xref: /openbmc/linux/fs/f2fs/node.h (revision 6b5fc336)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES	8
19 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE	64
36 #define SETVEC_SIZE	32
37 
38 /* return value for read_node_page */
39 #define LOCKED_PAGE	1
40 
41 /* For flag in struct node_info */
42 enum {
43 	IS_CHECKPOINTED,	/* is it checkpointed before? */
44 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
45 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
46 	IS_DIRTY,		/* this nat entry is dirty? */
47 };
48 
49 /*
50  * For node information
51  */
52 struct node_info {
53 	nid_t nid;		/* node id */
54 	nid_t ino;		/* inode number of the node's owner */
55 	block_t	blk_addr;	/* block address of the node */
56 	unsigned char version;	/* version of the node */
57 	unsigned char flag;	/* for node information bits */
58 };
59 
60 struct nat_entry {
61 	struct list_head list;	/* for clean or dirty nat list */
62 	struct node_info ni;	/* in-memory node information */
63 };
64 
65 #define nat_get_nid(nat)		((nat)->ni.nid)
66 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
67 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
69 #define nat_get_ino(nat)		((nat)->ni.ino)
70 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
71 #define nat_get_version(nat)		((nat)->ni.version)
72 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
73 
74 #define inc_node_version(version)	(++(version))
75 
76 static inline void copy_node_info(struct node_info *dst,
77 						struct node_info *src)
78 {
79 	dst->nid = src->nid;
80 	dst->ino = src->ino;
81 	dst->blk_addr = src->blk_addr;
82 	dst->version = src->version;
83 	/* should not copy flag here */
84 }
85 
86 static inline void set_nat_flag(struct nat_entry *ne,
87 				unsigned int type, bool set)
88 {
89 	unsigned char mask = 0x01 << type;
90 	if (set)
91 		ne->ni.flag |= mask;
92 	else
93 		ne->ni.flag &= ~mask;
94 }
95 
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 	unsigned char mask = 0x01 << type;
99 	return ne->ni.flag & mask;
100 }
101 
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 	/* these states can be set only after checkpoint was done */
105 	set_nat_flag(ne, IS_CHECKPOINTED, true);
106 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109 
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 						struct f2fs_nat_entry *raw_ne)
112 {
113 	ni->ino = le32_to_cpu(raw_ne->ino);
114 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 	ni->version = raw_ne->version;
116 }
117 
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 						struct node_info *ni)
120 {
121 	raw_ne->ino = cpu_to_le32(ni->ino);
122 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 	raw_ne->version = ni->version;
124 }
125 
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 					NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131 
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136 
137 enum mem_type {
138 	FREE_NIDS,	/* indicates the free nid list */
139 	NAT_ENTRIES,	/* indicates the cached nat entry */
140 	DIRTY_DENTS,	/* indicates dirty dentry pages */
141 	INO_ENTRIES,	/* indicates inode entries */
142 	EXTENT_CACHE,	/* indicates extent cache */
143 	BASE_CHECK,	/* check kernel status */
144 };
145 
146 struct nat_entry_set {
147 	struct list_head set_list;	/* link with other nat sets */
148 	struct list_head entry_list;	/* link with dirty nat entries */
149 	nid_t set;			/* set number*/
150 	unsigned int entry_cnt;		/* the # of nat entries in set */
151 };
152 
153 /*
154  * For free nid mangement
155  */
156 enum nid_state {
157 	NID_NEW,	/* newly added to free nid list */
158 	NID_ALLOC	/* it is allocated */
159 };
160 
161 struct free_nid {
162 	struct list_head list;	/* for free node id list */
163 	nid_t nid;		/* node id */
164 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
165 };
166 
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 	struct f2fs_nm_info *nm_i = NM_I(sbi);
170 	struct free_nid *fnid;
171 
172 	spin_lock(&nm_i->nid_list_lock);
173 	if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 		spin_unlock(&nm_i->nid_list_lock);
175 		return;
176 	}
177 	fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
178 						struct free_nid, list);
179 	*nid = fnid->nid;
