1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 10 25 26 /* vector size for gang look-up from nat cache that consists of radix tree */ 27 #define NATVEC_SIZE 64 28 29 /* return value for read_node_page */ 30 #define LOCKED_PAGE 1 31 32 /* 33 * For node information 34 */ 35 struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40 }; 41 42 struct nat_entry { 43 struct list_head list; /* for clean or dirty nat list */ 44 bool checkpointed; /* whether it is checkpointed or not */ 45 bool fsync_done; /* whether the latest node has fsync mark */ 46 struct node_info ni; /* in-memory node information */ 47 }; 48 49 #define nat_get_nid(nat) (nat->ni.nid) 50 #define nat_set_nid(nat, n) (nat->ni.nid = n) 51 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 52 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 53 #define nat_get_ino(nat) (nat->ni.ino) 54 #define nat_set_ino(nat, i) (nat->ni.ino = i) 55 #define nat_get_version(nat) (nat->ni.version) 56 #define nat_set_version(nat, v) (nat->ni.version = v) 57 58 #define __set_nat_cache_dirty(nm_i, ne) \ 59 do { \ 60 ne->checkpointed = false; \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \ 62 } while (0) 63 #define __clear_nat_cache_dirty(nm_i, ne) \ 64 do { \ 65 ne->checkpointed = true; \ 66 list_move_tail(&ne->list, &nm_i->nat_entries); \ 67 } while (0) 68 #define inc_node_version(version) (++version) 69 70 static inline void node_info_from_raw_nat(struct node_info *ni, 71 struct f2fs_nat_entry *raw_ne) 72 { 73 ni->ino = le32_to_cpu(raw_ne->ino); 74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 75 ni->version = raw_ne->version; 76 } 77 78 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 79 struct node_info *ni) 80 { 81 raw_ne->ino = cpu_to_le32(ni->ino); 82 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 83 raw_ne->version = ni->version; 84 } 85 86 enum mem_type { 87 FREE_NIDS, /* indicates the free nid list */ 88 NAT_ENTRIES, /* indicates the cached nat entry */ 89 DIRTY_DENTS /* indicates dirty dentry pages */ 90 }; 91 92 struct nat_entry_set { 93 struct list_head set_list; /* link with all nat sets */ 94 struct list_head entry_list; /* link with dirty nat entries */ 95 nid_t start_nid; /* start nid of nats in set */ 96 unsigned int entry_cnt; /* the # of nat entries in set */ 97 }; 98 99 /* 100 * For free nid mangement 101 */ 102 enum nid_state { 103 NID_NEW, /* newly added to free nid list */ 104 NID_ALLOC /* it is allocated */ 105 }; 106 107 struct free_nid { 108 struct list_head list; /* for free node id list */ 109 nid_t nid; /* node id */ 110 int state; /* in use or not: NID_NEW or NID_ALLOC */ 111 }; 112 113 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 114 { 115 struct f2fs_nm_info *nm_i = NM_I(sbi); 116 struct free_nid *fnid; 117 118 if (nm_i->fcnt <= 0) 119 return -1; 120 spin_lock(&nm_i->free_nid_list_lock); 121 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 122 *nid = fnid->nid; 123 spin_unlock(&nm_i->free_nid_list_lock); 124 return 0; 125 } 126 127 /* 128 * inline functions 129 */ 130 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 131 { 132 struct f2fs_nm_info *nm_i = NM_I(sbi); 133 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 134 } 135 136 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 137 { 138 struct f2fs_nm_info *nm_i = NM_I(sbi); 139 pgoff_t block_off; 140 pgoff_t block_addr; 141 int seg_off; 142 143 block_off = NAT_BLOCK_OFFSET(start); 144 seg_off = block_off >> sbi->log_blocks_per_seg; 145 146 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 147 (seg_off << sbi->log_blocks_per_seg << 1) + 148 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 149 150 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 151 block_addr += sbi->blocks_per_seg; 152 153 return block_addr; 154 } 155 156 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 157 pgoff_t block_addr) 158 { 159 struct f2fs_nm_info *nm_i = NM_I(sbi); 160 161 block_addr -= nm_i->nat_blkaddr; 162 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 163 block_addr -= sbi->blocks_per_seg; 164 else 165 block_addr += sbi->blocks_per_seg; 166 167 return block_addr + nm_i->nat_blkaddr; 168 } 169 170 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 171 { 172 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 173 174 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 175 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 176 else 177 f2fs_set_bit(block_off, nm_i->nat_bitmap); 178 } 179 180 static inline void fill_node_footer(struct page *page, nid_t nid, 181 nid_t ino, unsigned int ofs, bool reset) 182 { 183 struct f2fs_node *rn = F2FS_NODE(page); 184 if (reset) 185 memset(rn, 0, sizeof(*rn)); 186 rn->footer.nid = cpu_to_le32(nid); 187 rn->footer.ino = cpu_to_le32(ino); 188 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 189 } 190 191 static inline void copy_node_footer(struct page *dst, struct page *src) 192 { 193 struct f2fs_node *src_rn = F2FS_NODE(src); 194 struct f2fs_node *dst_rn = F2FS_NODE(dst); 195 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 196 } 197 198 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 