1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 /* start node id of a node block dedicated to the given node id */ 9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11 /* node block offset on the NAT area dedicated to the given start node id */ 12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14 /* # of pages to perform synchronous readahead before building free nids */ 15 #define FREE_NID_PAGES 8 16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 1 25 26 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 27 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 28 /* control total # of nats */ 29 #define DEF_NAT_CACHE_THRESHOLD 100000 30 31 /* vector size for gang look-up from nat cache that consists of radix tree */ 32 #define NATVEC_SIZE 64 33 #define SETVEC_SIZE 32 34 35 /* return value for read_node_page */ 36 #define LOCKED_PAGE 1 37 38 /* For flag in struct node_info */ 39 enum { 40 IS_CHECKPOINTED, /* is it checkpointed before? */ 41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 43 IS_DIRTY, /* this nat entry is dirty? */ 44 IS_PREALLOC, /* nat entry is preallocated */ 45 }; 46 47 /* 48 * For node information 49 */ 50 struct node_info { 51 nid_t nid; /* node id */ 52 nid_t ino; /* inode number of the node's owner */ 53 block_t blk_addr; /* block address of the node */ 54 unsigned char version; /* version of the node */ 55 unsigned char flag; /* for node information bits */ 56 }; 57 58 struct nat_entry { 59 struct list_head list; /* for clean or dirty nat list */ 60 struct node_info ni; /* in-memory node information */ 61 }; 62 63 #define nat_get_nid(nat) ((nat)->ni.nid) 64 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 65 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 66 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 67 #define nat_get_ino(nat) ((nat)->ni.ino) 68 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 69 #define nat_get_version(nat) ((nat)->ni.version) 70 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 71 72 #define inc_node_version(version) (++(version)) 73 74 static inline void copy_node_info(struct node_info *dst, 75 struct node_info *src) 76 { 77 dst->nid = src->nid; 78 dst->ino = src->ino; 79 dst->blk_addr = src->blk_addr; 80 dst->version = src->version; 81 /* should not copy flag here */ 82 } 83 84 static inline void set_nat_flag(struct nat_entry *ne, 85 unsigned int type, bool set) 86 { 87 unsigned char mask = 0x01 << type; 88 if (set) 89 ne->ni.flag |= mask; 90 else 91 ne->ni.flag &= ~mask; 92 } 93 94 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 95 { 96 unsigned char mask = 0x01 << type; 97 return ne->ni.flag & mask; 98 } 99 100 static inline void nat_reset_flag(struct nat_entry *ne) 101 { 102 /* these states can be set only after checkpoint was done */ 103 set_nat_flag(ne, IS_CHECKPOINTED, true); 104 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 105 set_nat_flag(ne, HAS_LAST_FSYNC, true); 106 } 107 108 static inline void node_info_from_raw_nat(struct node_info *ni, 109 struct f2fs_nat_entry *raw_ne) 110 { 111 ni->ino = le32_to_cpu(raw_ne->ino); 112 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 113 ni->version = raw_ne->version; 114 } 115 116 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 117 struct node_info *ni) 118 { 119 raw_ne->ino = cpu_to_le32(ni->ino); 120 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 121 raw_ne->version = ni->version; 122 } 123 124 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 125 { 126 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 127 NM_I(sbi)->dirty_nats_ratio / 100; 128 } 129 130 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 131 { 132 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 133 } 134 135 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi) 136 { 137 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8; 138 } 139 140 enum mem_type { 141 FREE_NIDS, /* indicates the free nid list */ 142 NAT_ENTRIES, /* indicates the cached nat entry */ 143 DIRTY_DENTS, /* indicates dirty dentry pages */ 144 INO_ENTRIES, /* indicates inode entries */ 145 EXTENT_CACHE, /* indicates extent cache */ 146 INMEM_PAGES, /* indicates inmemory pages */ 147 BASE_CHECK, /* check kernel status */ 148 }; 149 150 struct nat_entry_set { 151 struct list_head