xref: /openbmc/linux/fs/f2fs/node.h (revision e1e0a9e6)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD	(64 * NAT_ENTRY_PER_BLOCK)
28 
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE	64
31 
32 /*
33  * For node information
34  */
35 struct node_info {
36 	nid_t nid;		/* node id */
37 	nid_t ino;		/* inode number of the node's owner */
38 	block_t	blk_addr;	/* block address of the node */
39 	unsigned char version;	/* version of the node */
40 };
41 
42 struct nat_entry {
43 	struct list_head list;	/* for clean or dirty nat list */
44 	bool checkpointed;	/* whether it is checkpointed or not */
45 	struct node_info ni;	/* in-memory node information */
46 };
47 
48 #define nat_get_nid(nat)		(nat->ni.nid)
49 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
50 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
51 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
52 #define nat_get_ino(nat)		(nat->ni.ino)
53 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
54 #define nat_get_version(nat)		(nat->ni.version)
55 #define nat_set_version(nat, v)		(nat->ni.version = v)
56 
57 #define __set_nat_cache_dirty(nm_i, ne)					\
58 	list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
59 #define __clear_nat_cache_dirty(nm_i, ne)				\
60 	list_move_tail(&ne->list, &nm_i->nat_entries);
61 #define inc_node_version(version)	(++version)
62 
63 static inline void node_info_from_raw_nat(struct node_info *ni,
64 						struct f2fs_nat_entry *raw_ne)
65 {
66 	ni->ino = le32_to_cpu(raw_ne->ino);
67 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
68 	ni->version = raw_ne->version;
69 }
70 
71 /*
72  * For free nid mangement
73  */
74 enum nid_state {
75 	NID_NEW,	/* newly added to free nid list */
76 	NID_ALLOC	/* it is allocated */
77 };
78 
79 struct free_nid {
80 	struct list_head list;	/* for free node id list */
81 	nid_t nid;		/* node id */
82 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
83 };
84 
85 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
86 {
87 	struct f2fs_nm_info *nm_i = NM_I(sbi);
88 	struct free_nid *fnid;
89 
90 	if (nm_i->fcnt <= 0)
91 		return -1;
92 	spin_lock(&nm_i->free_nid_list_lock);
93 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
94 	*nid = fnid->nid;
95 	spin_unlock(&nm_i->free_nid_list_lock);
96 	return 0;
97 }
98 
99 /*
100  * inline functions
101  */
102 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
103 {
104 	struct f2fs_nm_info *nm_i = NM_I(sbi);
105 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
106 }
107 
108 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
109 {
110 	struct f2fs_nm_info *nm_i = NM_I(sbi);
111 	pgoff_t block_off;
112 	pgoff_t block_addr;
113 	int seg_off;
114 
115 	block_off = NAT_BLOCK_OFFSET(start);
116 	seg_off = block_off >> sbi->log_blocks_per_seg;
117 
118 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
119 		(seg_off << sbi->log_blocks_per_seg << 1) +
120 		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
121 
122 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
123 		block_addr += sbi->blocks_per_seg;
124 
125 	return block_addr;
126 }
127 
128 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
129 						pgoff_t block_addr)
130 {
131 	struct f2fs_nm_info *nm_i = NM_I(sbi);
132 
133 	block_addr -= nm_i->nat_blkaddr;
134 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
135 		block_addr -= sbi->blocks_per_seg;
136 	else
137 		block_addr += sbi->blocks_per_seg;
138 
139 	return block_addr + nm_i->nat_blkaddr;
140 }
141 
142 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
143 {
144 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
145 
146 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
147 		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
148 	else
149 		f2fs_set_bit(block_off, nm_i->nat_bitmap);
150 }
151 
152 static inline void fill_node_footer(struct page *page, nid_t nid,
153 				nid_t ino, unsigned int ofs, bool reset)
154 {
155 	void *kaddr = page_address(page);
156 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
157 	if (reset)
158 		memset(rn, 0, sizeof(*rn));
159 	rn->footer.nid = cpu_to_le32(nid);
160 	rn->footer.ino = cpu_to_le32(ino);
161 	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
162 }
163 
164 static inline void copy_node_footer(struct page *dst, struct page *src)
165 {
166 	void *src_addr = page_address(src);
167 	void *dst_addr = page_address(dst);
168 	struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
169 	struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
170 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
171 }
172 
173 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
174 {
175 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
176 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
177 	void *kaddr = page_address(page);
178 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
179 	rn->footer.cp_ver = ckpt->checkpoint_ver;
180 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
181 }
182 
183 static inline nid_t ino_of_node(struct page *node_page)
184 {
185 	void *kaddr = page_address(node_page);
186 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
187 	return le32_to_cpu(rn->footer.ino);
188 }
189 
190 static inline nid_t nid_of_node(struct page *node_page)
191 {
192 	void *kaddr = page_address(node_page);
193 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
194 	return le32_to_cpu(rn->footer.nid);
195 }
196 
197 static inline unsigned int ofs_of_node(struct page *node_page)
198 {
199 	void *kaddr = page_address(node_page);
200 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
201 	unsigned flag = le32_to_cpu(rn->footer.flag);
202 	return flag >> OFFSET_BIT_SHIFT;
203 }
204 
205 static inline unsigned long long cpver_of_node(struct page *node_page)
206 {
207 	void *kaddr = page_address(node_page);
208 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
209 	return le64_to_cpu(rn->footer.cp_ver);
210 }
211 
212 static inline block_t next_blkaddr_of_node(struct page *node_page)
213 {
214 	void *kaddr = page_address(node_page);
215 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
216 	return le32_to_cpu(rn->footer.next_blkaddr);
217 }
218 
219 /*
220  * f2fs assigns the following node offsets described as (num).
