 }
391 
392 static inline void set_cold_data(struct page *page)
393 {
394 	SetPageChecked(page);
395 }
396 
397 static inline void clear_cold_data(struct page *page)
398 {
399 	ClearPageChecked(page);
400 }
401 
402 static inline int is_node(struct page *page, int type)
403 {
404 	struct f2fs_node *rn = F2FS_NODE(page);
405 	return le32_to_cpu(rn->footer.flag) & (1 << type);
406 }
407 
408 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
409 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
410 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
411 
412 static inline int is_inline_node(struct page *page)
413 {
414 	return PageChecked(page);
415 }
416 
417 static inline void set_inline_node(struct page *page)
418 {
419 	SetPageChecked(page);
420 }
421 
422 static inline void clear_inline_node(struct page *page)
423 {
424 	ClearPageChecked(page);
425 }
426 
427 static inline void set_cold_node(struct inode *inode, struct page *page)
428 {
429 	struct f2fs_node *rn = F2FS_NODE(page);
430 	unsigned int flag = le32_to_cpu(rn->footer.flag);
431 
432 	if (S_ISDIR(inode->i_mode))
433 		flag &= ~(0x1 << COLD_BIT_SHIFT);
434 	else
435 		flag |= (0x1 << COLD_BIT_SHIFT);
436 	rn->footer.flag = cpu_to_le32(flag);
437 }
438 
439 static inline void set_mark(struct page *page, int mark, int type)
440 {
441 	struct f2fs_node *rn = F2FS_NODE(page);
442 	unsigned int flag = le32_to_cpu(rn->footer.flag);
443 	if (mark)
444 		flag |= (0x1 << type);
445 	else
446 		flag &= ~(0x1 << type);
447 	rn->footer.flag = cpu_to_le32(flag);
448 }
449 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
450 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
451