1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 10 25 26 /* vector size for gang look-up from nat cache that consists of radix tree */ 27 #define NATVEC_SIZE 64 28 29 /* return value for read_node_page */ 30 #define LOCKED_PAGE 1 31 32 /* 33 * For node information 34 */ 35 struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40 }; 41 42 struct nat_entry { 43 struct list_head list; /* for clean or dirty nat list */ 44 bool checkpointed; /* whether it is checkpointed or not */ 45 bool fsync_done; /* whether the latest node has fsync mark */ 46 struct node_info ni; /* in-memory node information */ 47 }; 48 49 #define nat_get_nid(nat) (nat->ni.nid) 50 #define nat_set_nid(nat, n) (nat->ni.nid = n) 51 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 52 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 53 #define nat_get_ino(nat) (nat->ni.ino) 54 #define nat_set_ino(nat, i) (nat->ni.ino = i) 55 #define nat_get_version(nat) (nat->ni.version) 56 #define nat_set_version(nat, v) (nat->ni.version = v) 57 58 #define __set_nat_cache_dirty(nm_i, ne) \ 59 do { \ 60 ne->checkpointed = false; \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \ 62 } while (0); 63 #define __clear_nat_cache_dirty(nm_i, ne) \ 64 do { \ 65 ne->checkpointed = true; \ 66 list_move_tail(&ne->list, &nm_i->nat_entries); \ 67 } while (0); 68 #define inc_node_version(version) (++version) 69 70 static inline void node_info_from_raw_nat(struct node_info *ni, 71 struct f2fs_nat_entry *raw_ne) 72 { 73 ni->ino = le32_to_cpu(raw_ne->ino); 74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 75 ni->version = raw_ne->version; 76 } 77 78 enum nid_type { 79 FREE_NIDS, /* indicates the free nid list */ 80 NAT_ENTRIES /* indicates the cached nat entry */ 81 }; 82 83 /* 84 * For free nid mangement 85 */ 86 enum nid_state { 87 NID_NEW, /* newly added to free nid list */ 88 NID_ALLOC /* it is allocated */ 89 }; 90 91 struct free_nid { 92 struct list_head list; /* for free node id list */ 93 nid_t nid; /* node id */ 94 int state; /* in use or not: NID_NEW or NID_ALLOC */ 95 }; 96 97 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 98 { 99 struct f2fs_nm_info *nm_i = NM_I(sbi); 100 struct free_nid *fnid; 101 102 if (nm_i->fcnt <= 0) 103 return -1; 104 spin_lock(&nm_i->free_nid_list_lock); 105 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 106 *nid = fnid->nid; 107 spin_unlock(&nm_i->free_nid_list_lock); 108 return 0; 109 } 110 111 /* 112 * inline functions 113 */ 114 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 115 { 116 struct f2fs_nm_info *nm_i = NM_I(sbi); 117 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 118 } 119 120 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 121 { 122 struct f2fs_nm_info *nm_i = NM_I(sbi); 123 pgoff_t block_off; 124 pgoff_t block_addr; 125 int seg_off; 126 127 block_off = NAT_BLOCK_OFFSET(start); 128 seg_off = block_off >> sbi->log_blocks_per_seg; 129 130 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 131 (seg_off << sbi->log_blocks_per_seg << 1) + 132 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 133 134 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 135 block_addr += sbi->blocks_per_seg; 136 137 return block_addr; 138 } 139 140 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 141 pgoff_t block_addr) 142 { 143 struct f2fs_nm_info *nm_i = NM_I(sbi); 144 145 block_addr -= nm_i->nat_blkaddr; 146 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 147 block_addr -= sbi->blocks_per_seg; 148 else 149 block_addr += sbi->blocks_per_seg; 150 151 return block_addr + nm_i->nat_blkaddr; 152 } 153 154 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 155 { 156 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 157 158 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 159 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 160 else 161 f2fs_set_bit(block_off, nm_i->nat_bitmap); 162 } 163 164 static inline void fill_node_footer(struct page *page, nid_t nid, 165 nid_t ino, unsigned int ofs, bool reset) 166 { 167 struct f2fs_node *rn = F2FS_NODE(page); 168 if (reset) 169 memset(rn, 0, sizeof(*rn)); 170 rn->footer.nid = cpu_to_le32(nid); 171 rn->footer.ino = cpu_to_le32(ino); 172 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 173 } 174 175 static inline void copy_node_footer(struct page *dst, struct page *src) 176 { 177 struct f2fs_node *src_rn = F2FS_NODE(src); 178 struct f2fs_node *dst_rn = F2FS_NODE(dst); 179 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 180 } 181 182 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 183 { 184 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 186 struct f2fs_node *rn = F2FS_NODE(page); 187 188 rn->footer.cp_ver = ckpt->checkpoint_ver; 189 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 190 } 191 192 static inline