1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum # of free node ids to produce during build_free_nids */ 21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* maximum cached nat entries to manage memory footprint */ 27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) 28 29 /* vector size for gang look-up from nat cache that consists of radix tree */ 30 #define NATVEC_SIZE 64 31 32 /* return value for read_node_page */ 33 #define LOCKED_PAGE 1 34 35 /* 36 * For node information 37 */ 38 struct node_info { 39 nid_t nid; /* node id */ 40 nid_t ino; /* inode number of the node's owner */ 41 block_t blk_addr; /* block address of the node */ 42 unsigned char version; /* version of the node */ 43 }; 44 45 struct nat_entry { 46 struct list_head list; /* for clean or dirty nat list */ 47 bool checkpointed; /* whether it is checkpointed or not */ 48 struct node_info ni; /* in-memory node information */ 49 }; 50 51 #define nat_get_nid(nat) (nat->ni.nid) 52 #define nat_set_nid(nat, n) (nat->ni.nid = n) 53 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 54 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 55 #define nat_get_ino(nat) (nat->ni.ino) 56 #define nat_set_ino(nat, i) (nat->ni.ino = i) 57 #define nat_get_version(nat) (nat->ni.version) 58 #define nat_set_version(nat, v) (nat->ni.version = v) 59 60 #define __set_nat_cache_dirty(nm_i, ne) \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); 62 #define __clear_nat_cache_dirty(nm_i, ne) \ 63 list_move_tail(&ne->list, &nm_i->nat_entries); 64 #define inc_node_version(version) (++version) 65 66 static inline void node_info_from_raw_nat(struct node_info *ni, 67 struct f2fs_nat_entry *raw_ne) 68 { 69 ni->ino = le32_to_cpu(raw_ne->ino); 70 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 71 ni->version = raw_ne->version; 72 } 73 74 /* 75 * For free nid mangement 76 */ 77 enum nid_state { 78 NID_NEW, /* newly added to free nid list */ 79 NID_ALLOC /* it is allocated */ 80 }; 81 82 struct free_nid { 83 struct list_head list; /* for free node id list */ 84 nid_t nid; /* node id */ 85 int state; /* in use or not: NID_NEW or NID_ALLOC */ 86 }; 87 88 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 89 { 90 struct f2fs_nm_info *nm_i = NM_I(sbi); 91 struct free_nid *fnid; 92 93 if (nm_i->fcnt <= 0) 94 return -1; 95 spin_lock(&nm_i->free_nid_list_lock); 96 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 97 *nid = fnid->nid; 98 spin_unlock(&nm_i->free_nid_list_lock); 99 return 0; 100 } 101 102 /* 103 * inline functions 104 */ 105 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 106 { 107 struct f2fs_nm_info *nm_i = NM_I(sbi); 108 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 109 } 110 111 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 112 { 113 struct f2fs_nm_info *nm_i = NM_I(sbi); 114 pgoff_t block_off; 115 pgoff_t block_addr; 116 int seg_off; 117 118 block_off = NAT_BLOCK_OFFSET(start); 119 seg_off = block_off >> sbi->log_blocks_per_seg; 120 121 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 122 (seg_off << sbi->log_blocks_per_seg << 1) + 123 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 124 125 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 126 block_addr += sbi->blocks_per_seg; 127 128 return block_addr; 129 } 130 131 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 132 pgoff_t block_addr) 133 { 134 struct f2fs_nm_info *nm_i = NM_I(sbi); 135 136 block_addr -= nm_i->nat_blkaddr; 137 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 138 block_addr -= sbi->blocks_per_seg; 139 else 140 block_addr += sbi->blocks_per_seg; 141 142 return block_addr + nm_i->nat_blkaddr; 143 } 144 145 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 146 { 147 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 148 149 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 150 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 151 else 152 f2fs_set_bit(block_off, nm_i->nat_bitmap); 153 } 154 155 static inline void fill_node_footer(struct page *page, nid_t nid, 156 nid_t ino, unsigned int ofs, bool reset) 157 { 158 struct f2fs_node *rn = F2FS_NODE(page); 159 if (reset) 160 memset(rn, 0, sizeof(*rn)); 161 rn->footer.nid = cpu_to_le32(nid); 162 rn->footer.ino = cpu_to_le32(ino); 163 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 164 } 165 166 static inline void copy_node_footer(struct page *dst, struct page *src) 167 { 168 struct f2fs_node *src_rn = F2FS_NODE(src); 169 struct f2fs_node *dst_rn = F2FS_NODE(dst); 170 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 171 } 172 173 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 174 { 175 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 177 struct f2fs_node *rn = F2FS_NODE(page); 178 179 rn->footer.cp_ver = ckpt->checkpoint_ver; 180 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 