set_list; /* link with other nat sets */ 152 struct list_head entry_list; /* link with dirty nat entries */ 153 nid_t set; /* set number*/ 154 unsigned int entry_cnt; /* the # of nat entries in set */ 155 }; 156 157 struct free_nid { 158 struct list_head list; /* for free node id list */ 159 nid_t nid; /* node id */ 160 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 161 }; 162 163 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 164 { 165 struct f2fs_nm_info *nm_i = NM_I(sbi); 166 struct free_nid *fnid; 167 168 spin_lock(&nm_i->nid_list_lock); 169 if (nm_i->nid_cnt[FREE_NID] <= 0) { 170 spin_unlock(&nm_i->nid_list_lock); 171 return; 172 } 173 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 174 *nid = fnid->nid; 175 spin_unlock(&nm_i->nid_list_lock); 176 } 177 178 /* 179 * inline functions 180 */ 181 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 182 { 183 struct f2fs_nm_info *nm_i = NM_I(sbi); 184 185 #ifdef CONFIG_F2FS_CHECK_FS 186 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 187 nm_i->bitmap_size)) 188 f2fs_bug_on(sbi, 1); 189 #endif 190 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 191 } 192 193 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 194 { 195 struct f2fs_nm_info *nm_i = NM_I(sbi); 196 pgoff_t block_off; 197 pgoff_t block_addr; 198 199 /* 200 * block_off = segment_off * 512 + off_in_segment 201 * OLD = (segment_off * 512) * 2 + off_in_segment 202 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 203 */ 204 block_off = NAT_BLOCK_OFFSET(start); 205 206 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 207 (block_off << 1) - 208 (block_off & (sbi->blocks_per_seg - 1))); 209 210 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 211 block_addr += sbi->blocks_per_seg; 212 213 return block_addr; 214 } 215 216 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 217 pgoff_t block_addr) 218 { 219 struct f2fs_nm_info *nm_i = NM_I(sbi); 220 221 block_addr -= nm_i->nat_blkaddr; 222 block_addr ^= 1 << sbi->log_blocks_per_seg; 223 return block_addr + nm_i->nat_blkaddr; 224 } 225 226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 227 { 228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 229 230 f2fs_change_bit(block_off, nm_i->nat_bitmap); 231 #ifdef CONFIG_F2FS_CHECK_FS 232 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 233 #endif 234 } 235 236 static inline nid_t ino_of_node(struct page *node_page) 237 { 238 struct f2fs_node *rn = F2FS_NODE(node_page); 239 return le32_to_cpu(rn->footer.ino); 240 } 241 242 static inline nid_t nid_of_node(struct page *node_page) 243 { 244 struct f2fs_node *rn = F2FS_NODE(node_page); 245 return le32_to_cpu(rn->footer.nid); 246 } 247 248 static inline unsigned int ofs_of_node(struct page *node_page) 249 { 250 struct f2fs_node *rn = F2FS_NODE(node_page); 251 unsigned flag = le32_to_cpu(rn->footer.flag); 252 return flag >> OFFSET_BIT_SHIFT; 253 } 254 255 static inline __u64 cpver_of_node(struct page *node_page) 256 { 257 struct f2fs_node *rn = F2FS_NODE(node_page); 258 return le64_to_cpu(rn->footer.cp_ver); 259 } 260 261 static inline block_t next_blkaddr_of_node(struct page *node_page) 262 { 263 struct f2fs_node *rn = F2FS_NODE(node_page); 264 return le32_to_cpu(rn->footer.next_blkaddr); 265 } 266 267 static inline void fill_node_footer(struct page *page, nid_t nid, 268 nid_t ino, unsigned int ofs, bool reset) 269 { 270 struct f2fs_node *rn = F2FS_NODE(page); 271 unsigned int old_flag = 0; 272 273 if (reset) 274 memset(rn, 0, sizeof(*rn)); 275 else 276 old_flag = le32_to_cpu(rn->footer.flag); 277 278 rn->footer.nid = cpu_to_le32(nid); 279 rn->footer.ino = cpu_to_le32(ino); 280 281 /* should remain old flag bits such as COLD_BIT_SHIFT */ 282 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 283 (old_flag & OFFSET_BIT_MASK)); 284 } 285 286 static inline void copy_node_footer(struct page *dst, struct page *src) 287 { 288 struct f2fs_node *src_rn = F2FS_NODE(src); 289 struct f2fs_node *dst_rn = F2FS_NODE(dst); 290 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 291 } 292 293 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 294 { 295 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 296 struct f2fs_node *rn = F2FS_NODE(page); 297 __u64 cp_ver = cur_cp_version(ckpt); 298 299 