199 { 200 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 201 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 202 struct f2fs_node *rn = F2FS_NODE(page); 203 204 rn->footer.cp_ver = ckpt->checkpoint_ver; 205 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 206 } 207 208 static inline nid_t ino_of_node(struct page *node_page) 209 { 210 struct f2fs_node *rn = F2FS_NODE(node_page); 211 return le32_to_cpu(rn->footer.ino); 212 } 213 214 static inline nid_t nid_of_node(struct page *node_page) 215 { 216 struct f2fs_node *rn = F2FS_NODE(node_page); 217 return le32_to_cpu(rn->footer.nid); 218 } 219 220 static inline unsigned int ofs_of_node(struct page *node_page) 221 { 222 struct f2fs_node *rn = F2FS_NODE(node_page); 223 unsigned flag = le32_to_cpu(rn->footer.flag); 224 return flag >> OFFSET_BIT_SHIFT; 225 } 226 227 static inline unsigned long long cpver_of_node(struct page *node_page) 228 { 229 struct f2fs_node *rn = F2FS_NODE(node_page); 230 return le64_to_cpu(rn->footer.cp_ver); 231 } 232 233 static inline block_t next_blkaddr_of_node(struct page *node_page) 234 { 235 struct f2fs_node *rn = F2FS_NODE(node_page); 236 return le32_to_cpu(rn->footer.next_blkaddr); 237 } 238 239 /* 240 * f2fs assigns the following node offsets described as (num). 241 * N = NIDS_PER_BLOCK 242 * 243 * Inode block (0) 244 * |- direct node (1) 245 * |- direct node (2) 246 * |- indirect node (3) 247 * | `- direct node (4 => 4 + N - 1) 248 * |- indirect node (4 + N) 249 * | `- direct node (5 + N => 5 + 2N - 1) 250 * `- double indirect node (5 + 2N) 251 * `- indirect node (6 + 2N) 252 * `- direct node 253 * ...... 254 * `- indirect node ((6 + 2N) + x(N + 1)) 255 * `- direct node 256 * ...... 257 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 258 * `- direct node 259 */ 260 static inline bool IS_DNODE(struct page *node_page) 261 { 262 unsigned int ofs = ofs_of_node(node_page); 263 264 if (f2fs_has_xattr_block(ofs)) 265 return false; 266 267 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 268 ofs == 5 + 2 * NIDS_PER_BLOCK) 269 return false; 270 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 271 ofs -= 6 + 2 * NIDS_PER_BLOCK; 272 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 273 return false; 274 } 275 return true; 276 } 277 278 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 279 { 280 struct f2fs_node *rn = F2FS_NODE(p); 281 282 f2fs_wait_on_page_writeback(p, NODE); 283 284 if (i) 285 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 286 else 287 rn->in.nid[off] = cpu_to_le32(nid); 288 set_page_dirty(p); 289 } 290 291 static inline nid_t get_nid(struct page *p, int off, bool i) 292 { 293 struct f2fs_node *rn = F2FS_NODE(p); 294 295 if (i) 296 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 297 return le32_to_cpu(rn->in.nid[off]); 298 } 299 300 /* 301 * Coldness identification: 302 * - Mark cold files in f2fs_inode_info 303 * - Mark cold node blocks in their node footer 304 * - Mark cold data pages in page cache 305 */ 306 static inline int is_file(struct inode *inode, int type) 307 { 308 return F2FS_I(inode)->i_advise & type; 309 } 310 311 static inline void set_file(struct inode *inode, int type) 312 { 313 F2FS_I(inode)->i_advise |= type; 314 } 315 316 static inline void clear_file(struct inode *inode, int type) 317 { 318 F2FS_I(inode)->i_advise &= ~type; 319 } 320 321 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 322 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 323 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 324 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 325 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 326 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 327 328 static inline int is_cold_data(struct page *page) 329 { 330 return PageChecked(page); 331 } 332 333 static inline void set_cold_data(struct page *page) 334 { 335 SetPageChecked(page); 336 } 337 338 static inline void clear_cold_data(struct page *page) 339 { 340 ClearPageChecked(page); 341 } 342 343 static inline int is_node(struct page *page, int type) 344 { 345 struct f2fs_node *rn = F2FS_NODE(page); 346 return le32_to_cpu(rn->footer.flag) & (1 << type); 347 } 348 349 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 350 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 351 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 352 353 static inline void set_cold_node(struct inode *inode, struct page *page) 354 { 355 struct f2fs_node *rn = F2FS_NODE(page); 356 unsigned int flag = le32_to_cpu(rn->footer.flag); 357 358 if (S_ISDIR(inode->i_mode)) 359 flag &= ~(0x1 << COLD_BIT_SHIFT); 360 else 361 flag |= (0x1 << COLD_BIT_SHIFT); 362 rn->footer.flag = cpu_to_le32(flag); 363 } 364 365 static inline void set_mark(struct page *page, int mark, int type) 366 { 367 struct f2fs_node *rn = F2FS_NODE(page); 368 unsigned int flag = le32_to_cpu(rn->footer.flag); 369 if (mark) 370 flag |= (0x1 << type); 371 else 372 flag &= ~(0x1 << type); 373 rn->footer.flag = cpu_to_le32(flag); 374 } 375 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 376 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 377