1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum # of free node ids to produce during build_free_nids */ 21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* maximum cached nat entries to manage memory footprint */ 27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) 28 29 /* vector size for gang look-up from nat cache that consists of radix tree */ 30 #define NATVEC_SIZE 64 31 32 /* 33 * For node information 34 */ 35 struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40 }; 41 42 struct nat_entry { 43 struct list_head list; /* for clean or dirty nat list */ 44 bool checkpointed; /* whether it is checkpointed or not */ 45 struct node_info ni; /* in-memory node information */ 46 }; 47 48 #define nat_get_nid(nat) (nat->ni.nid) 49 #define nat_set_nid(nat, n) (nat->ni.nid = n) 50 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 51 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 52 #define nat_get_ino(nat) (nat->ni.ino) 53 #define nat_set_ino(nat, i) (nat->ni.ino = i) 54 #define nat_get_version(nat) (nat->ni.version) 55 #define nat_set_version(nat, v) (nat->ni.version = v) 56 57 #define __set_nat_cache_dirty(nm_i, ne) \ 58 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); 59 #define __clear_nat_cache_dirty(nm_i, ne) \ 60 list_move_tail(&ne->list, &nm_i->nat_entries); 61 #define inc_node_version(version) (++version) 62 63 static inline void node_info_from_raw_nat(struct node_info *ni, 64 struct f2fs_nat_entry *raw_ne) 65 { 66 ni->ino = le32_to_cpu(raw_ne->ino); 67 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 68 ni->version = raw_ne->version; 69 } 70 71 /* 72 * For free nid mangement 73 */ 74 enum nid_state { 75 NID_NEW, /* newly added to free nid list */ 76 NID_ALLOC /* it is allocated */ 77 }; 78 79 struct free_nid { 80 struct list_head list; /* for free node id list */ 81 nid_t nid; /* node id */ 82 int state; /* in use or not: NID_NEW or NID_ALLOC */ 83 }; 84 85 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 86 { 87 struct f2fs_nm_info *nm_i = NM_I(sbi); 88 struct free_nid *fnid; 89 90 if (nm_i->fcnt <= 0) 91 return -1; 92 spin_lock(&nm_i->free_nid_list_lock); 93 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 94 *nid = fnid->nid; 95 spin_unlock(&nm_i->free_nid_list_lock); 96 return 0; 97 } 98 99 /* 100 * inline functions 101 */ 102 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 103 { 104 struct f2fs_nm_info *nm_i = NM_I(sbi); 105 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 106 } 107 108 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 109 { 110 struct f2fs_nm_info *nm_i = NM_I(sbi); 111 pgoff_t block_off; 112 pgoff_t block_addr; 113 int seg_off; 114 115 block_off = NAT_BLOCK_OFFSET(start); 116 seg_off = block_off >> sbi->log_blocks_per_seg; 117 118 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 119 (seg_off << sbi->log_blocks_per_seg << 1) + 120 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 121 122 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 123 block_addr += sbi->blocks_per_seg; 124 125 return block_addr; 126 } 127 128 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 129 pgoff_t block_addr) 130 { 131 struct f2fs_nm_info *nm_i = NM_I(sbi); 132 133 block_addr -= nm_i->nat_blkaddr; 134 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 135 block_addr -= sbi->blocks_per_seg; 136 else 137 block_addr += sbi->blocks_per_seg; 138 139 return block_addr + nm_i->nat_blkaddr; 140 } 141 142 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 143 { 144 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 145 146 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 147 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 148 else 149 f2fs_set_bit(block_off, nm_i->nat_bitmap); 150 } 151 152 static inline void fill_node_footer(struct page *page, nid_t nid, 153 nid_t ino, unsigned int ofs, bool reset) 154 { 155 void *kaddr = page_address(page); 156 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 157 if (reset) 158 memset(rn, 0, sizeof(*rn)); 159 rn->footer.nid = cpu_to_le32(nid); 160 rn->footer.ino = cpu_to_le32(ino); 161 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 162 } 163 164 static inline void copy_node_footer(struct page *dst, struct page *src) 165 { 166 void *src_addr = page_address(src); 167 void *dst_addr = page_address(dst); 168 struct f2fs_node *src_rn = (struct f2fs_node *)src_addr; 169 struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr; 170 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 171 } 172 173 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 174 { 175 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 177 void *kaddr = page_address(page); 178 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 179 rn->footer.cp_ver = ckpt->checkpoint_ver; 180 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 181 } 182 183 static inline nid_t ino_of_node(struct page *node_page) 184 { 185 void *kaddr = page_address(node_page); 186 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 