1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 10 25 26 /* vector size for gang look-up from nat cache that consists of radix tree */ 27 #define NATVEC_SIZE 64 28 29 /* return value for read_node_page */ 30 #define LOCKED_PAGE 1 31 32 /* 33 * For node information 34 */ 35 struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40 }; 41 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 struct nat_entry { 50 struct list_head list; /* for clean or dirty nat list */ 51 unsigned char flag; /* for node information bits */ 52 struct node_info ni; /* in-memory node information */ 53 }; 54 55 #define nat_get_nid(nat) (nat->ni.nid) 56 #define nat_set_nid(nat, n) (nat->ni.nid = n) 57 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 58 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 59 #define nat_get_ino(nat) (nat->ni.ino) 60 #define nat_set_ino(nat, i) (nat->ni.ino = i) 61 #define nat_get_version(nat) (nat->ni.version) 62 #define nat_set_version(nat, v) (nat->ni.version = v) 63 64 #define inc_node_version(version) (++version) 65 66 static inline void set_nat_flag(struct nat_entry *ne, 67 unsigned int type, bool set) 68 { 69 unsigned char mask = 0x01 << type; 70 if (set) 71 ne->flag |= mask; 72 else 73 ne->flag &= ~mask; 74 } 75 76 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 77 { 78 unsigned char mask = 0x01 << type; 79 return ne->flag & mask; 80 } 81 82 static inline void nat_reset_flag(struct nat_entry *ne) 83 { 84 /* these states can be set only after checkpoint was done */ 85 set_nat_flag(ne, IS_CHECKPOINTED, true); 86 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 87 set_nat_flag(ne, HAS_LAST_FSYNC, true); 88 } 89 90 static inline void node_info_from_raw_nat(struct node_info *ni, 91 struct f2fs_nat_entry *raw_ne) 92 { 93 ni->ino = le32_to_cpu(raw_ne->ino); 94 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 95 ni->version = raw_ne->version; 96 } 97 98 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 99 struct node_info *ni) 100 { 101 raw_ne->ino = cpu_to_le32(ni->ino); 102 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 103 raw_ne->version = ni->version; 104 } 105 106 enum mem_type { 107 FREE_NIDS, /* indicates the free nid list */ 108 NAT_ENTRIES, /* indicates the cached nat entry */ 109 DIRTY_DENTS /* indicates dirty dentry pages */ 110 }; 111 112 struct nat_entry_set { 113 struct list_head set_list; /* link with other nat sets */ 114 struct list_head entry_list; /* link with dirty nat entries */ 115 nid_t set; /* set number*/ 116 unsigned int entry_cnt; /* the # of nat entries in set */ 117 }; 118 119 /* 120 * For free nid mangement 121 */ 122 enum nid_state { 123 NID_NEW, /* newly added to free nid list */ 124 NID_ALLOC /* it is allocated */ 125 }; 126 127 struct free_nid { 128 struct list_head list; /* for free node id list */ 129 nid_t nid; /* node id */ 130 int state; /* in use or not: NID_NEW or NID_ALLOC */ 131 }; 132 133 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 134 { 135 struct f2fs_nm_info *nm_i = NM_I(sbi); 136 struct free_nid *fnid; 137 138 spin_lock(&nm_i->free_nid_list_lock); 139 if (nm_i->fcnt <= 0) { 140 spin_unlock(&nm_i->free_nid_list_lock); 141 return; 142 } 143 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 144 *nid = fnid->nid; 145 spin_unlock(&nm_i->free_nid_list_lock); 146 } 147 148 /* 149 * inline functions 150 */ 151 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 152 { 153 struct f2fs_nm_info *nm_i = NM_I(sbi); 154 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 155 } 156 157 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 158 { 159 struct f2fs_nm_info *nm_i = NM_I(sbi); 160 pgoff_t block_off; 161 pgoff_t block_addr; 162 int seg_off; 163 164 block_off = NAT_BLOCK_OFFSET(start); 165 seg_off = block_off >> sbi->log_blocks_per_seg; 166 167 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 168 (seg_off << sbi->log_blocks_per_seg << 1) + 169 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 170 171 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 172 block_addr += sbi->blocks_per_seg; 173 174 return block_addr; 175 } 176 177 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 178 pgoff_t block_addr) 179 { 180 struct f2fs_nm_info *nm_i = NM_I(sbi); 181 182 block_addr -= nm_i->nat_blkaddr; 183 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 184 block_addr -= sbi->blocks_per_seg; 185 else 186 block_addr += sbi->blocks_per_seg; 187 188 return block_addr + nm_i->nat_blkaddr; 189 } 190 191 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 192 { 193 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 194 195 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 196 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 197 else 198 f2fs_set_bit(block_off, nm_i->nat_bitmap); 199 } 200 201 static inline void fill_node_footer(struct page *page, nid_t nid, 202 nid_t ino, unsigned int ofs, bool reset) 203 { 204 struct f2fs_node *rn = F2FS_NODE(page); 205 if (reset) 206 memset(rn, 0, sizeof(*rn)); 207 rn->footer.nid = cpu_to_le32(nid); 208 rn->footer.ino = cpu_to_le32(ino); 209 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 210 } 211 212 static inline void copy_node_footer(struct page *dst, struct page *src) 213 { 214 struct f2fs_node *src_rn = F2FS_NODE(src); 215 struct f2fs_node *dst_rn = F2FS_NODE(dst); 216 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 217 } 218 219 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 220 { 221 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 222 struct f2fs_node *rn = F2FS_NODE(page); 223 224 rn->footer.cp_ver = ckpt->checkpoint_ver; 225 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 226 } 227 228 static inline nid_t ino_of_node(struct page *node_page) 229 { 230 struct f2fs_node *rn = F2FS_NODE(node_page); 231 return le32_to_cpu(rn->footer.ino); 232 } 233 234 static inline nid_t nid_of_node(struct page *node_page) 235 { 236 struct f2fs_node *rn = F2FS_NODE(node_page); 237 return le32_to_cpu(rn->footer.nid); 238 } 239 240 static inline unsigned int ofs_of_node(struct page *node_page) 241 { 242 struct f2fs_node *rn = F2FS_NODE(node_page); 243 unsigned flag = le32_to_cpu(rn->footer.flag); 244 return flag >> OFFSET_BIT_SHIFT; 245 } 246 247 static inline unsigned long long cpver_of_node(struct page *node_page) 248 { 249 struct f2fs_node *rn = F2FS_NODE(node_page); 250 return le64_to_cpu(rn->footer.cp_ver); 251 } 252 253 static inline block_t next_blkaddr_of_node(struct page *node_page) 254 { 255 struct f2fs_node *rn = F2FS_NODE(node_page); 256 return le32_to_cpu(rn->footer.next_blkaddr); 257 } 258 259 /* 260 * f2fs assigns the following node offsets described as (num). 261 * N = NIDS_PER_BLOCK 262 * 263 * Inode block (0) 264 * |- direct node (1) 265 * |- direct node (2) 266 * |- indirect node (3) 267 * | `- direct node (4 => 4 + N - 1) 268 * |- indirect node (4 + N) 269 * | `- direct node (5 + N => 5 + 2N - 1) 270 * `- double indirect node (5 + 2N) 271 * `- indirect node (6 + 2N) 272 * `- direct node 273 * ...... 274 * `- indirect node ((6 + 2N) + x(N + 1)) 275 * `- direct node 276 * ...... 277 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 278 * `- direct node 279 */ 280 static inline bool IS_DNODE(struct page *node_page) 281 { 282 unsigned int ofs = ofs_of_node(node_page); 283 284 if (f2fs_has_xattr_block(ofs)) 285 return false; 286 287 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 288 ofs == 5 + 2 * NIDS_PER_BLOCK) 289 return false; 290 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 291 ofs -= 6 + 2 * NIDS_PER_BLOCK; 292 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 293 return false; 294 } 295 return true; 296 } 297 298 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 299 { 300 struct f2fs_node *rn = F2FS_NODE(p); 301 302 f2fs_wait_on_page_writeback(p, NODE); 303 304 if (i) 305 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 306 else 307 rn->in.nid[off] = cpu_to_le32(nid); 308 set_page_dirty(p); 309 } 310 311 static inline nid_t get_nid(struct page *p, int off, bool i) 312 { 313 struct f2fs_node *rn = F2FS_NODE(p); 314 315 if (i) 316 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 317 return le32_to_cpu(rn->in.nid[off]); 318 } 319 320 /* 321 * Coldness identification: 322 * - Mark cold files in f2fs_inode_info 323 * - Mark cold node blocks in their node footer 324 * - Mark cold data pages in page cache 325 */ 326 static inline int is_file(struct inode *inode, int type) 327 { 328 return F2FS_I(inode)->i_advise & type; 329 } 330 331 static inline void set_file(struct inode *inode, int type) 332 { 333 F2FS_I(inode)->i_advise |= type; 334 } 335 336 static inline void clear_file(struct inode *inode, int type) 337 { 338 F2FS_I(inode)->i_advise &= ~type; 339 } 340 341 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 342 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 343 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 344 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 345 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 346 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 347 348 static inline int is_cold_data(struct page *page) 349 { 350 return PageChecked(page); 351 } 352 353 static inline void set_cold_data(struct page *page) 354 { 355 SetPageChecked(page); 356 } 357 358 static inline void clear_cold_data(struct page *page) 359 { 360 ClearPageChecked(page); 361 } 362 363 static inline int is_node(struct page *page, int type) 364 { 365 struct f2fs_node *rn = F2FS_NODE(page); 366 return le32_to_cpu(rn->footer.flag) & (1 << type); 367 } 368 369 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 370 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 371 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 372 373 static inline void set_cold_node(struct inode *inode, struct page *page) 374 { 375 struct f2fs_node *rn = F2FS_NODE(page); 376 unsigned int flag = le32_to_cpu(rn->footer.flag); 377 378 if (S_ISDIR(inode->i_mode)) 379 flag &= ~(0x1 << COLD_BIT_SHIFT); 380 else 381 flag |= (0x1 << COLD_BIT_SHIFT); 382 rn->footer.flag = cpu_to_le32(flag); 383 } 384 385 static inline void set_mark(struct page *page, int mark, int type) 386 { 387 struct f2fs_node *rn = F2FS_NODE(page); 388 unsigned int flag = le32_to_cpu(rn->footer.flag); 389 if (mark) 390 flag |= (0x1 << type); 391 else 392 flag &= ~(0x1 << type); 393 rn->footer.flag = cpu_to_le32(flag); 394 } 395 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 396 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 397