1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 8 19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* For flag in struct node_info */ 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 IS_PREALLOC, /* nat entry is preallocated */ 48 }; 49 50 /* 51 * For node information 52 */ 53 struct node_info { 54 nid_t nid; /* node id */ 55 nid_t ino; /* inode number of the node's owner */ 56 block_t blk_addr; /* block address of the node */ 57 unsigned char version; /* version of the node */ 58 unsigned char flag; /* for node information bits */ 59 }; 60 61 struct nat_entry { 62 struct list_head list; /* for clean or dirty nat list */ 63 struct node_info ni; /* in-memory node information */ 64 }; 65 66 #define nat_get_nid(nat) ((nat)->ni.nid) 67 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 68 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 69 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 70 #define nat_get_ino(nat) ((nat)->ni.ino) 71 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 72 #define nat_get_version(nat) ((nat)->ni.version) 73 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 74 75 #define inc_node_version(version) (++(version)) 76 77 static inline void copy_node_info(struct node_info *dst, 78 struct node_info *src) 79 { 80 dst->nid = src->nid; 81 dst->ino = src->ino; 82 dst->blk_addr = src->blk_addr; 83 dst->version = src->version; 84 /* should not copy flag here */ 85 } 86 87 static inline void set_nat_flag(struct nat_entry *ne, 88 unsigned int type, bool set) 89 { 90 unsigned char mask = 0x01 << type; 91 if (set) 92 ne->ni.flag |= mask; 93 else 94 ne->ni.flag &= ~mask; 95 } 96 97 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 98 { 99 unsigned char mask = 0x01 << type; 100 return ne->ni.flag & mask; 101 } 102 103 static inline void nat_reset_flag(struct nat_entry *ne) 104 { 105 /* these states can be set only after checkpoint was done */ 106 set_nat_flag(ne, IS_CHECKPOINTED, true); 107 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 108 set_nat_flag(ne, HAS_LAST_FSYNC, true); 109 } 110 111 static inline void node_info_from_raw_nat(struct node_info *ni, 112 struct f2fs_nat_entry *raw_ne) 113 { 114 ni->ino = le32_to_cpu(raw_ne->ino); 115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 116 ni->version = raw_ne->version; 117 } 118 119 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 120 struct node_info *ni) 121 { 122 raw_ne->ino = cpu_to_le32(ni->ino); 123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 124 raw_ne->version = ni->version; 125 } 126 127 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 128 { 129 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 130 NM_I(sbi)->dirty_nats_ratio / 100; 131 } 132 133 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 134 { 135 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 136 } 137 138 enum mem_type { 139 FREE_NIDS, /* indicates the free nid list */ 140 NAT_ENTRIES, /* indicates the cached nat entry */ 141 DIRTY_DENTS, /* indicates dirty dentry pages */ 142 INO_ENTRIES, /* indicates inode entries */ 143 EXTENT_CACHE, /* indicates extent cache */ 144 INMEM_PAGES, /* indicates inmemory pages */ 145 BASE_CHECK, /* check kernel status */ 146 }; 147 148 struct nat_entry_set { 149 struct list_head set_list; /* link with other nat sets */ 150 struct list_head entry_list; /* link with dirty nat entries */ 151 nid_t set; /* set number*/ 152 unsigned int entry_cnt; /* the # of nat entries in set */ 153 }; 154 155 struct free_nid { 156 struct list_head list; /* for free node id list */ 157 nid_t nid; /* node id */ 158 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 159 }; 160 161 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 162 { 163 struct f2fs_nm_info *nm_i = NM_I(sbi); 164 struct free_nid *fnid; 165 166 spin_lock(&nm_i->nid_list_lock); 167 if (nm_i->nid_cnt[FREE_NID] <= 0) { 168 spin_unlock(&nm_i->nid_list_lock); 