1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 8 19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* For flag in struct node_info */ 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 /* 50 * For node information 51 */ 52 struct node_info { 53 nid_t nid; /* node id */ 54 nid_t ino; /* inode number of the node's owner */ 55 block_t blk_addr; /* block address of the node */ 56 unsigned char version; /* version of the node */ 57 unsigned char flag; /* for node information bits */ 58 }; 59 60 struct nat_entry { 61 struct list_head list; /* for clean or dirty nat list */ 62 struct node_info ni; /* in-memory node information */ 63 }; 64 65 #define nat_get_nid(nat) (nat->ni.nid) 66 #define nat_set_nid(nat, n) (nat->ni.nid = n) 67 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 68 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 69 #define nat_get_ino(nat) (nat->ni.ino) 70 #define nat_set_ino(nat, i) (nat->ni.ino = i) 71 #define nat_get_version(nat) (nat->ni.version) 72 #define nat_set_version(nat, v) (nat->ni.version = v) 73 74 #define inc_node_version(version) (++version) 75 76 static inline void copy_node_info(struct node_info *dst, 77 struct node_info *src) 78 { 79 dst->nid = src->nid; 80 dst->ino = src->ino; 81 dst->blk_addr = src->blk_addr; 82 dst->version = src->version; 83 /* should not copy flag here */ 84 } 85 86 static inline void set_nat_flag(struct nat_entry *ne, 87 unsigned int type, bool set) 88 { 89 unsigned char mask = 0x01 << type; 90 if (set) 91 ne->ni.flag |= mask; 92 else 93 ne->ni.flag &= ~mask; 94 } 95 96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 97 { 98 unsigned char mask = 0x01 << type; 99 return ne->ni.flag & mask; 100 } 101 102 static inline void nat_reset_flag(struct nat_entry *ne) 103 { 104 /* these states can be set only after checkpoint was done */ 105 set_nat_flag(ne, IS_CHECKPOINTED, true); 106 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 107 set_nat_flag(ne, HAS_LAST_FSYNC, true); 108 } 109 110 static inline void node_info_from_raw_nat(struct node_info *ni, 111 struct f2fs_nat_entry *raw_ne) 112 { 113 ni->ino = le32_to_cpu(raw_ne->ino); 114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 115 ni->version = raw_ne->version; 116 } 117 118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 119 struct node_info *ni) 120 { 121 raw_ne->ino = cpu_to_le32(ni->ino); 122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 123 raw_ne->version = ni->version; 124 } 125 126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 127 { 128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 129 NM_I(sbi)->dirty_nats_ratio / 100; 130 } 131 132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 133 { 134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 135 } 136 137 enum mem_type { 138 FREE_NIDS, /* indicates the free nid list */ 139 NAT_ENTRIES, /* indicates the cached nat entry */ 140 DIRTY_DENTS, /* indicates dirty dentry pages */ 141 INO_ENTRIES, /* indicates inode entries */ 142 EXTENT_CACHE, /* indicates extent cache */ 143 BASE_CHECK, /* check kernel status */ 144 }; 145 146 struct nat_entry_set { 147 struct list_head set_list; /* link with other nat sets */ 148 struct list_head entry_list; /* link with dirty nat entries */ 149 nid_t set; /* set number*/ 150 unsigned int entry_cnt; /* the # of nat entries in set */ 151 }; 152 153 /* 154 * For free nid mangement 155 */ 156 enum nid_state { 157 NID_NEW, /* newly added to free nid list */ 158 NID_ALLOC /* it is allocated */ 159 }; 160 161 struct free_nid { 162 struct list_head list; /* for free node id list */ 163 nid_t nid; /* node id */ 164 int state; /* in use or not: NID_NEW or NID_ALLOC */ 165 }; 166 167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 168 { 169 struct f2fs_nm_info *nm_i = NM_I(sbi); 170 struct free_nid *fnid; 171 172 spin_lock(&nm_i->nid_list_lock); 173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) { 