180 	spin_unlock(&nm_i->nid_list_lock);
181 }
182 
183 /*
184  * inline functions
185  */
186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 	struct f2fs_nm_info *nm_i = NM_I(sbi);
189 
190 #ifdef CONFIG_F2FS_CHECK_FS
191 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
192 						nm_i->bitmap_size))
193 		f2fs_bug_on(sbi, 1);
194 #endif
195 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
196 }
197 
198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
199 {
200 	struct f2fs_nm_info *nm_i = NM_I(sbi);
201 	pgoff_t block_off;
202 	pgoff_t block_addr;
203 
204 	/*
205 	 * block_off = segment_off * 512 + off_in_segment
206 	 * OLD = (segment_off * 512) * 2 + off_in_segment
207 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
208 	 */
209 	block_off = NAT_BLOCK_OFFSET(start);
210 
211 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
212 		(block_off << 1) -
213 		(block_off & (sbi->blocks_per_seg - 1)));
214 
215 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
216 		block_addr += sbi->blocks_per_seg;
217 
218 	return block_addr;
219 }
220 
221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
222 						pgoff_t block_addr)
223 {
224 	struct f2fs_nm_info *nm_i = NM_I(sbi);
225 
226 	block_addr -= nm_i->nat_blkaddr;
227 	block_addr ^= 1 << sbi->log_blocks_per_seg;
228 	return block_addr + nm_i->nat_blkaddr;
229 }
230 
231 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
232 {
233 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
234 
235 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
236 #ifdef CONFIG_F2FS_CHECK_FS
237 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
238 #endif
239 }
240 
241 static inline nid_t ino_of_node(struct page *node_page)
242 {
243 	struct f2fs_node *rn = F2FS_NODE(node_page);
244 	return le32_to_cpu(rn->footer.ino);
245 }
246 
247 static inline nid_t nid_of_node(struct page *node_page)
248 {
249 	struct f2fs_node *rn = F2FS_NODE(node_page);
250 	return le32_to_cpu(rn->footer.nid);
251 }
252 
253 static inline unsigned int ofs_of_node(struct page *node_page)
254 {
255 	struct f2fs_node *rn = F2FS_NODE(node_page);
256 	unsigned flag = le32_to_cpu(rn->footer.flag);
257 	return flag >> OFFSET_BIT_SHIFT;
258 }
259 
260 static inline __u64 cpver_of_node(struct page *node_page)
261 {
262 	struct f2fs_node *rn = F2FS_NODE(node_page);
263 	return le64_to_cpu(rn->footer.cp_ver);
264 }
265 
266 static inline block_t next_blkaddr_of_node(struct page *node_page)
267 {
268 	struct f2fs_node *rn = F2FS_NODE(node_page);
269 	return le32_to_cpu(rn->footer.next_blkaddr);
270 }
271 
272 static inline void fill_node_footer(struct page *page, nid_t nid,
273 				nid_t ino, unsigned int ofs, bool reset)
274 {
275 	struct f2fs_node *rn = F2FS_NODE(page);
276 	unsigned int old_flag = 0;
277 
278 	if (reset)
279 		memset(rn, 0, sizeof(*rn));
280 	else
281 		old_flag = le32_to_cpu(rn->footer.flag);
282 
283 	rn->footer.nid = cpu_to_le32(nid);
284 	rn->footer.ino = cpu_to_le32(ino);
285 
286 	/* should remain old flag bits such as COLD_BIT_SHIFT */
287 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
288 					(old_flag & OFFSET_BIT_MASK));
289 }
290 
291 static inline void copy_node_footer(struct page *dst, struct page *src)
292 {
293 	struct f2fs_node *src_rn = F2FS_NODE(src);
294 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
295 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
296 }
297 
298 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
299 {
300 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
301 	struct f2fs_node *rn = F2FS_NODE(page);
302 	__u64 cp_ver = cur_cp_version(ckpt);
303 
304 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
305 		cp_ver |= (cur_cp_crc(ckpt) << 32);
306 
307 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
308 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
309 }
310 
311 static inline bool is_recoverable_dnode(struct page *page)
312 {
313 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
314 	__u64 cp_ver = cur_cp_version(ckpt);
315 
316 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
317 		cp_ver |= (cur_cp_crc(ckpt) << 32);
318 
319 	return cp_ver == cpver_of_node(page);
320 }
321 
322 /*
323  * f2fs assigns the following node offsets described as (num).
