1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */ 21 22 /* maximum readahead size for node during getting data blocks */ 23 #define MAX_RA_NODE 128 24 25 /* control the memory footprint threshold (10MB per 1GB ram) */ 26 #define DEF_RAM_THRESHOLD 10 27 28 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 29 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 30 31 /* vector size for gang look-up from nat cache that consists of radix tree */ 32 #define NATVEC_SIZE 64 33 #define SETVEC_SIZE 32 34 35 /* return value for read_node_page */ 36 #define LOCKED_PAGE 1 37 38 /* For flag in struct node_info */ 39 enum { 40 IS_CHECKPOINTED, /* is it checkpointed before? */ 41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 43 IS_DIRTY, /* this nat entry is dirty? */ 44 }; 45 46 /* 47 * For node information 48 */ 49 struct node_info { 50 nid_t nid; /* node id */ 51 nid_t ino; /* inode number of the node's owner */ 52 block_t blk_addr; /* block address of the node */ 53 unsigned char version; /* version of the node */ 54 unsigned char flag; /* for node information bits */ 55 }; 56 57 struct nat_entry { 58 struct list_head list; /* for clean or dirty nat list */ 59 struct node_info ni; /* in-memory node information */ 60 }; 61 62 #define nat_get_nid(nat) (nat->ni.nid) 63 #define nat_set_nid(nat, n) (nat->ni.nid = n) 64 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 65 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 66 #define nat_get_ino(nat) (nat->ni.ino) 67 #define nat_set_ino(nat, i) (nat->ni.ino = i) 68 #define nat_get_version(nat) (nat->ni.version) 69 #define nat_set_version(nat, v) (nat->ni.version = v) 70 71 #define inc_node_version(version) (++version) 72 73 static inline void copy_node_info(struct node_info *dst, 74 struct node_info *src) 75 { 76 dst->nid = src->nid; 77 dst->ino = src->ino; 78 dst->blk_addr = src->blk_addr; 79 dst->version = src->version; 80 /* should not copy flag here */ 81 } 82 83 static inline void set_nat_flag(struct nat_entry *ne, 84 unsigned int type, bool set) 85 { 86 unsigned char mask = 0x01 << type; 87 if (set) 88 ne->ni.flag |= mask; 89 else 90 ne->ni.flag &= ~mask; 91 } 92 93 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 94 { 95 unsigned char mask = 0x01 << type; 96 return ne->ni.flag & mask; 97 } 98 99 static inline void nat_reset_flag(struct nat_entry *ne) 100 { 101 /* these states can be set only after checkpoint was done */ 102 set_nat_flag(ne, IS_CHECKPOINTED, true); 103 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 104 set_nat_flag(ne, HAS_LAST_FSYNC, true); 105 } 106 107 static inline void node_info_from_raw_nat(struct node_info *ni, 108 struct f2fs_nat_entry *raw_ne) 109 { 110 ni->ino = le32_to_cpu(raw_ne->ino); 111 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 112 ni->version = raw_ne->version; 113 } 114 115 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 116 struct node_info *ni) 117 { 118 raw_ne->ino = cpu_to_le32(ni->ino); 119 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 120 raw_ne->version = ni->version; 121 } 122 123 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 124 { 125 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 126 NM_I(sbi)->dirty_nats_ratio / 100; 127 } 128 129 enum mem_type { 130 FREE_NIDS, /* indicates the free nid list */ 131 NAT_ENTRIES, /* indicates the cached nat entry */ 132 DIRTY_DENTS, /* indicates dirty dentry pages */ 133 INO_ENTRIES, /* indicates inode entries */ 134 EXTENT_CACHE, /* indicates extent cache */ 135 BASE_CHECK, /* check kernel status */ 136 }; 137 138 struct nat_entry_set { 139 struct list_head set_list; /* link with other nat sets */ 140 struct list_head entry_list; /* link with dirty nat entries */ 141 nid_t set; /* set number*/ 142 unsigned int entry_cnt; /* the # of nat entries in