174 spin_unlock(&nm_i->nid_list_lock); 175 return; 176 } 177 fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next, 178 struct free_nid, list); 179 *nid = fnid->nid; 180 spin_unlock(&nm_i->nid_list_lock); 181 } 182 183 /* 184 * inline functions 185 */ 186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 187 { 188 struct f2fs_nm_info *nm_i = NM_I(sbi); 189 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 190 } 191 192 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 193 { 194 struct f2fs_nm_info *nm_i = NM_I(sbi); 195 pgoff_t block_off; 196 pgoff_t block_addr; 197 int seg_off; 198 199 block_off = NAT_BLOCK_OFFSET(start); 200 seg_off = block_off >> sbi->log_blocks_per_seg; 201 202 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 203 (seg_off << sbi->log_blocks_per_seg << 1) + 204 (block_off & (sbi->blocks_per_seg - 1))); 205 206 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 207 block_addr += sbi->blocks_per_seg; 208 209 return block_addr; 210 } 211 212 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 213 pgoff_t block_addr) 214 { 215 struct f2fs_nm_info *nm_i = NM_I(sbi); 216 217 block_addr -= nm_i->nat_blkaddr; 218 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 219 block_addr -= sbi->blocks_per_seg; 220 else 221 block_addr += sbi->blocks_per_seg; 222 223 return block_addr + nm_i->nat_blkaddr; 224 } 225 226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 227 { 228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 229 230 f2fs_change_bit(block_off, nm_i->nat_bitmap); 231 } 232 233 static inline nid_t ino_of_node(struct page *node_page) 234 { 235 struct f2fs_node *rn = F2FS_NODE(node_page); 236 return le32_to_cpu(rn->footer.ino); 237 } 238 239 static inline nid_t nid_of_node(struct page *node_page) 240 { 241 struct f2fs_node *rn = F2FS_NODE(node_page); 242 return le32_to_cpu(rn->footer.nid); 243 } 244 245 static inline unsigned int ofs_of_node(struct page *node_page) 246 { 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 unsigned flag = le32_to_cpu(rn->footer.flag); 249 return flag >> OFFSET_BIT_SHIFT; 250 } 251 252 static inline __u64 cpver_of_node(struct page *node_page) 253 { 254 struct f2fs_node *rn = F2FS_NODE(node_page); 255 return le64_to_cpu(rn->footer.cp_ver); 256 } 257 258 static inline block_t next_blkaddr_of_node(struct page *node_page) 259 { 260 struct f2fs_node *rn = F2FS_NODE(node_page); 261 return le32_to_cpu(rn->footer.next_blkaddr); 262 } 263 264 static inline void fill_node_footer(struct page *page, nid_t nid, 265 nid_t ino, unsigned int ofs, bool reset) 266 { 267 struct f2fs_node *rn = F2FS_NODE(page); 268 unsigned int old_flag = 0; 269 270 if (reset) 271 memset(rn, 0, sizeof(*rn)); 272 else 273 old_flag = le32_to_cpu(rn->footer.flag); 274 275 rn->footer.nid = cpu_to_le32(nid); 276 rn->footer.ino = cpu_to_le32(ino); 277 278 /* should remain old flag bits such as COLD_BIT_SHIFT */ 279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 280 (old_flag & OFFSET_BIT_MASK)); 281 } 282 283 static inline void copy_node_footer(struct page *dst, struct page *src) 284 { 285 struct f2fs_node *src_rn = F2FS_NODE(src); 286 struct f2fs_node *dst_rn = F2FS_NODE(dst); 287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 288 } 289 290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 291 { 292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 293 struct f2fs_node *rn = F2FS_NODE(page); 294 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset); 295 __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver); 296 297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) { 298 __u64 crc = le32_to_cpu(*((__le32 *) 299 ((unsigned char *)ckpt + crc_offset))); 300 cp_ver |= (crc << 32); 301 } 302 rn->footer.cp_ver = cpu_to_le64(cp_ver); 303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 304 } 305 306 static inline bool is_recoverable_dnode(struct page *page) 307 { 308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 309 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset); 310 __u64 cp_ver = cur_cp_version(ckpt); 311 312 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) { 313 __u64 crc = le32_to_cpu(*((__le32 *) 314 ((unsigned char *)ckpt + crc_offset))); 315 cp_ver |= (crc << 32); 316 } 317 return cp_ver == cpver_of_node(page); 318 } 319 320 /* 321 * f2fs assigns the following node offsets described as (num). 