nid_t ino_of_node(struct page *node_page) 193 { 194 struct f2fs_node *rn = F2FS_NODE(node_page); 195 return le32_to_cpu(rn->footer.ino); 196 } 197 198 static inline nid_t nid_of_node(struct page *node_page) 199 { 200 struct f2fs_node *rn = F2FS_NODE(node_page); 201 return le32_to_cpu(rn->footer.nid); 202 } 203 204 static inline unsigned int ofs_of_node(struct page *node_page) 205 { 206 struct f2fs_node *rn = F2FS_NODE(node_page); 207 unsigned flag = le32_to_cpu(rn->footer.flag); 208 return flag >> OFFSET_BIT_SHIFT; 209 } 210 211 static inline unsigned long long cpver_of_node(struct page *node_page) 212 { 213 struct f2fs_node *rn = F2FS_NODE(node_page); 214 return le64_to_cpu(rn->footer.cp_ver); 215 } 216 217 static inline block_t next_blkaddr_of_node(struct page *node_page) 218 { 219 struct f2fs_node *rn = F2FS_NODE(node_page); 220 return le32_to_cpu(rn->footer.next_blkaddr); 221 } 222 223 /* 224 * f2fs assigns the following node offsets described as (num). 225 * N = NIDS_PER_BLOCK 226 * 227 * Inode block (0) 228 * |- direct node (1) 229 * |- direct node (2) 230 * |- indirect node (3) 231 * | `- direct node (4 => 4 + N - 1) 232 * |- indirect node (4 + N) 233 * | `- direct node (5 + N => 5 + 2N - 1) 234 * `- double indirect node (5 + 2N) 235 * `- indirect node (6 + 2N) 236 * `- direct node 237 * ...... 238 * `- indirect node ((6 + 2N) + x(N + 1)) 239 * `- direct node 240 * ...... 241 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 242 * `- direct node 243 */ 244 static inline bool IS_DNODE(struct page *node_page) 245 { 246 unsigned int ofs = ofs_of_node(node_page); 247 248 if (f2fs_has_xattr_block(ofs)) 249 return false; 250 251 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 252 ofs == 5 + 2 * NIDS_PER_BLOCK) 253 return false; 254 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 255 ofs -= 6 + 2 * NIDS_PER_BLOCK; 256 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 257 return false; 258 } 259 return true; 260 } 261 262 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 263 { 264 struct f2fs_node *rn = F2FS_NODE(p); 265 266 wait_on_page_writeback(p); 267 268 if (i) 269 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 270 else 271 rn->in.nid[off] = cpu_to_le32(nid); 272 set_page_dirty(p); 273 } 274 275 static inline nid_t get_nid(struct page *p, int off, bool i) 276 { 277 struct f2fs_node *rn = F2FS_NODE(p); 278 279 if (i) 280 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 281 return le32_to_cpu(rn->in.nid[off]); 282 } 283 284 /* 285 * Coldness identification: 286 * - Mark cold files in f2fs_inode_info 287 * - Mark cold node blocks in their node footer 288 * - Mark cold data pages in page cache 289 */ 290 static inline int is_file(struct inode *inode, int type) 291 { 292 return F2FS_I(inode)->i_advise & type; 293 } 294 295 static inline void set_file(struct inode *inode, int type) 296 { 297 F2FS_I(inode)->i_advise |= type; 298 } 299 300 static inline void clear_file(struct inode *inode, int type) 301 { 302 F2FS_I(inode)->i_advise &= ~type; 303 } 304 305 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 306 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 307 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 308 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 309 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 310 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 311 312 static inline int is_cold_data(struct page *page) 313 { 314 return PageChecked(page); 315 } 316 317 static inline void set_cold_data(struct page *page) 318 { 319 SetPageChecked(page); 320 } 321 322 static inline void clear_cold_data(struct page *page) 323 { 324 ClearPageChecked(page); 325 } 326 327 static inline int is_node(struct page *page, int type) 328 { 329 struct f2fs_node *rn = F2FS_NODE(page); 330 return le32_to_cpu(rn->footer.flag) & (1 << type); 331 } 332 333 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 334 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 335 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 336 337 static inline void set_cold_node(struct inode *inode, struct page *page) 338 { 339 struct f2fs_node *rn = F2FS_NODE(page); 340 unsigned int flag = le32_to_cpu(rn->footer.flag); 341 342 if (S_ISDIR(inode->i_mode)) 343 flag &= ~(0x1 << COLD_BIT_SHIFT); 344 else 345 flag |= (0x1 << COLD_BIT_SHIFT); 346 rn->footer.flag = cpu_to_le32(flag); 347 } 348 349 static inline void set_mark(struct page *page, int mark, int type) 350 { 351 struct f2fs_node *rn = F2FS_NODE(page); 352 unsigned int flag = le32_to_cpu(rn->footer.flag); 353 if (mark) 354 flag |= (0x1 << type); 355 else 356 flag &= ~(0x1 << type); 357 rn->footer.flag = cpu_to_le32(flag); 358 } 359 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 360 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 361