181 } 182 183 static inline nid_t ino_of_node(struct page *node_page) 184 { 185 struct f2fs_node *rn = F2FS_NODE(node_page); 186 return le32_to_cpu(rn->footer.ino); 187 } 188 189 static inline nid_t nid_of_node(struct page *node_page) 190 { 191 struct f2fs_node *rn = F2FS_NODE(node_page); 192 return le32_to_cpu(rn->footer.nid); 193 } 194 195 static inline unsigned int ofs_of_node(struct page *node_page) 196 { 197 struct f2fs_node *rn = F2FS_NODE(node_page); 198 unsigned flag = le32_to_cpu(rn->footer.flag); 199 return flag >> OFFSET_BIT_SHIFT; 200 } 201 202 static inline unsigned long long cpver_of_node(struct page *node_page) 203 { 204 struct f2fs_node *rn = F2FS_NODE(node_page); 205 return le64_to_cpu(rn->footer.cp_ver); 206 } 207 208 static inline block_t next_blkaddr_of_node(struct page *node_page) 209 { 210 struct f2fs_node *rn = F2FS_NODE(node_page); 211 return le32_to_cpu(rn->footer.next_blkaddr); 212 } 213 214 /* 215 * f2fs assigns the following node offsets described as (num). 216 * N = NIDS_PER_BLOCK 217 * 218 * Inode block (0) 219 * |- direct node (1) 220 * |- direct node (2) 221 * |- indirect node (3) 222 * | `- direct node (4 => 4 + N - 1) 223 * |- indirect node (4 + N) 224 * | `- direct node (5 + N => 5 + 2N - 1) 225 * `- double indirect node (5 + 2N) 226 * `- indirect node (6 + 2N) 227 * `- direct node 228 * ...... 229 * `- indirect node ((6 + 2N) + x(N + 1)) 230 * `- direct node 231 * ...... 232 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 233 * `- direct node 234 */ 235 static inline bool IS_DNODE(struct page *node_page) 236 { 237 unsigned int ofs = ofs_of_node(node_page); 238 239 if (ofs == XATTR_NODE_OFFSET) 240 return false; 241 242 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 243 ofs == 5 + 2 * NIDS_PER_BLOCK) 244 return false; 245 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 246 ofs -= 6 + 2 * NIDS_PER_BLOCK; 247 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 248 return false; 249 } 250 return true; 251 } 252 253 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 254 { 255 struct f2fs_node *rn = F2FS_NODE(p); 256 257 wait_on_page_writeback(p); 258 259 if (i) 260 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 261 else 262 rn->in.nid[off] = cpu_to_le32(nid); 263 set_page_dirty(p); 264 } 265 266 static inline nid_t get_nid(struct page *p, int off, bool i) 267 { 268 struct f2fs_node *rn = F2FS_NODE(p); 269 270 if (i) 271 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 272 return le32_to_cpu(rn->in.nid[off]); 273 } 274 275 /* 276 * Coldness identification: 277 * - Mark cold files in f2fs_inode_info 278 * - Mark cold node blocks in their node footer 279 * - Mark cold data pages in page cache 280 */ 281 static inline int is_file(struct inode *inode, int type) 282 { 283 return F2FS_I(inode)->i_advise & type; 284 } 285 286 static inline void set_file(struct inode *inode, int type) 287 { 288 F2FS_I(inode)->i_advise |= type; 289 } 290 291 static inline void clear_file(struct inode *inode, int type) 292 { 293 F2FS_I(inode)->i_advise &= ~type; 294 } 295 296 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 297 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 298 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 299 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 300 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 301 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 302 303 static inline int is_cold_data(struct page *page) 304 { 305 return PageChecked(page); 306 } 307 308 static inline void set_cold_data(struct page *page) 309 { 310 SetPageChecked(page); 311 } 312 313 static inline void clear_cold_data(struct page *page) 314 { 315 ClearPageChecked(page); 316 } 317 318 static inline int is_node(struct page *page, int type) 319 { 320 struct f2fs_node *rn = F2FS_NODE(page); 321 return le32_to_cpu(rn->footer.flag) & (1 << type); 322 } 323 324 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 325 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 326 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 327 328 static inline void set_cold_node(struct inode *inode, struct page *page) 329 { 330 struct f2fs_node *rn = F2FS_NODE(page); 331 unsigned int flag = le32_to_cpu(rn->footer.flag); 332 333 if (S_ISDIR(inode->i_mode)) 334 flag &= ~(0x1 << COLD_BIT_SHIFT); 335 else 336 flag |= (0x1 << COLD_BIT_SHIFT); 337 rn->footer.flag = cpu_to_le32(flag); 338 } 339 340 static inline void set_mark(struct page *page, int mark, int type) 341 { 342 struct f2fs_node *rn = F2FS_NODE(page); 343 unsigned int flag = le32_to_cpu(rn->footer.flag); 344 if (mark) 345 flag |= (0x1 << type); 346 else 347 flag &= ~(0x1 << type); 348 rn->footer.flag = cpu_to_le32(flag); 349 } 350 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 351 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 352