221  * N = NIDS_PER_BLOCK
222  *
223  *  Inode block (0)
224  *    |- direct node (1)
225  *    |- direct node (2)
226  *    |- indirect node (3)
227  *    |            `- direct node (4 => 4 + N - 1)
228  *    |- indirect node (4 + N)
229  *    |            `- direct node (5 + N => 5 + 2N - 1)
230  *    `- double indirect node (5 + 2N)
231  *                 `- indirect node (6 + 2N)
232  *                       `- direct node (x(N + 1))
233  */
234 static inline bool IS_DNODE(struct page *node_page)
235 {
236 	unsigned int ofs = ofs_of_node(node_page);
237 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
238 			ofs == 5 + 2 * NIDS_PER_BLOCK)
239 		return false;
240 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
241 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
242 		if ((long int)ofs % (NIDS_PER_BLOCK + 1))
243 			return false;
244 	}
245 	return true;
246 }
247 
248 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
249 {
250 	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
251 
252 	wait_on_page_writeback(p);
253 
254 	if (i)
255 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
256 	else
257 		rn->in.nid[off] = cpu_to_le32(nid);
258 	set_page_dirty(p);
259 }
260 
261 static inline nid_t get_nid(struct page *p, int off, bool i)
262 {
263 	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
264 	if (i)
265 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
266 	return le32_to_cpu(rn->in.nid[off]);
267 }
268 
269 /*
270  * Coldness identification:
271  *  - Mark cold files in f2fs_inode_info
272  *  - Mark cold node blocks in their node footer
273  *  - Mark cold data pages in page cache
274  */
275 static inline int is_cold_file(struct inode *inode)
276 {
277 	return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
278 }
279 
280 static inline int is_cold_data(struct page *page)
281 {
282 	return PageChecked(page);
283 }
284 
285 static inline void set_cold_data(struct page *page)
286 {
287 	SetPageChecked(page);
288 }
289 
290 static inline void clear_cold_data(struct page *page)
291 {
292 	ClearPageChecked(page);
293 }
294 
295 static inline int is_cold_node(struct page *page)
296 {
297 	void *kaddr = page_address(page);
298 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
299 	unsigned int flag = le32_to_cpu(rn->footer.flag);
300 	return flag & (0x1 << COLD_BIT_SHIFT);
301 }
302 
303 static inline unsigned char is_fsync_dnode(struct page *page)
304 {
305 	void *kaddr = page_address(page);
306 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
307 	unsigned int flag = le32_to_cpu(rn->footer.flag);
308 	return flag & (0x1 << FSYNC_BIT_SHIFT);
309 }
310 
311 static inline unsigned char is_dent_dnode(struct page *page)
312 {
313 	void *kaddr = page_address(page);
314 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
315 	unsigned int flag = le32_to_cpu(rn->footer.flag);
316 	return flag & (0x1 << DENT_BIT_SHIFT);
317 }
318 
319 static inline void set_cold_node(struct inode *inode, struct page *page)
320 {
321 	struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
322 	unsigned int flag = le32_to_cpu(rn->footer.flag);
323 
324 	if (S_ISDIR(inode->i_mode))
325 		flag &= ~(0x1 << COLD_BIT_SHIFT);
326 	else
327 		flag |= (0x1 << COLD_BIT_SHIFT);
328 	rn->footer.flag = cpu_to_le32(flag);
329 }
330 
331 static inline void set_fsync_mark(struct page *page, int mark)
332 {
333 	void *kaddr = page_address(page);
334 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
335 	unsigned int flag = le32_to_cpu(rn->footer.flag);
336 	if (mark)
337 		flag |= (0x1 << FSYNC_BIT_SHIFT);
338 	else
339 		flag &= ~(0x1 << FSYNC_BIT_SHIFT);
340 	rn->footer.flag = cpu_to_le32(flag);
341 }
342 
343 static inline void set_dentry_mark(struct page *page, int mark)
344 {
345 	void *kaddr = page_address(page);
346 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
347 	unsigned int flag = le32_to_cpu(rn->footer.flag);
348 	if (mark)
349 		flag |= (0x1 << DENT_BIT_SHIFT);
350 	else
351 		flag &= ~(0x1 << DENT_BIT_SHIFT);
352 	rn->footer.flag = cpu_to_le32(flag);
353 }
354