xref: /openbmc/linux/fs/f2fs/node.h (revision b34e08d5)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE		128
22 
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD	10
25 
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE	64
28 
29 /* return value for read_node_page */
30 #define LOCKED_PAGE	1
31 
32 /*
33  * For node information
34  */
35 struct node_info {
36 	nid_t nid;		/* node id */
37 	nid_t ino;		/* inode number of the node's owner */
38 	block_t	blk_addr;	/* block address of the node */
39 	unsigned char version;	/* version of the node */
40 };
41 
42 struct nat_entry {
43 	struct list_head list;	/* for clean or dirty nat list */
44 	bool checkpointed;	/* whether it is checkpointed or not */
45 	bool fsync_done;	/* whether the latest node has fsync mark */
46 	struct node_info ni;	/* in-memory node information */
47 };
48 
49 #define nat_get_nid(nat)		(nat->ni.nid)
50 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
51 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
52 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
53 #define nat_get_ino(nat)		(nat->ni.ino)
54 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
55 #define nat_get_version(nat)		(nat->ni.version)
56 #define nat_set_version(nat, v)		(nat->ni.version = v)
57 
58 #define __set_nat_cache_dirty(nm_i, ne)					\
59 	do {								\
60 		ne->checkpointed = false;				\
61 		list_move_tail(&ne->list, &nm_i->dirty_nat_entries);	\
62 	} while (0);
63 #define __clear_nat_cache_dirty(nm_i, ne)				\
64 	do {								\
65 		ne->checkpointed = true;				\
66 		list_move_tail(&ne->list, &nm_i->nat_entries);		\
67 	} while (0);
68 #define inc_node_version(version)	(++version)
69 
70 static inline void node_info_from_raw_nat(struct node_info *ni,
71 						struct f2fs_nat_entry *raw_ne)
72 {
73 	ni->ino = le32_to_cpu(raw_ne->ino);
74 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75 	ni->version = raw_ne->version;
76 }
77 
78 enum nid_type {
79 	FREE_NIDS,	/* indicates the free nid list */
80 	NAT_ENTRIES	/* indicates the cached nat entry */
81 };
82 
83 /*
84  * For free nid mangement
85  */
86 enum nid_state {
87 	NID_NEW,	/* newly added to free nid list */
88 	NID_ALLOC	/* it is allocated */
89 };
90 
91 struct free_nid {
92 	struct list_head list;	/* for free node id list */
93 	nid_t nid;		/* node id */
94 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
95 };
96 
97 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
98 {
99 	struct f2fs_nm_info *nm_i = NM_I(sbi);
100 	struct free_nid *fnid;
101 
102 	if (nm_i->fcnt <= 0)
103 		return -1;
104 	spin_lock(&nm_i->free_nid_list_lock);
105 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
106 	*nid = fnid->nid;
107 	spin_unlock(&nm_i->free_nid_list_lock);
108 	return 0;
109 }
110 
111 /*
112  * inline functions
113  */
114 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115 {
116 	struct f2fs_nm_info *nm_i = NM_I(sbi);
117 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118 }
119 
120 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121 {
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 	pgoff_t block_off;
124 	pgoff_t block_addr;
125 	int seg_off;
126 
127 	block_off = NAT_BLOCK_OFFSET(start);
128 	seg_off = block_off >> sbi->log_blocks_per_seg;
129 
130 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131 		(seg_off << sbi->log_blocks_per_seg << 1) +
132 		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133 
134 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135 		block_addr += sbi->blocks_per_seg;
136 
137 	return block_addr;
138 }
139 
140 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141 						pgoff_t block_addr)
142 {
143 	struct f2fs_nm_info *nm_i = NM_I(sbi);
144 
145 	block_addr -= nm_i->nat_blkaddr;
146 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147 		block_addr -= sbi->blocks_per_seg;
148 	else
149 		block_addr += sbi->blocks_per_seg;
150 
151 	return block_addr + nm_i->nat_blkaddr;
152 }
153 
154 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155 {
156 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157 
158 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159 		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160 	else
161 		f2fs_set_bit(block_off, nm_i->nat_bitmap);
162 }
163 
164 static inline void fill_node_footer(struct page *page, nid_t nid,
165 				nid_t ino, unsigned int ofs, bool reset)
166 {
167 	struct f2fs_node *rn = F2FS_NODE(page);
168 	if (reset)
169 		memset(rn, 0, sizeof(*rn));
170 	rn->footer.nid = cpu_to_le32(nid);
171 	rn->footer.ino = cpu_to_le32(ino);
172 	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
173 }
174 
175 static inline void copy_node_footer(struct page *dst, struct page *src)
176 {
177 	struct f2fs_node *src_rn = F2FS_NODE(src);
178 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
179 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180 }
181 
182 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183 {
184 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186 	struct f2fs_node *rn = F2FS_NODE(page);
187 
188 	rn->footer.cp_ver = ckpt->checkpoint_ver;
189 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190 }
191 
192 static inline nid_t ino_of_node(struct page *node_page)
193 {
194 	struct f2fs_node *rn = F2FS_NODE(node_page);
195 	return le32_to_cpu(rn->footer.ino);
196 }
197 
198 static inline nid_t nid_of_node(struct page *node_page)
199 {
200 	struct f2fs_node *rn = F2FS_NODE(node_page);
201 	return le32_to_cpu(rn->footer.nid);
202 }
203 
204 static inline unsigned int ofs_of_node(struct page *node_page)
205 {
206 	struct f2fs_node *rn = F2FS_NODE(node_page);
207 	unsigned flag = le32_to_cpu(rn->footer.flag);
208 	return flag >> OFFSET_BIT_SHIFT;
209 }
210 
211 static inline unsigned long long cpver_of_node(struct page *node_page)
212 {
213 	struct f2fs_node *rn = F2FS_NODE(node_page);
214 	return le64_to_cpu(rn->footer.cp_ver);
215 }
216 
217 static inline block_t next_blkaddr_of_node(struct page *node_page)
218 {
219 	struct f2fs_node *rn = F2FS_NODE(node_page);
220 	return le32_to_cpu(rn->footer.next_blkaddr);
221 }
222 
223 /*
224  * f2fs assigns the following node offsets described as (num).
