xref: /openbmc/linux/fs/f2fs/node.h (revision ca79522c)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD	(64 * NAT_ENTRY_PER_BLOCK)
28 
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE	64
31 
32 /* return value for read_node_page */
33 #define LOCKED_PAGE	1
34 
35 /*
36  * For node information
37  */
38 struct node_info {
39 	nid_t nid;		/* node id */
40 	nid_t ino;		/* inode number of the node's owner */
41 	block_t	blk_addr;	/* block address of the node */
42 	unsigned char version;	/* version of the node */
43 };
44 
45 struct nat_entry {
46 	struct list_head list;	/* for clean or dirty nat list */
47 	bool checkpointed;	/* whether it is checkpointed or not */
48 	struct node_info ni;	/* in-memory node information */
49 };
50 
51 #define nat_get_nid(nat)		(nat->ni.nid)
52 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
53 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
54 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
55 #define nat_get_ino(nat)		(nat->ni.ino)
56 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
57 #define nat_get_version(nat)		(nat->ni.version)
58 #define nat_set_version(nat, v)		(nat->ni.version = v)
59 
60 #define __set_nat_cache_dirty(nm_i, ne)					\
61 	list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
62 #define __clear_nat_cache_dirty(nm_i, ne)				\
63 	list_move_tail(&ne->list, &nm_i->nat_entries);
64 #define inc_node_version(version)	(++version)
65 
66 static inline void node_info_from_raw_nat(struct node_info *ni,
67 						struct f2fs_nat_entry *raw_ne)
68 {
69 	ni->ino = le32_to_cpu(raw_ne->ino);
70 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
71 	ni->version = raw_ne->version;
72 }
73 
74 /*
75  * For free nid mangement
76  */
77 enum nid_state {
78 	NID_NEW,	/* newly added to free nid list */
79 	NID_ALLOC	/* it is allocated */
80 };
81 
82 struct free_nid {
83 	struct list_head list;	/* for free node id list */
84 	nid_t nid;		/* node id */
85 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
86 };
87 
88 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
89 {
90 	struct f2fs_nm_info *nm_i = NM_I(sbi);
91 	struct free_nid *fnid;
92 
93 	if (nm_i->fcnt <= 0)
94 		return -1;
95 	spin_lock(&nm_i->free_nid_list_lock);
96 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
97 	*nid = fnid->nid;
98 	spin_unlock(&nm_i->free_nid_list_lock);
99 	return 0;
100 }
101 
102 /*
103  * inline functions
104  */
105 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
106 {
107 	struct f2fs_nm_info *nm_i = NM_I(sbi);
108 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
109 }
110 
111 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
112 {
113 	struct f2fs_nm_info *nm_i = NM_I(sbi);
114 	pgoff_t block_off;
115 	pgoff_t block_addr;
116 	int seg_off;
117 
118 	block_off = NAT_BLOCK_OFFSET(start);
119 	seg_off = block_off >> sbi->log_blocks_per_seg;
120 
121 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
122 		(seg_off << sbi->log_blocks_per_seg << 1) +
123 		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
124 
125 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
126 		block_addr += sbi->blocks_per_seg;
127 
128 	return block_addr;
129 }
130 
131 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
132 						pgoff_t block_addr)
133 {
134 	struct f2fs_nm_info *nm_i = NM_I(sbi);
135 
136 	block_addr -= nm_i->nat_blkaddr;
137 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
138 		block_addr -= sbi->blocks_per_seg;
139 	else
140 		block_addr += sbi->blocks_per_seg;
141 
142 	return block_addr + nm_i->nat_blkaddr;
143 }
144 
145 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
146 {
147 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
148 
149 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
150 		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
151 	else
152 		f2fs_set_bit(block_off, nm_i->nat_bitmap);
153 }
154 
155 static inline void fill_node_footer(struct page *page, nid_t nid,
156 				nid_t ino, unsigned int ofs, bool reset)
157 {
158 	void *kaddr = page_address(page);
159 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
160 	if (reset)
161 		memset(rn, 0, sizeof(*rn));
162 	rn->footer.nid = cpu_to_le32(nid);
163 	rn->footer.ino = cpu_to_le32(ino);
164 	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
165 }
166 
167 static inline void copy_node_footer(struct page *dst, struct page *src)
168 {
169 	void *src_addr = page_address(src);
170 	void *dst_addr = page_address(dst);
171 	struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
172 	struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
173 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
174 }
175 
176 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
177 {
178 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
179 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
180 	void *kaddr = page_address(page);
181 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
182 	rn->footer.cp_ver = ckpt->checkpoint_ver;
183 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
184 }
185 
186 static inline nid_t ino_of_node(struct page *node_page)
187 {
188 	void *kaddr = page_address(node_page);
189 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
190 	return le32_to_cpu(rn->footer.ino);
191 }
192 
193 static inline nid_t nid_of_node(struct page *node_page)
194 {
195 	void *kaddr = page_address(node_page);
196 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
197 	return le32_to_cpu(rn->footer.nid);
198 }
199 
200 static inline unsigned int ofs_of_node(struct page *node_page)
201 {
202 	void *kaddr = page_address(node_page);
203 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
204 	unsigned flag = le32_to_cpu(rn->footer.flag);
205 	return flag >> OFFSET_BIT_SHIFT;
206 }
207 
208 static inline unsigned long long cpver_of_node(struct page *node_page)
209 {
210 	void *kaddr = page_address(node_page);
211 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
212 	return le64_to_cpu(rn->footer.cp_ver);
213 }
214 
215 static inline block_t next_blkaddr_of_node(struct page *node_page)
216 {
217 	void *kaddr = page_address(node_page);
218 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
219 	return le32_to_cpu(rn->footer.next_blkaddr);
220 }
221 
222 /*
223  * f2fs assigns the following node offsets described as (num).