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 300 cp_ver |= (cur_cp_crc(ckpt) << 32); 301 302 rn->footer.cp_ver = cpu_to_le64(cp_ver); 303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 304 } 305 306 static inline bool is_recoverable_dnode(struct page *page) 307 { 308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 309 __u64 cp_ver = cur_cp_version(ckpt); 310 311 /* Don't care crc part, if fsck.f2fs sets it. */ 312 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 313 return (cp_ver << 32) == (cpver_of_node(page) << 32); 314 315 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 316 cp_ver |= (cur_cp_crc(ckpt) << 32); 317 318 return cp_ver == cpver_of_node(page); 319 } 320 321 /* 322 * f2fs assigns the following node offsets described as (num). 323 * N = NIDS_PER_BLOCK 324 * 325 * Inode block (0) 326 * |- direct node (1) 327 * |- direct node (2) 328 * |- indirect node (3) 329 * | `- direct node (4 => 4 + N - 1) 330 * |- indirect node (4 + N) 331 * | `- direct node (5 + N => 5 + 2N - 1) 332 * `- double indirect node (5 + 2N) 333 * `- indirect node (6 + 2N) 334 * `- direct node 335 * ...... 336 * `- indirect node ((6 + 2N) + x(N + 1)) 337 * `- direct node 338 * ...... 339 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 340 * `- direct node 341 */ 342 static inline bool IS_DNODE(struct page *node_page) 343 { 344 unsigned int ofs = ofs_of_node(node_page); 345 346 if (f2fs_has_xattr_block(ofs)) 347 return true; 348 349 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 350 ofs == 5 + 2 * NIDS_PER_BLOCK) 351 return false; 352 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 353 ofs -= 6 + 2 * NIDS_PER_BLOCK; 354 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 355 return false; 356 } 357 return true; 358 } 359 360 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 361 { 362 struct f2fs_node *rn = F2FS_NODE(p); 363 364 f2fs_wait_on_page_writeback(p, NODE, true); 365 366 if (i) 367 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 368 else 369 rn->in.nid[off] = cpu_to_le32(nid); 370 return set_page_dirty(p); 371 } 372 373 static inline nid_t get_nid(struct page *p, int off, bool i) 374 { 375 struct f2fs_node *rn = F2FS_NODE(p); 376 377 if (i) 378 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 379 return le32_to_cpu(rn->in.nid[off]); 380 } 381 382 /* 383 * Coldness identification: 384 * - Mark cold files in f2fs_inode_info 385 * - Mark cold node blocks in their node footer 386 * - Mark cold data pages in page cache 387 */ 388 static inline int is_cold_data(struct page *page) 389 { 390 return PageChecked(page); 391 } 392 393 static inline void set_cold_data(struct page *page) 394 { 395 SetPageChecked(page); 396 } 397 398 static inline void clear_cold_data(struct page *page) 399 { 400 ClearPageChecked(page); 401 } 402 403 static inline int is_node(struct page *page, int type) 404 { 405 struct f2fs_node *rn = F2FS_NODE(page); 406 return le32_to_cpu(rn->footer.flag) & (1 << type); 407 } 408 409 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 410 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 411 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 412 413 static inline int is_inline_node(struct page *page) 414 { 415 return PageChecked(page); 416 } 417 418 static inline void set_inline_node(struct page *page) 419 { 420 SetPageChecked(page); 421 } 422 423 static inline void clear_inline_node(struct page *page) 424 { 425 ClearPageChecked(page); 426 } 427 428 static inline void set_cold_node(struct page *page, bool is_dir) 429 { 430 struct f2fs_node *rn = F2FS_NODE(page); 431 unsigned int flag = le32_to_cpu(rn->footer.flag); 432 433 if (is_dir) 434 flag &= ~(0x1 << COLD_BIT_SHIFT); 435 else 436 flag |= (0x1 << COLD_BIT_SHIFT); 437 rn->footer.flag = cpu_to_le32(flag); 438 } 439 440 static inline void set_mark(struct page *page, int mark, int type) 441 { 442 struct f2fs_node *rn = F2FS_NODE(page); 443 unsigned int flag = le32_to_cpu(rn->footer.flag); 444 if (mark) 445 flag |= (0x1 << type); 446 else 447 flag &= ~(0x1 << type); 448 rn->footer.flag = cpu_to_le32(flag); 449 450 #ifdef CONFIG_F2FS_CHECK_FS 451 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 452 #endif 453 } 454 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 455 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 456