xref: /openbmc/linux/fs/f2fs/node.h (revision 60772e48)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES	8
19 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE	64
36 #define SETVEC_SIZE	32
37 
38 /* return value for read_node_page */
39 #define LOCKED_PAGE	1
40 
41 /* For flag in struct node_info */
42 enum {
43 	IS_CHECKPOINTED,	/* is it checkpointed before? */
44 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
45 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
46 	IS_DIRTY,		/* this nat entry is dirty? */
47 };
48 
49 /*
50  * For node information
51  */
52 struct node_info {
53 	nid_t nid;		/* node id */
54 	nid_t ino;		/* inode number of the node's owner */
55 	block_t	blk_addr;	/* block address of the node */
56 	unsigned char version;	/* version of the node */
57 	unsigned char flag;	/* for node information bits */
58 };
59 
60 struct nat_entry {
61 	struct list_head list;	/* for clean or dirty nat list */
62 	struct node_info ni;	/* in-memory node information */
63 };
64 
65 #define nat_get_nid(nat)		((nat)->ni.nid)
66 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
67 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
69 #define nat_get_ino(nat)		((nat)->ni.ino)
70 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
71 #define nat_get_version(nat)		((nat)->ni.version)
72 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
73 
74 #define inc_node_version(version)	(++(version))
75 
76 static inline void copy_node_info(struct node_info *dst,
77 						struct node_info *src)
78 {
79 	dst->nid = src->nid;
80 	dst->ino = src->ino;
81 	dst->blk_addr = src->blk_addr;
82 	dst->version = src->version;
83 	/* should not copy flag here */
84 }
85 
86 static inline void set_nat_flag(struct nat_entry *ne,
87 				unsigned int type, bool set)
88 {
89 	unsigned char mask = 0x01 << type;
90 	if (set)
91 		ne->ni.flag |= mask;
92 	else
93 		ne->ni.flag &= ~mask;
94 }
95 
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 	unsigned char mask = 0x01 << type;
99 	return ne->ni.flag & mask;
100 }
101 
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 	/* these states can be set only after checkpoint was done */
105 	set_nat_flag(ne, IS_CHECKPOINTED, true);
106 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109 
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 						struct f2fs_nat_entry *raw_ne)
112 {
113 	ni->ino = le32_to_cpu(raw_ne->ino);
114 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 	ni->version = raw_ne->version;
116 }
117 
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 						struct node_info *ni)
120 {
121 	raw_ne->ino = cpu_to_le32(ni->ino);
122 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 	raw_ne->version = ni->version;
124 }
125 
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 					NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131 
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136 
137 enum mem_type {
138 	FREE_NIDS,	/* indicates the free nid list */
139 	NAT_ENTRIES,	/* indicates the cached nat entry */
140 	DIRTY_DENTS,	/* indicates dirty dentry pages */
141 	INO_ENTRIES,	/* indicates inode entries */
142 	EXTENT_CACHE,	/* indicates extent cache */
143 	INMEM_PAGES,	/* indicates inmemory pages */
144 	BASE_CHECK,	/* check kernel status */
145 };
146 
147 struct nat_entry_set {
148 	struct list_head set_list;	/* link with other nat sets */
149 	struct list_head entry_list;	/* link with dirty nat entries */
150 	nid_t set;			/* set number*/
151 	unsigned int entry_cnt;		/* the # of nat entries in set */
152 };
153 
154 struct free_nid {
155 	struct list_head list;	/* for free node id list */
156 	nid_t nid;		/* node id */
157 	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
158 };
159 
160 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
161 {
162 	struct f2fs_nm_info *nm_i = NM_I(sbi);
163 	struct free_nid *fnid;
164 
165 	spin_lock(&nm_i->nid_list_lock);
166 	if (nm_i->nid_cnt[FREE_NID] <= 0) {
167 		spin_unlock(&nm_i->nid_list_lock);
168 		return;
169 	}
170 	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
171 	*nid = fnid->nid;
172 	spin_unlock(&nm_i->nid_list_lock);
173 }
174 
175 /*
176  * inline functions
177  */
178 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