set */ 143 }; 144 145 /* 146 * For free nid mangement 147 */ 148 enum nid_state { 149 NID_NEW, /* newly added to free nid list */ 150 NID_ALLOC /* it is allocated */ 151 }; 152 153 struct free_nid { 154 struct list_head list; /* for free node id list */ 155 nid_t nid; /* node id */ 156 int state; /* in use or not: NID_NEW or NID_ALLOC */ 157 }; 158 159 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 160 { 161 struct f2fs_nm_info *nm_i = NM_I(sbi); 162 struct free_nid *fnid; 163 164 spin_lock(&nm_i->free_nid_list_lock); 165 if (nm_i->fcnt <= 0) { 166 spin_unlock(&nm_i->free_nid_list_lock); 167 return; 168 } 169 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 170 *nid = fnid->nid; 171 spin_unlock(&nm_i->free_nid_list_lock); 172 } 173 174 /* 175 * inline functions 176 */ 177 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 178 { 179 struct f2fs_nm_info *nm_i = NM_I(sbi); 180 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 181 } 182 183 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 184 { 185 struct f2fs_nm_info *nm_i = NM_I(sbi); 186 pgoff_t block_off; 187 pgoff_t block_addr; 188 int seg_off; 189 190 block_off = NAT_BLOCK_OFFSET(start); 191 seg_off = block_off >> sbi->log_blocks_per_seg; 192 193 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 194 (seg_off << sbi->log_blocks_per_seg << 1) + 195 (block_off & (sbi->blocks_per_seg - 1))); 196 197 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 198 block_addr += sbi->blocks_per_seg; 199 200 return block_addr; 201 } 202 203 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 204 pgoff_t block_addr) 205 { 206 struct f2fs_nm_info *nm_i = NM_I(sbi); 207 208 block_addr -= nm_i->nat_blkaddr; 209 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 210 block_addr -= sbi->blocks_per_seg; 211 else 212 block_addr += sbi->blocks_per_seg; 213 214 return block_addr + nm_i->nat_blkaddr; 215 } 216 217 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 218 { 219 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 220 221 f2fs_change_bit(block_off, nm_i->nat_bitmap); 222 } 223 224 static inline void fill_node_footer(struct page *page, nid_t nid, 225 nid_t ino, unsigned int ofs, bool reset) 226 { 227 struct f2fs_node *rn = F2FS_NODE(page); 228 unsigned int old_flag = 0; 229 230 if (reset) 231 memset(rn, 0, sizeof(*rn)); 232 else 233 old_flag = le32_to_cpu(rn->footer.flag); 234 235 rn->footer.nid = cpu_to_le32(nid); 236 rn->footer.ino = cpu_to_le32(ino); 237 238 /* should remain old flag bits such as COLD_BIT_SHIFT */ 239 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 240 (old_flag & OFFSET_BIT_MASK)); 241 } 242 243 static inline void copy_node_footer(struct page *dst, struct page *src) 244 { 245 struct f2fs_node *src_rn = F2FS_NODE(src); 246 struct f2fs_node *dst_rn = F2FS_NODE(dst); 247 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 248 } 249 250 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 251 { 252 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 253 struct f2fs_node *rn = F2FS_NODE(page); 254 255 rn->footer.cp_ver = ckpt->checkpoint_ver; 256 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 257 } 258 259 static inline nid_t ino_of_node(struct page *node_page) 260 { 261 struct f2fs_node *rn = F2FS_NODE(node_page); 262 return le32_to_cpu(rn->footer.ino); 263 } 264 265 static inline nid_t nid_of_node(struct page *node_page) 266 { 267 struct f2fs_node *rn = F2FS_NODE(node_page); 268 return le32_to_cpu(rn->footer.nid); 269 } 270 271 static inline unsigned int ofs_of_node(struct page *node_page) 272 { 273 struct f2fs_node *rn = F2FS_NODE(node_page); 274 unsigned flag = le32_to_cpu(rn->footer.flag); 275 return flag >> OFFSET_BIT_SHIFT; 276 } 277 278 static inline unsigned long long cpver_of_node(struct page *node_page) 279 { 280 struct f2fs_node *rn = F2FS_NODE(node_page); 281 return le64_to_cpu(rn->footer.cp_ver); 282 } 283 284 static inline block_t next_blkaddr_of_node(struct page *node_page) 285 { 286 struct f2fs_node *rn = F2FS_NODE(node_page); 287 return le32_to_cpu(rn->footer.next_blkaddr); 288 } 289 290 /* 291 * f2fs assigns the following node offsets described as (num). 