187 return le32_to_cpu(rn->footer.ino); 188 } 189 190 static inline nid_t nid_of_node(struct page *node_page) 191 { 192 void *kaddr = page_address(node_page); 193 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 194 return le32_to_cpu(rn->footer.nid); 195 } 196 197 static inline unsigned int ofs_of_node(struct page *node_page) 198 { 199 void *kaddr = page_address(node_page); 200 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 201 unsigned flag = le32_to_cpu(rn->footer.flag); 202 return flag >> OFFSET_BIT_SHIFT; 203 } 204 205 static inline unsigned long long cpver_of_node(struct page *node_page) 206 { 207 void *kaddr = page_address(node_page); 208 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 209 return le64_to_cpu(rn->footer.cp_ver); 210 } 211 212 static inline block_t next_blkaddr_of_node(struct page *node_page) 213 { 214 void *kaddr = page_address(node_page); 215 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 216 return le32_to_cpu(rn->footer.next_blkaddr); 217 } 218 219 /* 220 * f2fs assigns the following node offsets described as (num). 221 * N = NIDS_PER_BLOCK 222 * 223 * Inode block (0) 224 * |- direct node (1) 225 * |- direct node (2) 226 * |- indirect node (3) 227 * | `- direct node (4 => 4 + N - 1) 228 * |- indirect node (4 + N) 229 * | `- direct node (5 + N => 5 + 2N - 1) 230 * `- double indirect node (5 + 2N) 231 * `- indirect node (6 + 2N) 232 * `- direct node (x(N + 1)) 233 */ 234 static inline bool IS_DNODE(struct page *node_page) 235 { 236 unsigned int ofs = ofs_of_node(node_page); 237 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 238 ofs == 5 + 2 * NIDS_PER_BLOCK) 239 return false; 240 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 241 ofs -= 6 + 2 * NIDS_PER_BLOCK; 242 if ((long int)ofs % (NIDS_PER_BLOCK + 1)) 243 return false; 244 } 245 return true; 246 } 247 248 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 249 { 250 struct f2fs_node *rn = (struct f2fs_node *)page_address(p); 251 252 wait_on_page_writeback(p); 253 254 if (i) 255 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 256 else 257 rn->in.nid[off] = cpu_to_le32(nid); 258 set_page_dirty(p); 259 } 260 261 static inline nid_t get_nid(struct page *p, int off, bool i) 262 { 263 struct f2fs_node *rn = (struct f2fs_node *)page_address(p); 264 if (i) 265 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 266 return le32_to_cpu(rn->in.nid[off]); 267 } 268 269 /* 270 * Coldness identification: 271 * - Mark cold files in f2fs_inode_info 272 * - Mark cold node blocks in their node footer 273 * - Mark cold data pages in page cache 274 */ 275 static inline int is_cold_file(struct inode *inode) 276 { 277 return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT; 278 } 279 280 static inline int is_cold_data(struct page *page) 281 { 282 return PageChecked(page); 283 } 284 285 static inline void set_cold_data(struct page *page) 286 { 287 SetPageChecked(page); 288 } 289 290 static inline void clear_cold_data(struct page *page) 291 { 292 ClearPageChecked(page); 293 } 294 295 static inline int is_cold_node(struct page *page) 296 { 297 void *kaddr = page_address(page); 298 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 299 unsigned int flag = le32_to_cpu(rn->footer.flag); 300 return flag & (0x1 << COLD_BIT_SHIFT); 301 } 302 303 static inline unsigned char is_fsync_dnode(struct page *page) 304 { 305 void *kaddr = page_address(page); 306 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 307 unsigned int flag = le32_to_cpu(rn->footer.flag); 308 return flag & (0x1 << FSYNC_BIT_SHIFT); 309 } 310 311 static inline unsigned char is_dent_dnode(struct page *page) 312 { 313 void *kaddr = page_address(page); 314 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 315 unsigned int flag = le32_to_cpu(rn->footer.flag); 316 return flag & (0x1 << DENT_BIT_SHIFT); 317 } 318 319 static inline void set_cold_node(struct inode *inode, struct page *page) 320 { 321 struct f2fs_node *rn = (struct f2fs_node *)page_address(page); 322 unsigned int flag = le32_to_cpu(rn->footer.flag); 323 324 if (S_ISDIR(inode->i_mode)) 325 flag &= ~(0x1 << COLD_BIT_SHIFT); 326 else 327 flag |= (0x1 << COLD_BIT_SHIFT); 328 rn->footer.flag = cpu_to_le32(flag); 329 } 330 331 static inline void set_fsync_mark(struct page *page, int mark) 332 { 333 void *kaddr = page_address(page); 334 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 335 unsigned int flag = le32_to_cpu(rn->footer.flag); 336 if (mark) 337 flag |= (0x1 << FSYNC_BIT_SHIFT); 338 else 339 flag &= ~(0x1 << FSYNC_BIT_SHIFT); 340 rn->footer.flag = cpu_to_le32(flag); 341 } 342 343 static inline void set_dentry_mark(struct page *page, int mark) 344 { 345 void *kaddr = page_address(page); 346 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 347 unsigned int flag = le32_to_cpu(rn->footer.flag); 348 if (mark) 349 flag |= (0x1 << DENT_BIT_SHIFT); 350 else 351 flag &= ~(0x1 << DENT_BIT_SHIFT); 352 rn->footer.flag = cpu_to_le32(flag); 353 } 354