324  * N = NIDS_PER_BLOCK
325  *
326  *  Inode block (0)
327  *    |- direct node (1)
328  *    |- direct node (2)
329  *    |- indirect node (3)
330  *    |            `- direct node (4 => 4 + N - 1)
331  *    |- indirect node (4 + N)
332  *    |            `- direct node (5 + N => 5 + 2N - 1)
333  *    `- double indirect node (5 + 2N)
334  *                 `- indirect node (6 + 2N)
335  *                       `- direct node
336  *                 ......
337  *                 `- indirect node ((6 + 2N) + x(N + 1))
338  *                       `- direct node
339  *                 ......
340  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
341  *                       `- direct node
342  */
343 static inline bool IS_DNODE(struct page *node_page)
344 {
345 	unsigned int ofs = ofs_of_node(node_page);
346 
347 	if (f2fs_has_xattr_block(ofs))
348 		return true;
349 
350 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
351 			ofs == 5 + 2 * NIDS_PER_BLOCK)
352 		return false;
353 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
354 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
355 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
356 			return false;
357 	}
358 	return true;
359 }
360 
361 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
362 {
363 	struct f2fs_node *rn = F2FS_NODE(p);
364 
365 	f2fs_wait_on_page_writeback(p, NODE, true);
366 
367 	if (i)
368 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
369 	else
370 		rn->in.nid[off] = cpu_to_le32(nid);
371 	return set_page_dirty(p);
372 }
373 
374 static inline nid_t get_nid(struct page *p, int off, bool i)
375 {
376 	struct f2fs_node *rn = F2FS_NODE(p);
377 
378 	if (i)
379 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
380 	return le32_to_cpu(rn->in.nid[off]);
381 }
382 
383 /*
384  * Coldness identification:
385  *  - Mark cold files in f2fs_inode_info
386  *  - Mark cold node blocks in their node footer
387  *  - Mark cold data pages in page cache
388  */
389 static inline int is_cold_data(struct page *page)
390 {
391 	return PageChecked(page);
392 }
393 
394 static inline void set_cold_data(struct page *page)
395 {
396 	SetPageChecked(page);
397 }
398 
399 static inline void clear_cold_data(struct page *page)
400 {
401 	ClearPageChecked(page);
402 }
403 
404 static inline int is_node(struct page *page, int type)
405 {
406 	struct f2fs_node *rn = F2FS_NODE(page);
407 	return le32_to_cpu(rn->footer.flag) & (1 << type);
408 }
409 
410 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
411 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
412 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
413 
414 static inline int is_inline_node(struct page *page)
415 {
416 	return PageChecked(page);
417 }
418 
419 static inline void set_inline_node(struct page *page)
420 {
421 	SetPageChecked(page);
422 }
423 
424 static inline void clear_inline_node(struct page *page)
425 {
426 	ClearPageChecked(page);
427 }
428 
429 static inline void set_cold_node(struct inode *inode, struct page *page)
430 {
431 	struct f2fs_node *rn = F2FS_NODE(page);
432 	unsigned int flag = le32_to_cpu(rn->footer.flag);
433 
434 	if (S_ISDIR(inode->i_mode))
435 		flag &= ~(0x1 << COLD_BIT_SHIFT);
436 	else
437 		flag |= (0x1 << COLD_BIT_SHIFT);
438 	rn->footer.flag = cpu_to_le32(flag);
439 }
440 
441 static inline void set_mark(struct page *page, int mark, int type)
442 {
443 	struct f2fs_node *rn = F2FS_NODE(page);
444 	unsigned int flag = le32_to_cpu(rn->footer.flag);
445 	if (mark)
446 		flag |= (0x1 << type);
447 	else
448 		flag &= ~(0x1 << type);
449 	rn->footer.flag = cpu_to_le32(flag);
450 }
451 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
452 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
453