224  * N = NIDS_PER_BLOCK
225  *
226  *  Inode block (0)
227  *    |- direct node (1)
228  *    |- direct node (2)
229  *    |- indirect node (3)
230  *    |            `- direct node (4 => 4 + N - 1)
231  *    |- indirect node (4 + N)
232  *    |            `- direct node (5 + N => 5 + 2N - 1)
233  *    `- double indirect node (5 + 2N)
234  *                 `- indirect node (6 + 2N)
235  *                       `- direct node (x(N + 1))
236  */
237 static inline bool IS_DNODE(struct page *node_page)
238 {
239 	unsigned int ofs = ofs_of_node(node_page);
240 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
241 			ofs == 5 + 2 * NIDS_PER_BLOCK)
242 		return false;
243 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
244 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
245 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
246 			return false;
247 	}
248 	return true;
249 }
250 
251 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
252 {
253 	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
254 
255 	wait_on_page_writeback(p);
256 
257 	if (i)
258 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
259 	else
260 		rn->in.nid[off] = cpu_to_le32(nid);
261 	set_page_dirty(p);
262 }
263 
264 static inline nid_t get_nid(struct page *p, int off, bool i)
265 {
266 	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
267 	if (i)
268 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
269 	return le32_to_cpu(rn->in.nid[off]);
270 }
271 
272 /*
273  * Coldness identification:
274  *  - Mark cold files in f2fs_inode_info
275  *  - Mark cold node blocks in their node footer
276  *  - Mark cold data pages in page cache
277  */
278 static inline int is_cold_file(struct inode *inode)
279 {
280 	return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
281 }
282 
283 static inline void set_cold_file(struct inode *inode)
284 {
285 	F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT;
286 }
287 
288 static inline int is_cp_file(struct inode *inode)
289 {
290 	return F2FS_I(inode)->i_advise & FADVISE_CP_BIT;
291 }
292 
293 static inline void set_cp_file(struct inode *inode)
294 {
295 	F2FS_I(inode)->i_advise |= FADVISE_CP_BIT;
296 }
297 
298 static inline int is_cold_data(struct page *page)
299 {
300 	return PageChecked(page);
301 }
302 
303 static inline void set_cold_data(struct page *page)
304 {
305 	SetPageChecked(page);
306 }
307 
308 static inline void clear_cold_data(struct page *page)
309 {
310 	ClearPageChecked(page);
311 }
312 
313 static inline int is_cold_node(struct page *page)
314 {
315 	void *kaddr = page_address(page);
316 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
317 	unsigned int flag = le32_to_cpu(rn->footer.flag);
318 	return flag & (0x1 << COLD_BIT_SHIFT);
319 }
320 
321 static inline unsigned char is_fsync_dnode(struct page *page)
322 {
323 	void *kaddr = page_address(page);
324 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
325 	unsigned int flag = le32_to_cpu(rn->footer.flag);
326 	return flag & (0x1 << FSYNC_BIT_SHIFT);
327 }
328 
329 static inline unsigned char is_dent_dnode(struct page *page)
330 {
331 	void *kaddr = page_address(page);
332 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
333 	unsigned int flag = le32_to_cpu(rn->footer.flag);
334 	return flag & (0x1 << DENT_BIT_SHIFT);
335 }
336 
337 static inline void set_cold_node(struct inode *inode, struct page *page)
338 {
339 	struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
340 	unsigned int flag = le32_to_cpu(rn->footer.flag);
341 
342 	if (S_ISDIR(inode->i_mode))
343 		flag &= ~(0x1 << COLD_BIT_SHIFT);
344 	else
345 		flag |= (0x1 << COLD_BIT_SHIFT);
346 	rn->footer.flag = cpu_to_le32(flag);
347 }
348 
349 static inline void set_fsync_mark(struct page *page, int mark)
350 {
351 	void *kaddr = page_address(page);
352 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
353 	unsigned int flag = le32_to_cpu(rn->footer.flag);
354 	if (mark)
355 		flag |= (0x1 << FSYNC_BIT_SHIFT);
356 	else
357 		flag &= ~(0x1 << FSYNC_BIT_SHIFT);
358 	rn->footer.flag = cpu_to_le32(flag);
359 }
360 
361 static inline void set_dentry_mark(struct page *page, int mark)
362 {
363 	void *kaddr = page_address(page);
364 	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
365 	unsigned int flag = le32_to_cpu(rn->footer.flag);
366 	if (mark)
367 		flag |= (0x1 << DENT_BIT_SHIFT);
368 	else
369 		flag &= ~(0x1 << DENT_BIT_SHIFT);
370 	rn->footer.flag = cpu_to_le32(flag);
371 }
372