1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 8 19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* For flag in struct node_info */ 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 /* 50 * For node information 51 */ 52 struct node_info { 53 nid_t nid; /* node id */ 54 nid_t ino; /* inode number of the node's owner */ 55 block_t blk_addr; /* block address of the node */ 56 unsigned char version; /* version of the node */ 57 unsigned char flag; /* for node information bits */ 58 }; 59 60 struct nat_entry { 61 struct list_head list; /* for clean or dirty nat list */ 62 struct node_info ni; /* in-memory node information */ 63 }; 64 65 #define nat_get_nid(nat) (nat->ni.nid) 66 #define nat_set_nid(nat, n) (nat->ni.nid = n) 67 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 68 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 69 #define nat_get_ino(nat) (nat->ni.ino) 70 #define nat_set_ino(nat, i) (nat->ni.ino = i) 71 #define nat_get_version(nat) (nat->ni.version) 72 #define nat_set_version(nat, v) (nat->ni.version = v) 73 74 #define inc_node_version(version) (++version) 75 76 static inline void copy_node_info(struct node_info *dst, 77 struct node_info *src) 78 { 79 dst->nid = src->nid; 80 dst->ino = src->ino; 81 dst->blk_addr = src->blk_addr; 82 dst->version = src->version; 83 /* should not copy flag here */ 84 } 85 86 static inline void set_nat_flag(struct nat_entry *ne, 87 unsigned int type, bool set) 88 { 89 unsigned char mask = 0x01 << type; 90 if (set) 91 ne->ni.flag |= mask; 92 else 93 ne->ni.flag &= ~mask; 94 } 95 96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 97 { 98 unsigned char mask = 0x01 << type; 99 return ne->ni.flag & mask; 100 } 101 102 static inline void nat_reset_flag(struct nat_entry *ne) 103 { 104 /* these states can be set only after checkpoint was done */ 105 set_nat_flag(ne, IS_CHECKPOINTED, true); 106 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 107 set_nat_flag(ne, HAS_LAST_FSYNC, true); 108 } 109 110 static inline void node_info_from_raw_nat(struct node_info *ni, 111 struct f2fs_nat_entry *raw_ne) 112 { 113 ni->ino = le32_to_cpu(raw_ne->ino); 114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 115 ni->version = raw_ne->version; 116 } 117 118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 119 struct node_info *ni) 120 { 121 raw_ne->ino = cpu_to_le32(ni->ino); 122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 123 raw_ne->version = ni->version; 124 } 125 126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 127 { 128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 129 NM_I(sbi)->dirty_nats_ratio / 100; 130 } 131 132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 133 { 134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 135 } 136 137 enum mem_type { 138 FREE_NIDS, /* indicates the free nid list */ 139 NAT_ENTRIES, /* indicates the cached nat entry */ 140 DIRTY_DENTS, /* indicates dirty dentry pages */ 141 INO_ENTRIES, /* indicates inode entries */ 142 EXTENT_CACHE, /* indicates extent cache */ 143 BASE_CHECK, /* check kernel status */ 144 }; 145 146 struct nat_entry_set { 147 struct list_head set_list; /* link with other nat sets */ 148 struct list_head entry_list; /* link with dirty nat entries */ 149 nid_t set; /* set number*/ 150 unsigned int entry_cnt; /* the # of nat entries in set */ 151 }; 152 153 /* 154 * For free nid mangement 155 */ 156 enum nid_state { 157 NID_NEW, /* newly added to free nid list */ 158 NID_ALLOC /* it is allocated */ 159 }; 160 161 struct free_nid { 162 struct list_head list; /* for free node id list */ 163 nid_t nid; /* node id */ 164 int state; /* in use or not: NID_NEW or NID_ALLOC */ 165 }; 166 167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 168 { 169 struct f2fs_nm_info *nm_i = NM_I(sbi); 170 struct free_nid *fnid; 171 172 spin_lock(&nm_i->free_nid_list_lock); 173 if (nm_i->fcnt <= 0) { 174 spin_unlock(&nm_i->free_nid_list_lock); 175 return; 176 } 177 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 178 *nid = fnid->nid; 179 spin_unlock(&nm_i->free_nid_list_lock); 180 } 181 182 /* 183 * inline functions 184 */ 185 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 186 { 187 struct f2fs_nm_info *nm_i = NM_I(sbi); 188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 189 } 190 191 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 192 { 193 struct f2fs_nm_info *nm_i = NM_I(sbi); 194 pgoff_t block_off; 195 pgoff_t block_addr; 196 int seg_off; 197 198 block_off = NAT_BLOCK_OFFSET(start); 199 seg_off = block_off >> sbi->log_blocks_per_seg; 200 201 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 202 (seg_off << sbi->log_blocks_per_seg << 1) + 203 (block_off & (sbi->blocks_per_seg - 1))); 204 205 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 206 block_addr += sbi->blocks_per_seg; 207 208 return block_addr; 209 } 210 211 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 212 pgoff_t block_addr) 213 { 214 struct f2fs_nm_info *nm_i = NM_I(sbi); 215 216 block_addr -= nm_i->nat_blkaddr; 217 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 218 block_addr -= sbi->blocks_per_seg; 219 else 220 block_addr += sbi->blocks_per_seg; 221 222 return block_addr + nm_i->nat_blkaddr; 223 } 224 225 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 226 { 227 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 228 229 f2fs_change_bit(block_off, nm_i->nat_bitmap); 230 } 231 232 static inline void fill_node_footer(struct page *page, nid_t nid, 233 nid_t ino, unsigned int ofs, bool reset) 234 { 235 struct f2fs_node *rn = F2FS_NODE(page); 236 unsigned int old_flag = 0; 237 238 if (reset) 239 memset(rn, 0, sizeof(*rn)); 240 else 241 old_flag = le32_to_cpu(rn->footer.flag); 242 243 rn->footer.nid = cpu_to_le32(nid); 244 rn->footer.ino = cpu_to_le32(ino); 245 246 /* should remain old flag bits such as COLD_BIT_SHIFT */ 247 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 248 (old_flag & OFFSET_BIT_MASK)); 249 } 250 251 static inline void copy_node_footer(struct page *dst, struct page *src) 252 { 253 struct f2fs_node *src_rn = F2FS_NODE(src); 254 struct f2fs_node *dst_rn = F2FS_NODE(dst); 255 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 256 } 257 258 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 259 { 260 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 261 struct f2fs_node *rn = F2FS_NODE(page); 262 263 rn->footer.cp_ver = ckpt->checkpoint_ver; 264 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 265 } 266 267 static inline nid_t ino_of_node(struct page *node_page) 268 { 269 struct f2fs_node *rn = F2FS_NODE(node_page); 270 return le32_to_cpu(rn->footer.ino); 271 } 272 273 static inline nid_t nid_of_node(struct page *node_page) 274 { 275 struct f2fs_node *rn = F2FS_NODE(node_page); 276 return le32_to_cpu(rn->footer.nid); 277 } 278 279 static inline unsigned int ofs_of_node(struct page *node_page) 280 { 281 struct f2fs_node *rn = F2FS_NODE(node_page); 282 unsigned flag = le32_to_cpu(rn->footer.flag); 283 return flag >> OFFSET_BIT_SHIFT; 284 } 285 286 static inline unsigned long long cpver_of_node(struct page *node_page) 287 { 288 struct f2fs_node *rn = F2FS_NODE(node_page); 289 return le64_to_cpu(rn->footer.cp_ver); 290 } 291 292 static inline block_t next_blkaddr_of_node(struct page *node_page) 293 { 294 struct f2fs_node *rn = F2FS_NODE(node_page); 295 return le32_to_cpu(rn->footer.next_blkaddr); 296 } 297 298 /* 299 * f2fs assigns the following node offsets described as (num). 300 * N = NIDS_PER_BLOCK 301 * 302 * Inode block (0) 303 * |- direct node (1) 304 * |- direct node (2) 305 * |- indirect node (3) 306 * | `- direct node (4 => 4 + N - 1) 307 * |- indirect node (4 + N) 308 * | `- direct node (5 + N => 5 + 2N - 1) 309 * `- double indirect node (5 + 2N) 310 * `- indirect node (6 + 2N) 311 * `- direct node 312 * ...... 313 * `- indirect node ((6 + 2N) + x(N + 1)) 314 * `- direct node 315 * ...... 316 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 317 * `- direct node 318 */ 319 static inline bool IS_DNODE(struct page *node_page) 320 { 321 unsigned int ofs = ofs_of_node(node_page); 322 323 if (f2fs_has_xattr_block(ofs)) 324 return false; 325 326 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 327 ofs == 5 + 2 * NIDS_PER_BLOCK) 328 return false; 329 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 330 ofs -= 6 + 2 * NIDS_PER_BLOCK; 331 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 332 return false; 333 } 334 return true; 335 } 336 337 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 338 { 339 struct f2fs_node *rn = F2FS_NODE(p); 340 341 f2fs_wait_on_page_writeback(p, NODE, true); 342 343 if (i) 344 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 345 else 346 rn->in.nid[off] = cpu_to_le32(nid); 347 return set_page_dirty(p); 348 } 349 350 static inline nid_t get_nid(struct page *p, int off, bool i) 351 { 352 struct f2fs_node *rn = F2FS_NODE(p); 353 354 if (i) 355 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 356 return le32_to_cpu(rn->in.nid[off]); 357 } 358 359 /* 360 * Coldness identification: 361 * - Mark cold files in f2fs_inode_info 362 * - Mark cold node blocks in their node footer 363 * - Mark cold data pages in page cache 364 */ 365 static inline int is_cold_data(struct page *page) 366 { 367 return PageChecked(page); 368 } 369 370 static inline void set_cold_data(struct page *page) 371 { 372 SetPageChecked(page); 373 } 374 375 static inline void clear_cold_data(struct page *page) 376 { 377 ClearPageChecked(page); 378 } 379 380 static inline int is_node(struct page *page, int type) 381 { 382 struct f2fs_node *rn = F2FS_NODE(page); 383 return le32_to_cpu(rn->footer.flag) & (1 << type); 384 } 385 386 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 387 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 388 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 389 390 static inline int is_inline_node(struct page *page) 391 { 392 return PageChecked(page); 393 } 394 395 static inline void set_inline_node(struct page *page) 396 { 397 SetPageChecked(page); 398 } 399 400 static inline void clear_inline_node(struct page *page) 401 { 402 ClearPageChecked(page); 403 } 404 405 static inline void set_cold_node(struct inode *inode, struct page *page) 406 { 407 struct f2fs_node *rn = F2FS_NODE(page); 408 unsigned int flag = le32_to_cpu(rn->footer.flag); 409 410 if (S_ISDIR(inode->i_mode)) 411 flag &= ~(0x1 << COLD_BIT_SHIFT); 412 else 413 flag |= (0x1 << COLD_BIT_SHIFT); 414 rn->footer.flag = cpu_to_le32(flag); 415 } 416 417 static inline void set_mark(struct page *page, int mark, int type) 418 { 419 struct f2fs_node *rn = F2FS_NODE(page); 420 unsigned int flag = le32_to_cpu(rn->footer.flag); 421 if (mark) 422 flag |= (0x1 << type); 423 else 424 flag &= ~(0x1 << type); 425 rn->footer.flag = cpu_to_le32(flag); 426 } 427 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 428 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 429