1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 /* start node id of a node block dedicated to the given node id */ 9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11 /* node block offset on the NAT area dedicated to the given start node id */ 12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14 /* # of pages to perform synchronous readahead before building free nids */ 15 #define FREE_NID_PAGES 8 16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18 /* size of free nid batch when shrinking */ 19 #define SHRINK_NID_BATCH_SIZE 8 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* check pinned file's alignment status of physical blocks */ 42 #define FILE_NOT_ALIGNED 1 43 44 /* For flag in struct node_info */ 45 enum { 46 IS_CHECKPOINTED, /* is it checkpointed before? */ 47 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 48 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 49 IS_DIRTY, /* this nat entry is dirty? */ 50 IS_PREALLOC, /* nat entry is preallocated */ 51 }; 52 53 /* 54 * For node information 55 */ 56 struct node_info { 57 nid_t nid; /* node id */ 58 nid_t ino; /* inode number of the node's owner */ 59 block_t blk_addr; /* block address of the node */ 60 unsigned char version; /* version of the node */ 61 unsigned char flag; /* for node information bits */ 62 }; 63 64 struct nat_entry { 65 struct list_head list; /* for clean or dirty nat list */ 66 struct node_info ni; /* in-memory node information */ 67 }; 68 69 #define nat_get_nid(nat) ((nat)->ni.nid) 70 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 71 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 72 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 73 #define nat_get_ino(nat) ((nat)->ni.ino) 74 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 75 #define nat_get_version(nat) ((nat)->ni.version) 76 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 77 78 #define inc_node_version(version) (++(version)) 79 80 static inline void copy_node_info(struct node_info *dst, 81 struct node_info *src) 82 { 83 dst->nid = src->nid; 84 dst->ino = src->ino; 85 dst->blk_addr = src->blk_addr; 86 dst->version = src->version; 87 /* should not copy flag here */ 88 } 89 90 static inline void set_nat_flag(struct nat_entry *ne, 91 unsigned int type, bool set) 92 { 93 unsigned char mask = 0x01 << type; 94 if (set) 95 ne->ni.flag |= mask; 96 else 97 ne->ni.flag &= ~mask; 98 } 99 100 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 101 { 102 unsigned char mask = 0x01 << type; 103 return ne->ni.flag & mask; 104 } 105 106 static inline void nat_reset_flag(struct nat_entry *ne) 107 { 108 /* these states can be set only after checkpoint was done */ 109 set_nat_flag(ne, IS_CHECKPOINTED, true); 110 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 111 set_nat_flag(ne, HAS_LAST_FSYNC, true); 112 } 113 114 static inline void node_info_from_raw_nat(struct node_info *ni, 115 struct f2fs_nat_entry *raw_ne) 116 { 117 ni->ino = le32_to_cpu(raw_ne->ino); 118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 119 ni->version = raw_ne->version; 120 } 121 122 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 123 struct node_info *ni) 124 { 125 raw_ne->ino = cpu_to_le32(ni->ino); 126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 127 raw_ne->version = ni->version; 128 } 129 130 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 131 { 132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 133 NM_I(sbi)->dirty_nats_ratio / 100; 134 } 135 136 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 137 { 138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 139 } 140 141 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi) 142 { 143 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8; 144 } 145 146 enum mem_type { 147 FREE_NIDS, /* indicates the free nid list */ 148 NAT_ENTRIES, /* indicates the cached nat entry */ 149 DIRTY_DENTS, /* indicates dirty dentry pages */ 150 INO_ENTRIES, /* indicates inode entries */ 151 EXTENT_CACHE, /* indicates extent cache */ 152 INMEM_PAGES, /* indicates inmemory pages */ 153 