xref: /openbmc/linux/fs/f2fs/node.h (revision 9b68f30b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/node.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 /* start node id of a node block dedicated to the given node id */
9 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10 
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13 
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES	8
16 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17 
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE	8
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* control total # of node writes used for roll-fowrad recovery */
35 #define DEF_RF_NODE_BLOCKS			0
36 
37 /* vector size for gang look-up from nat cache that consists of radix tree */
38 #define NATVEC_SIZE	64
39 #define SETVEC_SIZE	32
40 
41 /* return value for read_node_page */
42 #define LOCKED_PAGE	1
43 
44 /* check pinned file's alignment status of physical blocks */
45 #define FILE_NOT_ALIGNED	1
46 
47 /* For flag in struct node_info */
48 enum {
49 	IS_CHECKPOINTED,	/* is it checkpointed before? */
50 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
51 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
52 	IS_DIRTY,		/* this nat entry is dirty? */
53 	IS_PREALLOC,		/* nat entry is preallocated */
54 };
55 
56 /*
57  * For node information
58  */
59 struct node_info {
60 	nid_t nid;		/* node id */
61 	nid_t ino;		/* inode number of the node's owner */
62 	block_t	blk_addr;	/* block address of the node */
63 	unsigned char version;	/* version of the node */
64 	unsigned char flag;	/* for node information bits */
65 };
66 
67 struct nat_entry {
68 	struct list_head list;	/* for clean or dirty nat list */
69 	struct node_info ni;	/* in-memory node information */
70 };
71 
72 #define nat_get_nid(nat)		((nat)->ni.nid)
73 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
74 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
75 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
76 #define nat_get_ino(nat)		((nat)->ni.ino)
77 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
78 #define nat_get_version(nat)		((nat)->ni.version)
79 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
80 
81 #define inc_node_version(version)	(++(version))
82 
83 static inline void copy_node_info(struct node_info *dst,
84 						struct node_info *src)
85 {
86 	dst->nid = src->nid;
87 	dst->ino = src->ino;
88 	dst->blk_addr = src->blk_addr;
89 	dst->version = src->version;
90 	/* should not copy flag here */
91 }
92 
93 static inline void set_nat_flag(struct nat_entry *ne,
94 				unsigned int type, bool set)
95 {
96 	if (set)
97 		ne->ni.flag |= BIT(type);
98 	else
99 		ne->ni.flag &= ~BIT(type);
100 }
101 
102 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
103 {
104 	return ne->ni.flag & BIT(type);
105 }
106 
107 static inline void nat_reset_flag(struct nat_entry *ne)
108 {
109 	/* these states can be set only after checkpoint was done */
110 	set_nat_flag(ne, IS_CHECKPOINTED, true);
111 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
112 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
113 }
114 
115 static inline void node_info_from_raw_nat(struct node_info *ni,
116 						struct f2fs_nat_entry *raw_ne)
117 {
118 	ni->ino = le32_to_cpu(raw_ne->ino);
119 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
120 	ni->version = raw_ne->version;
121 }
122 
123 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
124 						struct node_info *ni)
125 {
126 	raw_ne->ino = cpu_to_le32(ni->ino);
127 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
128 	raw_ne->version = ni->version;
129 }
130 
131 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
132 {
133 	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
134 					NM_I(sbi)->dirty_nats_ratio / 100;
135 }
136 
137 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
138 {
139 	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
140 }
141 
142 enum mem_type {
143 	FREE_NIDS,	/* indicates the free nid list */
144 	NAT_ENTRIES,	/* indicates the cached nat entry */
145 	DIRTY_DENTS,	/* indicates dirty dentry pages */
146 	INO_ENTRIES,	/* indicates inode entries */
147 	READ_EXTENT_CACHE,	/* indicates read extent cache */
148 	AGE_EXTENT_CACHE,	/* indicates age extent cache */
149 	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
150 	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
151 	BASE_CHECK,	/* check kernel status */
152 };
153 
154 struct nat_entry_set {
155 	struct list_head set_list;	/* link with other nat sets */
156 	struct list_head entry_list;	/* link with dirty nat entries */
157 	nid_t set;			/* set number*/
158 	unsigned int entry_cnt;		/* the # of nat entries in set */
159 };
160 
161 struct free_nid {
162 	struct list_head list;	/* for free node id list */
163 	nid_t nid;		/* node id */