322 * N = NIDS_PER_BLOCK 323 * 324 * Inode block (0) 325 * |- direct node (1) 326 * |- direct node (2) 327 * |- indirect node (3) 328 * | `- direct node (4 => 4 + N - 1) 329 * |- indirect node (4 + N) 330 * | `- direct node (5 + N => 5 + 2N - 1) 331 * `- double indirect node (5 + 2N) 332 * `- indirect node (6 + 2N) 333 * `- direct node 334 * ...... 335 * `- indirect node ((6 + 2N) + x(N + 1)) 336 * `- direct node 337 * ...... 338 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 339 * `- direct node 340 */ 341 static inline bool IS_DNODE(struct page *node_page) 342 { 343 unsigned int ofs = ofs_of_node(node_page); 344 345 if (f2fs_has_xattr_block(ofs)) 346 return false; 347 348 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 349 ofs == 5 + 2 * NIDS_PER_BLOCK) 350 return false; 351 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 352 ofs -= 6 + 2 * NIDS_PER_BLOCK; 353 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 354 return false; 355 } 356 return true; 357 } 358 359 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 360 { 361 struct f2fs_node *rn = F2FS_NODE(p); 362 363 f2fs_wait_on_page_writeback(p, NODE, true); 364 365 if (i) 366 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 367 else 368 rn->in.nid[off] = cpu_to_le32(nid); 369 return set_page_dirty(p); 370 } 371 372 static inline nid_t get_nid(struct page *p, int off, bool i) 373 { 374 struct f2fs_node *rn = F2FS_NODE(p); 375 376 if (i) 377 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 378 return le32_to_cpu(rn->in.nid[off]); 379 } 380 381 /* 382 * Coldness identification: 383 * - Mark cold files in f2fs_inode_info 384 * - Mark cold node blocks in their node footer 385 * - Mark cold data pages in page cache 386 */ 387 static inline int is_cold_data(struct page *page) 388 { 389 return PageChecked(page); 390 } 391 392 static inline void set_cold_data(struct page *page) 393 { 394 SetPageChecked(page); 395 } 396 397 static inline void clear_cold_data(struct page *page) 398 { 399 ClearPageChecked(page); 400 } 401 402 static inline int is_node(struct page *page, int type) 403 { 404 struct f2fs_node *rn = F2FS_NODE(page); 405 return le32_to_cpu(rn->footer.flag) & (1 << type); 406 } 407 408 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 409 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 410 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 411 412 static inline int is_inline_node(struct page *page) 413 { 414 return PageChecked(page); 415 } 416 417 static inline void set_inline_node(struct page *page) 418 { 419 SetPageChecked(page); 420 } 421 422 static inline void clear_inline_node(struct page *page) 423 { 424 ClearPageChecked(page); 425 } 426 427 static inline void set_cold_node(struct inode *inode, struct page *page) 428 { 429 struct f2fs_node *rn = F2FS_NODE(page); 430 unsigned int flag = le32_to_cpu(rn->footer.flag); 431 432 if (S_ISDIR(inode->i_mode)) 433 flag &= ~(0x1 << COLD_BIT_SHIFT); 434 else 435 flag |= (0x1 << COLD_BIT_SHIFT); 436 rn->footer.flag = cpu_to_le32(flag); 437 } 438 439 static inline void set_mark(struct page *page, int mark, int type) 440 { 441 struct f2fs_node *rn = F2FS_NODE(page); 442 unsigned int flag = le32_to_cpu(rn->footer.flag); 443 if (mark) 444 flag |= (0x1 << type); 445 else 446 flag &= ~(0x1 << type); 447 rn->footer.flag = cpu_to_le32(flag); 448 } 449 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 450 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 451