xref: /openbmc/linux/fs/f2fs/node.h (revision 275876e2)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE		128
22 
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD	10
25 
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE	64
28 
29 /* return value for read_node_page */
30 #define LOCKED_PAGE	1
31 
32 /*
33  * For node information
34  */
35 struct node_info {
36 	nid_t nid;		/* node id */
37 	nid_t ino;		/* inode number of the node's owner */
38 	block_t	blk_addr;	/* block address of the node */
39 	unsigned char version;	/* version of the node */
40 };
41 
42 struct nat_entry {
43 	struct list_head list;	/* for clean or dirty nat list */
44 	bool checkpointed;	/* whether it is checkpointed or not */
45 	bool fsync_done;	/* whether the latest node has fsync mark */
46 	struct node_info ni;	/* in-memory node information */
47 };
48 
49 #define nat_get_nid(nat)		(nat->ni.nid)
50 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
51 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
52 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
53 #define nat_get_ino(nat)		(nat->ni.ino)
54 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
55 #define nat_get_version(nat)		(nat->ni.version)
56 #define nat_set_version(nat, v)		(nat->ni.version = v)
57 
58 #define __set_nat_cache_dirty(nm_i, ne)					\
59 	do {								\
60 		ne->checkpointed = false;				\
61 		list_move_tail(&ne->list, &nm_i->dirty_nat_entries);	\
62 	} while (0)
63 #define __clear_nat_cache_dirty(nm_i, ne)				\
64 	do {								\
65 		ne->checkpointed = true;				\
66 		list_move_tail(&ne->list, &nm_i->nat_entries);		\
67 	} while (0)
68 #define inc_node_version(version)	(++version)
69 
70 static inline void node_info_from_raw_nat(struct node_info *ni,
71 						struct f2fs_nat_entry *raw_ne)
72 {
73 	ni->ino = le32_to_cpu(raw_ne->ino);
74 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75 	ni->version = raw_ne->version;
76 }
77 
78 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
79 						struct node_info *ni)
80 {
81 	raw_ne->ino = cpu_to_le32(ni->ino);
82 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
83 	raw_ne->version = ni->version;
84 }
85 
86 enum mem_type {
87 	FREE_NIDS,	/* indicates the free nid list */
88 	NAT_ENTRIES,	/* indicates the cached nat entry */
89 	DIRTY_DENTS	/* indicates dirty dentry pages */
90 };
91 
92 struct nat_entry_set {
93 	struct list_head set_list;	/* link with all nat sets */
94 	struct list_head entry_list;	/* link with dirty nat entries */
95 	nid_t start_nid;		/* start nid of nats in set */
96 	unsigned int entry_cnt;		/* the # of nat entries in set */
97 };
98 
99 /*
100  * For free nid mangement
101  */
102 enum nid_state {
103 	NID_NEW,	/* newly added to free nid list */
104 	NID_ALLOC	/* it is allocated */
105 };
106 
107 struct free_nid {
108 	struct list_head list;	/* for free node id list */
109 	nid_t nid;		/* node id */
110 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
111 };
112 
113 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
114 {
115 	struct f2fs_nm_info *nm_i = NM_I(sbi);
116 	struct free_nid *fnid;
117 
118 	if (nm_i->fcnt <= 0)
119 		return -1;
120 	spin_lock(&nm_i->free_nid_list_lock);
121 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
122 	*nid = fnid->nid;
123 	spin_unlock(&nm_i->free_nid_list_lock);
124 	return 0;
125 }
126 
127 /*
128  * inline functions
129  */
130 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
131 {
132 	struct f2fs_nm_info *nm_i = NM_I(sbi);
133 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
134 }
135 
136 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
137 {
138 	struct f2fs_nm_info *nm_i = NM_I(sbi);
139 	pgoff_t block_off;
140 	pgoff_t block_addr;
141 	int seg_off;
142 
143 	block_off = NAT_BLOCK_OFFSET(start);
144 	seg_off = block_off >> sbi->log_blocks_per_seg;
145 
146 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
147 		(seg_off << sbi->log_blocks_per_seg << 1) +
148 		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
149 
150 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
151 		block_addr += sbi->blocks_per_seg;
152 
153 	return block_addr;
154 }
155 
156 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
157 						pgoff_t block_addr)
158 {
159 	struct f2fs_nm_info *nm_i = NM_I(sbi);
160 
161 	block_addr -= nm_i->nat_blkaddr;
162 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
163 		block_addr -= sbi->blocks_per_seg;
164 	else
165 		block_addr += sbi->blocks_per_seg;
166 
167 	return block_addr + nm_i->nat_blkaddr;
168 }
169 
170 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
171 {
172 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
173 
174 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
175 		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
176 	else
177 		f2fs_set_bit(block_off, nm_i->nat_bitmap);
178 }
179 
180 static inline void fill_node_footer(struct page *page, nid_t nid,
181 				nid_t ino, unsigned int ofs, bool reset)
182 {
183 	struct f2fs_node *rn = F2FS_NODE(page);
184 	if (reset)
185 		memset(rn, 0, sizeof(*rn));
186 	rn->footer.nid = cpu_to_le32(nid);
187 	rn->footer.ino = cpu_to_le32(ino);
188 	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
189 }
190 
191 static inline void copy_node_footer(struct page *dst, struct page *src)
192 {
193 	struct f2fs_node *src_rn = F2FS_NODE(src);
194 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
195 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
196 }
197 
198 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
199 {
200 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
201 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
202 	struct f2fs_node *rn = F2FS_NODE(page);
203 
204 	rn->footer.cp_ver = ckpt->checkpoint_ver;
205 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
206 }
207 
208 static inline nid_t ino_of_node(struct page *node_page)
209 {
210 	struct f2fs_node *rn = F2FS_NODE(node_page);
211 	return le32_to_cpu(rn->footer.ino);
212 }
213 
214 static inline nid_t nid_of_node(struct page *node_page)
215 {
216 	struct f2fs_node *rn = F2FS_NODE(node_page);
217 	return le32_to_cpu(rn->footer.nid);
218 }
219 
220 static inline unsigned int ofs_of_node(struct page *node_page)
221 {
222 	struct f2fs_node *rn = F2FS_NODE(node_page);
223 	unsigned flag = le32_to_cpu(rn->footer.flag);
224 	return flag >> OFFSET_BIT_SHIFT;
225 }
226 
227 static inline unsigned long long cpver_of_node(struct page *node_page)
228 {
229 	struct f2fs_node *rn = F2FS_NODE(node_page);
230 	return le64_to_cpu(rn->footer.cp_ver);
231 }
232 
233 static inline block_t next_blkaddr_of_node(struct page *node_page)
234 {
235 	struct f2fs_node *rn = F2FS_NODE(node_page);
236 	return le32_to_cpu(rn->footer.next_blkaddr);
237 }
238 
239 /*
240  * f2fs assigns the following node offsets described as (num).