169 return; 170 } 171 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 172 *nid = fnid->nid; 173 spin_unlock(&nm_i->nid_list_lock); 174 } 175 176 /* 177 * inline functions 178 */ 179 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 180 { 181 struct f2fs_nm_info *nm_i = NM_I(sbi); 182 183 #ifdef CONFIG_F2FS_CHECK_FS 184 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 185 nm_i->bitmap_size)) 186 f2fs_bug_on(sbi, 1); 187 #endif 188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 189 } 190 191 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 192 { 193 struct f2fs_nm_info *nm_i = NM_I(sbi); 194 pgoff_t block_off; 195 pgoff_t block_addr; 196 197 /* 198 * block_off = segment_off * 512 + off_in_segment 199 * OLD = (segment_off * 512) * 2 + off_in_segment 200 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 201 */ 202 block_off = NAT_BLOCK_OFFSET(start); 203 204 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 205 (block_off << 1) - 206 (block_off & (sbi->blocks_per_seg - 1))); 207 208 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 209 block_addr += sbi->blocks_per_seg; 210 211 return block_addr; 212 } 213 214 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 215 pgoff_t block_addr) 216 { 217 struct f2fs_nm_info *nm_i = NM_I(sbi); 218 219 block_addr -= nm_i->nat_blkaddr; 220 block_addr ^= 1 << sbi->log_blocks_per_seg; 221 return block_addr + nm_i->nat_blkaddr; 222 } 223 224 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 225 { 226 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 227 228 f2fs_change_bit(block_off, nm_i->nat_bitmap); 229 #ifdef CONFIG_F2FS_CHECK_FS 230 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 231 #endif 232 } 233 234 static inline nid_t ino_of_node(struct page *node_page) 235 { 236 struct f2fs_node *rn = F2FS_NODE(node_page); 237 return le32_to_cpu(rn->footer.ino); 238 } 239 240 static inline nid_t nid_of_node(struct page *node_page) 241 { 242 struct f2fs_node *rn = F2FS_NODE(node_page); 243 return le32_to_cpu(rn->footer.nid); 244 } 245 246 static inline unsigned int ofs_of_node(struct page *node_page) 247 { 248 struct f2fs_node *rn = F2FS_NODE(node_page); 249 unsigned flag = le32_to_cpu(rn->footer.flag); 250 return flag >> OFFSET_BIT_SHIFT; 251 } 252 253 static inline __u64 cpver_of_node(struct page *node_page) 254 { 255 struct f2fs_node *rn = F2FS_NODE(node_page); 256 return le64_to_cpu(rn->footer.cp_ver); 257 } 258 259 static inline block_t next_blkaddr_of_node(struct page *node_page) 260 { 261 struct f2fs_node *rn = F2FS_NODE(node_page); 262 return le32_to_cpu(rn->footer.next_blkaddr); 263 } 264 265 static inline void fill_node_footer(struct page *page, nid_t nid, 266 nid_t ino, unsigned int ofs, bool reset) 267 { 268 struct f2fs_node *rn = F2FS_NODE(page); 269 unsigned int old_flag = 0; 270 271 if (reset) 272 memset(rn, 0, sizeof(*rn)); 273 else 274 old_flag = le32_to_cpu(rn->footer.flag); 275 276 rn->footer.nid = cpu_to_le32(nid); 277 rn->footer.ino = cpu_to_le32(ino); 278 279 /* should remain old flag bits such as COLD_BIT_SHIFT */ 280 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 281 (old_flag & OFFSET_BIT_MASK)); 282 } 283 284 static inline void copy_node_footer(struct page *dst, struct page *src) 285 { 286 struct f2fs_node *src_rn = F2FS_NODE(src); 287 struct f2fs_node *dst_rn = F2FS_NODE(dst); 288 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 289 } 290 291 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 292 { 293 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 294 struct f2fs_node *rn = F2FS_NODE(page); 295 __u64 cp_ver = cur_cp_version(ckpt); 296 297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 298 cp_ver |= (cur_cp_crc(ckpt) << 32); 299 300 rn->footer.cp_ver = cpu_to_le64(cp_ver); 301 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 302 } 303 304 static inline bool is_recoverable_dnode(struct page *page) 305 { 306 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 307 __u64 cp_ver = cur_cp_version(ckpt); 308 309 /* Don't care crc part, if fsck.f2fs sets it. */ 310 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 311 return (cp_ver << 32) == (cpver_of_node(page) << 32); 312 313 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 314 cp_ver |= (cur_cp_crc(ckpt) << 32); 315 316 return cp_ver == cpver_of_node(page); 317 } 318 319 /* 320 * f2fs assigns the following node offsets described as (num). 