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 154 COMPRESS_PAGE, /* indicates memory of cached compressed pages */ 155 BASE_CHECK, /* check kernel status */ 156 }; 157 158 struct nat_entry_set { 159 struct list_head set_list; /* link with other nat sets */ 160 struct list_head entry_list; /* link with dirty nat entries */ 161 nid_t set; /* set number*/ 162 unsigned int entry_cnt; /* the # of nat entries in set */ 163 }; 164 165 struct free_nid { 166 struct list_head list; /* for free node id list */ 167 nid_t nid; /* node id */ 168 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 169 }; 170 171 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 172 { 173 struct f2fs_nm_info *nm_i = NM_I(sbi); 174 struct free_nid *fnid; 175 176 spin_lock(&nm_i->nid_list_lock); 177 if (nm_i->nid_cnt[FREE_NID] <= 0) { 178 spin_unlock(&nm_i->nid_list_lock); 179 return; 180 } 181 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 182 *nid = fnid->nid; 183 spin_unlock(&nm_i->nid_list_lock); 184 } 185 186 /* 187 * inline functions 188 */ 189 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 190 { 191 struct f2fs_nm_info *nm_i = NM_I(sbi); 192 193 #ifdef CONFIG_F2FS_CHECK_FS 194 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 195 nm_i->bitmap_size)) 196 f2fs_bug_on(sbi, 1); 197 #endif 198 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 199 } 200 201 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 202 { 203 struct f2fs_nm_info *nm_i = NM_I(sbi); 204 pgoff_t block_off; 205 pgoff_t block_addr; 206 207 /* 208 * block_off = segment_off * 512 + off_in_segment 209 * OLD = (segment_off * 512) * 2 + off_in_segment 210 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 211 */ 212 block_off = NAT_BLOCK_OFFSET(start); 213 214 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 215 (block_off << 1) - 216 (block_off & (sbi->blocks_per_seg - 1))); 217 218 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 219 block_addr += sbi->blocks_per_seg; 220 221 return block_addr; 222 } 223 224 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 225 pgoff_t block_addr) 226 { 227 struct f2fs_nm_info *nm_i = NM_I(sbi); 228 229 block_addr -= nm_i->nat_blkaddr; 230 block_addr ^= 1 << sbi->log_blocks_per_seg; 231 return block_addr + nm_i->nat_blkaddr; 232 } 233 234 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 235 { 236 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 237 238 f2fs_change_bit(block_off, nm_i->nat_bitmap); 239 #ifdef CONFIG_F2FS_CHECK_FS 240 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 241 #endif 242 } 243 244 static inline nid_t ino_of_node(struct page *node_page) 245 { 246 struct f2fs_node *rn = F2FS_NODE(node_page); 247 return le32_to_cpu(rn->footer.ino); 248 } 249 250 static inline nid_t nid_of_node(struct page *node_page) 251 { 252 struct f2fs_node *rn = F2FS_NODE(node_page); 253 return le32_to_cpu(rn->footer.nid); 254 } 255 256 static inline unsigned int ofs_of_node(struct page *node_page) 257 { 258 struct f2fs_node *rn = F2FS_NODE(node_page); 259 unsigned flag = le32_to_cpu(rn->footer.flag); 260 return flag >> OFFSET_BIT_SHIFT; 261 } 262 263 static inline __u64 cpver_of_node(struct page *node_page) 264 { 265 struct f2fs_node *rn = F2FS_NODE(node_page); 266 return le64_to_cpu(rn->footer.cp_ver); 267 } 268 269 static inline block_t next_blkaddr_of_node(struct page *node_page) 270 { 271 struct f2fs_node *rn = F2FS_NODE(node_page); 272 return le32_to_cpu(rn->footer.next_blkaddr); 273 } 274 275 static inline void fill_node_footer(struct page *page, nid_t nid, 276 nid_t ino, unsigned int ofs, bool reset) 277 { 278 struct f2fs_node *rn = F2FS_NODE(page); 279 unsigned int old_flag = 0; 280 281 if (reset) 282 memset(rn, 0, sizeof(*rn)); 283 else 284 old_flag = le32_to_cpu(rn->footer.flag); 285 286 rn->footer.nid = cpu_to_le32(nid); 287 rn->footer.ino = cpu_to_le32(ino); 288 289 /* should remain old flag bits such as COLD_BIT_SHIFT */ 290 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 291 (old_flag & OFFSET_BIT_MASK)); 292 } 293 294 static inline void copy_node_footer(struct page *dst, struct page *src) 295 { 296 