164 	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
165 };
166 
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 	struct f2fs_nm_info *nm_i = NM_I(sbi);
170 	struct free_nid *fnid;
171 
172 	spin_lock(&nm_i->nid_list_lock);
173 	if (nm_i->nid_cnt[FREE_NID] <= 0) {
174 		spin_unlock(&nm_i->nid_list_lock);
175 		return;
176 	}
177 	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
178 	*nid = fnid->nid;
179 	spin_unlock(&nm_i->nid_list_lock);
180 }
181 
182 /*
183  * inline functions
184  */
185 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
186 {
187 	struct f2fs_nm_info *nm_i = NM_I(sbi);
188 
189 #ifdef CONFIG_F2FS_CHECK_FS
190 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
191 						nm_i->bitmap_size))
192 		f2fs_bug_on(sbi, 1);
193 #endif
194 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
195 }
196 
197 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
198 {
199 	struct f2fs_nm_info *nm_i = NM_I(sbi);
200 	pgoff_t block_off;
201 	pgoff_t block_addr;
202 
203 	/*
204 	 * block_off = segment_off * 512 + off_in_segment
205 	 * OLD = (segment_off * 512) * 2 + off_in_segment
206 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
207 	 */
208 	block_off = NAT_BLOCK_OFFSET(start);
209 
210 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
211 		(block_off << 1) -
212 		(block_off & (sbi->blocks_per_seg - 1)));
213 
214 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
215 		block_addr += sbi->blocks_per_seg;
216 
217 	return block_addr;
218 }
219 
220 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
221 						pgoff_t block_addr)
222 {
223 	struct f2fs_nm_info *nm_i = NM_I(sbi);
224 
225 	block_addr -= nm_i->nat_blkaddr;
226 	block_addr ^= BIT(sbi->log_blocks_per_seg);
227 	return block_addr + nm_i->nat_blkaddr;
228 }
229 
230 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
231 {
232 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
233 
234 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
235 #ifdef CONFIG_F2FS_CHECK_FS
236 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
237 #endif
238 }
239 
240 static inline nid_t ino_of_node(struct page *node_page)
241 {
242 	struct f2fs_node *rn = F2FS_NODE(node_page);
243 	return le32_to_cpu(rn->footer.ino);
244 }
245 
246 static inline nid_t nid_of_node(struct page *node_page)
247 {
248 	struct f2fs_node *rn = F2FS_NODE(node_page);
249 	return le32_to_cpu(rn->footer.nid);
250 }
251 
252 static inline unsigned int ofs_of_node(struct page *node_page)
253 {
254 	struct f2fs_node *rn = F2FS_NODE(node_page);
255 	unsigned flag = le32_to_cpu(rn->footer.flag);
256 	return flag >> OFFSET_BIT_SHIFT;
257 }
258 
259 static inline __u64 cpver_of_node(struct page *node_page)
260 {
261 	struct f2fs_node *rn = F2FS_NODE(node_page);
262 	return le64_to_cpu(rn->footer.cp_ver);
263 }
264 
265 static inline block_t next_blkaddr_of_node(struct page *node_page)
266 {
267 	struct f2fs_node *rn = F2FS_NODE(node_page);
268 	return le32_to_cpu(rn->footer.next_blkaddr);
269 }
270 
271 static inline void fill_node_footer(struct page *page, nid_t nid,
272 				nid_t ino, unsigned int ofs, bool reset)
273 {
274 	struct f2fs_node *rn = F2FS_NODE(page);
275 	unsigned int old_flag = 0;
276 
277 	if (reset)
278 		memset(rn, 0, sizeof(*rn));
279 	else
280 		old_flag = le32_to_cpu(rn->footer.flag);
281 
282 	rn->footer.nid = cpu_to_le32(nid);
283 	rn->footer.ino = cpu_to_le32(ino);
284 
285 	/* should remain old flag bits such as COLD_BIT_SHIFT */
286 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
287 					(old_flag & OFFSET_BIT_MASK));
288 }
289 
290 static inline void copy_node_footer(struct page *dst, struct page *src)
291 {
292 	struct f2fs_node *src_rn = F2FS_NODE(src);
293 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
294 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
295 }
296 
297 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
298 {
299 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
300 	struct f2fs_node *rn = F2FS_NODE(page);
301 	__u64 cp_ver = cur_cp_version(ckpt);
302 
303 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
304 		cp_ver |= (cur_cp_crc(ckpt) << 32);
305 
306 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
307 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
308 }
309 
310 static inline bool is_recoverable_dnode(struct page *page)
311 {
312 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
313 	__u64 cp_ver = cur_cp_version(ckpt);
314 
315 	/* Don't care crc part, if fsck.f2fs sets it. */
316 	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
317 		return (cp_ver << 32) == (cpver_of_node(page) << 32);
318 
319 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
320 		cp_ver |= (cur_cp_crc(ckpt) << 32);
321 
322 	return cp_ver == cpver_of_node(page);
323 }
324 
325 /*
326  * f2fs assigns the following node offsets described as (num).