321 * N = NIDS_PER_BLOCK 322 * 323 * Inode block (0) 324 * |- direct node (1) 325 * |- direct node (2) 326 * |- indirect node (3) 327 * | `- direct node (4 => 4 + N - 1) 328 * |- indirect node (4 + N) 329 * | `- direct node (5 + N => 5 + 2N - 1) 330 * `- double indirect node (5 + 2N) 331 * `- indirect node (6 + 2N) 332 * `- direct node 333 * ...... 334 * `- indirect node ((6 + 2N) + x(N + 1)) 335 * `- direct node 336 * ...... 337 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 338 * `- direct node 339 */ 340 static inline bool IS_DNODE(struct page *node_page) 341 { 342 unsigned int ofs = ofs_of_node(node_page); 343 344 if (f2fs_has_xattr_block(ofs)) 345 return true; 346 347 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 348 ofs == 5 + 2 * NIDS_PER_BLOCK) 349 return false; 350 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 351 ofs -= 6 + 2 * NIDS_PER_BLOCK; 352 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 353 return false; 354 } 355 return true; 356 } 357 358 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 359 { 360 struct f2fs_node *rn = F2FS_NODE(p); 361 362 f2fs_wait_on_page_writeback(p, NODE, true); 363 364 if (i) 365 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 366 else 367 rn->in.nid[off] = cpu_to_le32(nid); 368 return set_page_dirty(p); 369 } 370 371 static inline nid_t get_nid(struct page *p, int off, bool i) 372 { 373 struct f2fs_node *rn = F2FS_NODE(p); 374 375 if (i) 376 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 377 return le32_to_cpu(rn->in.nid[off]); 378 } 379 380 /* 381 * Coldness identification: 382 * - Mark cold files in f2fs_inode_info 383 * - Mark cold node blocks in their node footer 384 * - Mark cold data pages in page cache 385 */ 386 static inline int is_cold_data(struct page *page) 387 { 388 return PageChecked(page); 389 } 390 391 static inline void set_cold_data(struct page *page) 392 { 393 SetPageChecked(page); 394 } 395 396 static inline void clear_cold_data(struct page *page) 397 { 398 ClearPageChecked(page); 399 } 400 401 static inline int is_node(struct page *page, int type) 402 { 403 struct f2fs_node *rn = F2FS_NODE(page); 404 return le32_to_cpu(rn->footer.flag) & (1 << type); 405 } 406 407 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 408 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 409 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 410 411 static inline int is_inline_node(struct page *page) 412 { 413 return PageChecked(page); 414 } 415 416 static inline void set_inline_node(struct page *page) 417 { 418 SetPageChecked(page); 419 } 420 421 static inline void clear_inline_node(struct page *page) 422 { 423 ClearPageChecked(page); 424 } 425 426 static inline void set_cold_node(struct page *page, bool is_dir) 427 { 428 struct f2fs_node *rn = F2FS_NODE(page); 429 unsigned int flag = le32_to_cpu(rn->footer.flag); 430 431 if (is_dir) 432 flag &= ~(0x1 << COLD_BIT_SHIFT); 433 else 434 flag |= (0x1 << COLD_BIT_SHIFT); 435 rn->footer.flag = cpu_to_le32(flag); 436 } 437 438 static inline void set_mark(struct page *page, int mark, int type) 439 { 440 struct f2fs_node *rn = F2FS_NODE(page); 441 unsigned int flag = le32_to_cpu(rn->footer.flag); 442 if (mark) 443 flag |= (0x1 << type); 444 else 445 flag &= ~(0x1 << type); 446 rn->footer.flag = cpu_to_le32(flag); 447 } 448 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 449 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 450