179 {
180 	struct f2fs_nm_info *nm_i = NM_I(sbi);
181 
182 #ifdef CONFIG_F2FS_CHECK_FS
183 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
184 						nm_i->bitmap_size))
185 		f2fs_bug_on(sbi, 1);
186 #endif
187 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
188 }
189 
190 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
191 {
192 	struct f2fs_nm_info *nm_i = NM_I(sbi);
193 	pgoff_t block_off;
194 	pgoff_t block_addr;
195 
196 	/*
197 	 * block_off = segment_off * 512 + off_in_segment
198 	 * OLD = (segment_off * 512) * 2 + off_in_segment
199 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
200 	 */
201 	block_off = NAT_BLOCK_OFFSET(start);
202 
203 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
204 		(block_off << 1) -
205 		(block_off & (sbi->blocks_per_seg - 1)));
206 
207 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
208 		block_addr += sbi->blocks_per_seg;
209 
210 	return block_addr;
211 }
212 
213 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
214 						pgoff_t block_addr)
215 {
216 	struct f2fs_nm_info *nm_i = NM_I(sbi);
217 
218 	block_addr -= nm_i->nat_blkaddr;
219 	block_addr ^= 1 << sbi->log_blocks_per_seg;
220 	return block_addr + nm_i->nat_blkaddr;
221 }
222 
223 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
224 {
225 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
226 
227 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
228 #ifdef CONFIG_F2FS_CHECK_FS
229 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
230 #endif
231 }
232 
233 static inline nid_t ino_of_node(struct page *node_page)
234 {
235 	struct f2fs_node *rn = F2FS_NODE(node_page);
236 	return le32_to_cpu(rn->footer.ino);
237 }
238 
239 static inline nid_t nid_of_node(struct page *node_page)
240 {
241 	struct f2fs_node *rn = F2FS_NODE(node_page);
242 	return le32_to_cpu(rn->footer.nid);
243 }
244 
245 static inline unsigned int ofs_of_node(struct page *node_page)
246 {
247 	struct f2fs_node *rn = F2FS_NODE(node_page);
248 	unsigned flag = le32_to_cpu(rn->footer.flag);
249 	return flag >> OFFSET_BIT_SHIFT;
250 }
251 
252 static inline __u64 cpver_of_node(struct page *node_page)
253 {
254 	struct f2fs_node *rn = F2FS_NODE(node_page);
255 	return le64_to_cpu(rn->footer.cp_ver);
256 }
257 
258 static inline block_t next_blkaddr_of_node(struct page *node_page)
259 {
260 	struct f2fs_node *rn = F2FS_NODE(node_page);
261 	return le32_to_cpu(rn->footer.next_blkaddr);
262 }
263 
264 static inline void fill_node_footer(struct page *page, nid_t nid,
265 				nid_t ino, unsigned int ofs, bool reset)
266 {
267 	struct f2fs_node *rn = F2FS_NODE(page);
268 	unsigned int old_flag = 0;
269 
270 	if (reset)
271 		memset(rn, 0, sizeof(*rn));
272 	else
273 		old_flag = le32_to_cpu(rn->footer.flag);
274 
275 	rn->footer.nid = cpu_to_le32(nid);
276 	rn->footer.ino = cpu_to_le32(ino);
277 
278 	/* should remain old flag bits such as COLD_BIT_SHIFT */
279 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 					(old_flag & OFFSET_BIT_MASK));
281 }
282 
283 static inline void copy_node_footer(struct page *dst, struct page *src)
284 {
285 	struct f2fs_node *src_rn = F2FS_NODE(src);
286 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288 }
289 
290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291 {
292 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 	struct f2fs_node *rn = F2FS_NODE(page);
294 	__u64 cp_ver = cur_cp_version(ckpt);
295 
296 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
297 		cp_ver |= (cur_cp_crc(ckpt) << 32);
298 
299 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
300 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
301 }
302 
303 static inline bool is_recoverable_dnode(struct page *page)
304 {
305 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
306 	__u64 cp_ver = cur_cp_version(ckpt);
307 
308 	/* Don't care crc part, if fsck.f2fs sets it. */
309 	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
310 		return (cp_ver << 32) == (cpver_of_node(page) << 32);
311 
312 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
313 		cp_ver |= (cur_cp_crc(ckpt) << 32);
314 
315 	return cp_ver == cpver_of_node(page);
316 }
317 
318 /*
319  * f2fs assigns the following node offsets described as (num).