225  * N = NIDS_PER_BLOCK
226  *
227  *  Inode block (0)
228  *    |- direct node (1)
229  *    |- direct node (2)
230  *    |- indirect node (3)
231  *    |            `- direct node (4 => 4 + N - 1)
232  *    |- indirect node (4 + N)
233  *    |            `- direct node (5 + N => 5 + 2N - 1)
234  *    `- double indirect node (5 + 2N)
235  *                 `- indirect node (6 + 2N)
236  *                       `- direct node
237  *                 ......
238  *                 `- indirect node ((6 + 2N) + x(N + 1))
239  *                       `- direct node
240  *                 ......
241  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242  *                       `- direct node
243  */
244 static inline bool IS_DNODE(struct page *node_page)
245 {
246 	unsigned int ofs = ofs_of_node(node_page);
247 
248 	if (f2fs_has_xattr_block(ofs))
249 		return false;
250 
251 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252 			ofs == 5 + 2 * NIDS_PER_BLOCK)
253 		return false;
254 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
256 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257 			return false;
258 	}
259 	return true;
260 }
261 
262 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263 {
264 	struct f2fs_node *rn = F2FS_NODE(p);
265 
266 	wait_on_page_writeback(p);
267 
268 	if (i)
269 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270 	else
271 		rn->in.nid[off] = cpu_to_le32(nid);
272 	set_page_dirty(p);
273 }
274 
275 static inline nid_t get_nid(struct page *p, int off, bool i)
276 {
277 	struct f2fs_node *rn = F2FS_NODE(p);
278 
279 	if (i)
280 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281 	return le32_to_cpu(rn->in.nid[off]);
282 }
283 
284 /*
285  * Coldness identification:
286  *  - Mark cold files in f2fs_inode_info
287  *  - Mark cold node blocks in their node footer
288  *  - Mark cold data pages in page cache
289  */
290 static inline int is_file(struct inode *inode, int type)
291 {
292 	return F2FS_I(inode)->i_advise & type;
293 }
294 
295 static inline void set_file(struct inode *inode, int type)
296 {
297 	F2FS_I(inode)->i_advise |= type;
298 }
299 
300 static inline void clear_file(struct inode *inode, int type)
301 {
302 	F2FS_I(inode)->i_advise &= ~type;
303 }
304 
305 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
306 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
307 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
308 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
309 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
310 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
311 
312 static inline int is_cold_data(struct page *page)
313 {
314 	return PageChecked(page);
315 }
316 
317 static inline void set_cold_data(struct page *page)
318 {
319 	SetPageChecked(page);
320 }
321 
322 static inline void clear_cold_data(struct page *page)
323 {
324 	ClearPageChecked(page);
325 }
326 
327 static inline int is_node(struct page *page, int type)
328 {
329 	struct f2fs_node *rn = F2FS_NODE(page);
330 	return le32_to_cpu(rn->footer.flag) & (1 << type);
331 }
332 
333 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
334 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
335 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
336 
337 static inline void set_cold_node(struct inode *inode, struct page *page)
338 {
339 	struct f2fs_node *rn = F2FS_NODE(page);
340 	unsigned int flag = le32_to_cpu(rn->footer.flag);
341 
342 	if (S_ISDIR(inode->i_mode))
343 		flag &= ~(0x1 << COLD_BIT_SHIFT);
344 	else
345 		flag |= (0x1 << COLD_BIT_SHIFT);
346 	rn->footer.flag = cpu_to_le32(flag);
347 }
348 
349 static inline void set_mark(struct page *page, int mark, int type)
350 {
351 	struct f2fs_node *rn = F2FS_NODE(page);
352 	unsigned int flag = le32_to_cpu(rn->footer.flag);
353 	if (mark)
354 		flag |= (0x1 << type);
355 	else
356 		flag &= ~(0x1 << type);
357 	rn->footer.flag = cpu_to_le32(flag);
358 }
359 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
360 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
361