292 * N = NIDS_PER_BLOCK 293 * 294 * Inode block (0) 295 * |- direct node (1) 296 * |- direct node (2) 297 * |- indirect node (3) 298 * | `- direct node (4 => 4 + N - 1) 299 * |- indirect node (4 + N) 300 * | `- direct node (5 + N => 5 + 2N - 1) 301 * `- double indirect node (5 + 2N) 302 * `- indirect node (6 + 2N) 303 * `- direct node 304 * ...... 305 * `- indirect node ((6 + 2N) + x(N + 1)) 306 * `- direct node 307 * ...... 308 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 309 * `- direct node 310 */ 311 static inline bool IS_DNODE(struct page *node_page) 312 { 313 unsigned int ofs = ofs_of_node(node_page); 314 315 if (f2fs_has_xattr_block(ofs)) 316 return false; 317 318 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 319 ofs == 5 + 2 * NIDS_PER_BLOCK) 320 return false; 321 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 322 ofs -= 6 + 2 * NIDS_PER_BLOCK; 323 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 324 return false; 325 } 326 return true; 327 } 328 329 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 330 { 331 struct f2fs_node *rn = F2FS_NODE(p); 332 333 f2fs_wait_on_page_writeback(p, NODE, true); 334 335 if (i) 336 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 337 else 338 rn->in.nid[off] = cpu_to_le32(nid); 339 return set_page_dirty(p); 340 } 341 342 static inline nid_t get_nid(struct page *p, int off, bool i) 343 { 344 struct f2fs_node *rn = F2FS_NODE(p); 345 346 if (i) 347 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 348 return le32_to_cpu(rn->in.nid[off]); 349 } 350 351 /* 352 * Coldness identification: 353 * - Mark cold files in f2fs_inode_info 354 * - Mark cold node blocks in their node footer 355 * - Mark cold data pages in page cache 356 */ 357 static inline int is_cold_data(struct page *page) 358 { 359 return PageChecked(page); 360 } 361 362 static inline void set_cold_data(struct page *page) 363 { 364 SetPageChecked(page); 365 } 366 367 static inline void clear_cold_data(struct page *page) 368 { 369 ClearPageChecked(page); 370 } 371 372 static inline int is_node(struct page *page, int type) 373 { 374 struct f2fs_node *rn = F2FS_NODE(page); 375 return le32_to_cpu(rn->footer.flag) & (1 << type); 376 } 377 378 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 379 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 380 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 381 382 static inline int is_inline_node(struct page *page) 383 { 384 return PageChecked(page); 385 } 386 387 static inline void set_inline_node(struct page *page) 388 { 389 SetPageChecked(page); 390 } 391 392 static inline void clear_inline_node(struct page *page) 393 { 394 ClearPageChecked(page); 395 } 396 397 static inline void set_cold_node(struct inode *inode, struct page *page) 398 { 399 struct f2fs_node *rn = F2FS_NODE(page); 400 unsigned int flag = le32_to_cpu(rn->footer.flag); 401 402 if (S_ISDIR(inode->i_mode)) 403 flag &= ~(0x1 << COLD_BIT_SHIFT); 404 else 405 flag |= (0x1 << COLD_BIT_SHIFT); 406 rn->footer.flag = cpu_to_le32(flag); 407 } 408 409 static inline void set_mark(struct page *page, int mark, int type) 410 { 411 struct f2fs_node *rn = F2FS_NODE(page); 412 unsigned int flag = le32_to_cpu(rn->footer.flag); 413 if (mark) 414 flag |= (0x1 << type); 415 else 416 flag &= ~(0x1 << type); 417 rn->footer.flag = cpu_to_le32(flag); 418 } 419 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 420 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 421