241  * N = NIDS_PER_BLOCK
242  *
243  *  Inode block (0)
244  *    |- direct node (1)
245  *    |- direct node (2)
246  *    |- indirect node (3)
247  *    |            `- direct node (4 => 4 + N - 1)
248  *    |- indirect node (4 + N)
249  *    |            `- direct node (5 + N => 5 + 2N - 1)
250  *    `- double indirect node (5 + 2N)
251  *                 `- indirect node (6 + 2N)
252  *                       `- direct node
253  *                 ......
254  *                 `- indirect node ((6 + 2N) + x(N + 1))
255  *                       `- direct node
256  *                 ......
257  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
258  *                       `- direct node
259  */
260 static inline bool IS_DNODE(struct page *node_page)
261 {
262 	unsigned int ofs = ofs_of_node(node_page);
263 
264 	if (f2fs_has_xattr_block(ofs))
265 		return false;
266 
267 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
268 			ofs == 5 + 2 * NIDS_PER_BLOCK)
269 		return false;
270 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
271 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
272 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
273 			return false;
274 	}
275 	return true;
276 }
277 
278 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
279 {
280 	struct f2fs_node *rn = F2FS_NODE(p);
281 
282 	f2fs_wait_on_page_writeback(p, NODE);
283 
284 	if (i)
285 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
286 	else
287 		rn->in.nid[off] = cpu_to_le32(nid);
288 	set_page_dirty(p);
289 }
290 
291 static inline nid_t get_nid(struct page *p, int off, bool i)
292 {
293 	struct f2fs_node *rn = F2FS_NODE(p);
294 
295 	if (i)
296 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
297 	return le32_to_cpu(rn->in.nid[off]);
298 }
299 
300 /*
301  * Coldness identification:
302  *  - Mark cold files in f2fs_inode_info
303  *  - Mark cold node blocks in their node footer
304  *  - Mark cold data pages in page cache
305  */
306 static inline int is_file(struct inode *inode, int type)
307 {
308 	return F2FS_I(inode)->i_advise & type;
309 }
310 
311 static inline void set_file(struct inode *inode, int type)
312 {
313 	F2FS_I(inode)->i_advise |= type;
314 }
315 
316 static inline void clear_file(struct inode *inode, int type)
317 {
318 	F2FS_I(inode)->i_advise &= ~type;
319 }
320 
321 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
322 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
323 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
324 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
325 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
326 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
327 
328 static inline int is_cold_data(struct page *page)
329 {
330 	return PageChecked(page);
331 }
332 
333 static inline void set_cold_data(struct page *page)
334 {
335 	SetPageChecked(page);
336 }
337 
338 static inline void clear_cold_data(struct page *page)
339 {
340 	ClearPageChecked(page);
341 }
342 
343 static inline int is_node(struct page *page, int type)
344 {
345 	struct f2fs_node *rn = F2FS_NODE(page);
346 	return le32_to_cpu(rn->footer.flag) & (1 << type);
347 }
348 
349 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
350 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
351 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
352 
353 static inline void set_cold_node(struct inode *inode, struct page *page)
354 {
355 	struct f2fs_node *rn = F2FS_NODE(page);
356 	unsigned int flag = le32_to_cpu(rn->footer.flag);
357 
358 	if (S_ISDIR(inode->i_mode))
359 		flag &= ~(0x1 << COLD_BIT_SHIFT);
360 	else
361 		flag |= (0x1 << COLD_BIT_SHIFT);
362 	rn->footer.flag = cpu_to_le32(flag);
363 }
364 
365 static inline void set_mark(struct page *page, int mark, int type)
366 {
367 	struct f2fs_node *rn = F2FS_NODE(page);
368 	unsigned int flag = le32_to_cpu(rn->footer.flag);
369 	if (mark)
370 		flag |= (0x1 << type);
371 	else
372 		flag &= ~(0x1 << type);
373 	rn->footer.flag = cpu_to_le32(flag);
374 }
375 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
376 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
377