struct f2fs_node *src_rn = F2FS_NODE(src); 297 struct f2fs_node *dst_rn = F2FS_NODE(dst); 298 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 299 } 300 301 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 302 { 303 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 304 struct f2fs_node *rn = F2FS_NODE(page); 305 __u64 cp_ver = cur_cp_version(ckpt); 306 307 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 308 cp_ver |= (cur_cp_crc(ckpt) << 32); 309 310 rn->footer.cp_ver = cpu_to_le64(cp_ver); 311 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 312 } 313 314 static inline bool is_recoverable_dnode(struct page *page) 315 { 316 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 317 __u64 cp_ver = cur_cp_version(ckpt); 318 319 /* Don't care crc part, if fsck.f2fs sets it. */ 320 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 321 return (cp_ver << 32) == (cpver_of_node(page) << 32); 322 323 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 324 cp_ver |= (cur_cp_crc(ckpt) << 32); 325 326 return cp_ver == cpver_of_node(page); 327 } 328 329 /* 330 * f2fs assigns the following node offsets described as (num). 331 * N = NIDS_PER_BLOCK 332 * 333 * Inode block (0) 334 * |- direct node (1) 335 * |- direct node (2) 336 * |- indirect node (3) 337 * | `- direct node (4 => 4 + N - 1) 338 * |- indirect node (4 + N) 339 * | `- direct node (5 + N => 5 + 2N - 1) 340 * `- double indirect node (5 + 2N) 341 * `- indirect node (6 + 2N) 342 * `- direct node 343 * ...... 344 * `- indirect node ((6 + 2N) + x(N + 1)) 345 * `- direct node 346 * ...... 347 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 348 * `- direct node 349 */ 350 static inline bool IS_DNODE(struct page *node_page) 351 { 352 unsigned int ofs = ofs_of_node(node_page); 353 354 if (f2fs_has_xattr_block(ofs)) 355 return true; 356 357 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 358 ofs == 5 + 2 * NIDS_PER_BLOCK) 359 return false; 360 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 361 ofs -= 6 + 2 * NIDS_PER_BLOCK; 362 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 363 return false; 364 } 365 return true; 366 } 367 368 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 369 { 370 struct f2fs_node *rn = F2FS_NODE(p); 371 372 f2fs_wait_on_page_writeback(p, NODE, true, true); 373 374 if (i) 375 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 376 else 377 rn->in.nid[off] = cpu_to_le32(nid); 378 return set_page_dirty(p); 379 } 380 381 static inline nid_t get_nid(struct page *p, int off, bool i) 382 { 383 struct f2fs_node *rn = F2FS_NODE(p); 384 385 if (i) 386 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 387 return le32_to_cpu(rn->in.nid[off]); 388 } 389 390 /* 391 * Coldness identification: 392 * - Mark cold files in f2fs_inode_info 393 * - Mark cold node blocks in their node footer 394 * - Mark cold data pages in page cache 395 */ 396 397 static inline int is_node(struct page *page, int type) 398 { 399 struct f2fs_node *rn = F2FS_NODE(page); 400 return le32_to_cpu(rn->footer.flag) & (1 << type); 401 } 402 403 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 404 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 405 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 406 407 static inline void set_cold_node(struct page *page, bool is_dir) 408 { 409 struct f2fs_node *rn = F2FS_NODE(page); 410 unsigned int flag = le32_to_cpu(rn->footer.flag); 411 412 if (is_dir) 413 flag &= ~(0x1 << COLD_BIT_SHIFT); 414 else 415 flag |= (0x1 << COLD_BIT_SHIFT); 416 rn->footer.flag = cpu_to_le32(flag); 417 } 418 419 static inline void set_mark(struct page *page, int mark, int type) 420 { 421 struct f2fs_node *rn = F2FS_NODE(page); 422 unsigned int flag = le32_to_cpu(rn->footer.flag); 423 if (mark) 424 flag |= (0x1 << type); 425 else 426 flag &= ~(0x1 << type); 427 rn->footer.flag = cpu_to_le32(flag); 428 429 #ifdef CONFIG_F2FS_CHECK_FS 430 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 431 #endif 432 } 433 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 434 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 435