320  * N = NIDS_PER_BLOCK
321  *
322  *  Inode block (0)
323  *    |- direct node (1)
324  *    |- direct node (2)
325  *    |- indirect node (3)
326  *    |            `- direct node (4 => 4 + N - 1)
327  *    |- indirect node (4 + N)
328  *    |            `- direct node (5 + N => 5 + 2N - 1)
329  *    `- double indirect node (5 + 2N)
330  *                 `- indirect node (6 + 2N)
331  *                       `- direct node
332  *                 ......
333  *                 `- indirect node ((6 + 2N) + x(N + 1))
334  *                       `- direct node
335  *                 ......
336  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
337  *                       `- direct node
338  */
339 static inline bool IS_DNODE(struct page *node_page)
340 {
341 	unsigned int ofs = ofs_of_node(node_page);
342 
343 	if (f2fs_has_xattr_block(ofs))
344 		return true;
345 
346 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
347 			ofs == 5 + 2 * NIDS_PER_BLOCK)
348 		return false;
349 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
350 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
351 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
352 			return false;
353 	}
354 	return true;
355 }
356 
357 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
358 {
359 	struct f2fs_node *rn = F2FS_NODE(p);
360 
361 	f2fs_wait_on_page_writeback(p, NODE, true);
362 
363 	if (i)
364 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
365 	else
366 		rn->in.nid[off] = cpu_to_le32(nid);
367 	return set_page_dirty(p);
368 }
369 
370 static inline nid_t get_nid(struct page *p, int off, bool i)
371 {
372 	struct f2fs_node *rn = F2FS_NODE(p);
373 
374 	if (i)
375 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
376 	return le32_to_cpu(rn->in.nid[off]);
377 }
378 
379 /*
380  * Coldness identification:
381  *  - Mark cold files in f2fs_inode_info
382  *  - Mark cold node blocks in their node footer
383  *  - Mark cold data pages in page cache
384  */
385 static inline int is_cold_data(struct page *page)
386 {
387 	return PageChecked(page);
388 }
389 
390 static inline void set_cold_data(struct page *page)
391 {
392 	SetPageChecked(page);
393 }
394 
395 static inline void clear_cold_data(struct page *page)
396 {
397 	ClearPageChecked(page);
398 }
399 
400 static inline int is_node(struct page *page, int type)
401 {
402 	struct f2fs_node *rn = F2FS_NODE(page);
403 	return le32_to_cpu(rn->footer.flag) & (1 << type);
404 }
405 
406 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
407 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
408 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
409 
410 static inline int is_inline_node(struct page *page)
411 {
412 	return PageChecked(page);
413 }
414 
415 static inline void set_inline_node(struct page *page)
416 {
417 	SetPageChecked(page);
418 }
419 
420 static inline void clear_inline_node(struct page *page)
421 {
422 	ClearPageChecked(page);
423 }
424 
425 static inline void set_cold_node(struct inode *inode, struct page *page)
426 {
427 	struct f2fs_node *rn = F2FS_NODE(page);
428 	unsigned int flag = le32_to_cpu(rn->footer.flag);
429 
430 	if (S_ISDIR(inode->i_mode))
431 		flag &= ~(0x1 << COLD_BIT_SHIFT);
432 	else
433 		flag |= (0x1 << COLD_BIT_SHIFT);
434 	rn->footer.flag = cpu_to_le32(flag);
435 }
436 
437 static inline void set_mark(struct page *page, int mark, int type)
438 {
439 	struct f2fs_node *rn = F2FS_NODE(page);
440 	unsigned int flag = le32_to_cpu(rn->footer.flag);
441 	if (mark)
442 		flag |= (0x1 << type);
443 	else
444 		flag &= ~(0x1 << type);
445 	rn->footer.flag = cpu_to_le32(flag);
446 }
447 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
448 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
449