327  * N = NIDS_PER_BLOCK
328  *
329  *  Inode block (0)
330  *    |- direct node (1)
331  *    |- direct node (2)
332  *    |- indirect node (3)
333  *    |            `- direct node (4 => 4 + N - 1)
334  *    |- indirect node (4 + N)
335  *    |            `- direct node (5 + N => 5 + 2N - 1)
336  *    `- double indirect node (5 + 2N)
337  *                 `- indirect node (6 + 2N)
338  *                       `- direct node
339  *                 ......
340  *                 `- indirect node ((6 + 2N) + x(N + 1))
341  *                       `- direct node
342  *                 ......
343  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
344  *                       `- direct node
345  */
346 static inline bool IS_DNODE(struct page *node_page)
347 {
348 	unsigned int ofs = ofs_of_node(node_page);
349 
350 	if (f2fs_has_xattr_block(ofs))
351 		return true;
352 
353 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
354 			ofs == 5 + 2 * NIDS_PER_BLOCK)
355 		return false;
356 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
357 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
358 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
359 			return false;
360 	}
361 	return true;
362 }
363 
364 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
365 {
366 	struct f2fs_node *rn = F2FS_NODE(p);
367 
368 	f2fs_wait_on_page_writeback(p, NODE, true, true);
369 
370 	if (i)
371 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
372 	else
373 		rn->in.nid[off] = cpu_to_le32(nid);
374 	return set_page_dirty(p);
375 }
376 
377 static inline nid_t get_nid(struct page *p, int off, bool i)
378 {
379 	struct f2fs_node *rn = F2FS_NODE(p);
380 
381 	if (i)
382 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
383 	return le32_to_cpu(rn->in.nid[off]);
384 }
385 
386 /*
387  * Coldness identification:
388  *  - Mark cold files in f2fs_inode_info
389  *  - Mark cold node blocks in their node footer
390  *  - Mark cold data pages in page cache
391  */
392 
393 static inline int is_node(struct page *page, int type)
394 {
395 	struct f2fs_node *rn = F2FS_NODE(page);
396 	return le32_to_cpu(rn->footer.flag) & BIT(type);
397 }
398 
399 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
400 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
401 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
402 
403 static inline void set_cold_node(struct page *page, bool is_dir)
404 {
405 	struct f2fs_node *rn = F2FS_NODE(page);
406 	unsigned int flag = le32_to_cpu(rn->footer.flag);
407 
408 	if (is_dir)
409 		flag &= ~BIT(COLD_BIT_SHIFT);
410 	else
411 		flag |= BIT(COLD_BIT_SHIFT);
412 	rn->footer.flag = cpu_to_le32(flag);
413 }
414 
415 static inline void set_mark(struct page *page, int mark, int type)
416 {
417 	struct f2fs_node *rn = F2FS_NODE(page);
418 	unsigned int flag = le32_to_cpu(rn->footer.flag);
419 	if (mark)
420 		flag |= BIT(type);
421 	else
422 		flag &= ~BIT(type);
423 	rn->footer.flag = cpu_to_le32(flag);
424 
425 #ifdef CONFIG_F2FS_CHECK_FS
426 	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
427 #endif
428 }
429 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
430 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
431