1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 8 19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* vector size for gang look-up from nat cache that consists of radix tree */ 35 #define NATVEC_SIZE 64 36 #define SETVEC_SIZE 32 37 38 /* return value for read_node_page */ 39 #define LOCKED_PAGE 1 40 41 /* For flag in struct node_info */ 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 /* 50 * For node information 51 */ 52 struct node_info { 53 nid_t nid; /* node id */ 54 nid_t ino; /* inode number of the node's owner */ 55 block_t blk_addr; /* block address of the node */ 56 unsigned char version; /* version of the node */ 57 unsigned char flag; /* for node information bits */ 58 }; 59 60 struct nat_entry { 61 struct list_head list; /* for clean or dirty nat list */ 62 struct node_info ni; /* in-memory node information */ 63 }; 64 65 #define nat_get_nid(nat) ((nat)->ni.nid) 66 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 67 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 68 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 69 #define nat_get_ino(nat) ((nat)->ni.ino) 70 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 71 #define nat_get_version(nat) ((nat)->ni.version) 72 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 73 74 #define inc_node_version(version) (++(version)) 75 76 static inline void copy_node_info(struct node_info *dst, 77 struct node_info *src) 78 { 79 dst->nid = src->nid; 80 dst->ino = src->ino; 81 dst->blk_addr = src->blk_addr; 82 dst->version = src->version; 83 /* should not copy flag here */ 84 } 85 86 static inline void set_nat_flag(struct nat_entry *ne, 87 unsigned int type, bool set) 88 { 89 unsigned char mask = 0x01 << type; 90 if (set) 91 ne->ni.flag |= mask; 92 else 93 ne->ni.flag &= ~mask; 94 } 95 96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 97 { 98 unsigned char mask = 0x01 << type; 99 return ne->ni.flag & mask; 100 } 101 102 static inline void nat_reset_flag(struct nat_entry *ne) 103 { 104 /* these states can be set only after checkpoint was done */ 105 set_nat_flag(ne, IS_CHECKPOINTED, true); 106 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 107 set_nat_flag(ne, HAS_LAST_FSYNC, true); 108 } 109 110 static inline void node_info_from_raw_nat(struct node_info *ni, 111 struct f2fs_nat_entry *raw_ne) 112 { 113 ni->ino = le32_to_cpu(raw_ne->ino); 114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 115 ni->version = raw_ne->version; 116 } 117 118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 119 struct node_info *ni) 120 { 121 raw_ne->ino = cpu_to_le32(ni->ino); 122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 123 raw_ne->version = ni->version; 124 } 125 126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 127 { 128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 129 NM_I(sbi)->dirty_nats_ratio / 100; 130 } 131 132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 133 { 134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 135 } 136 137 enum mem_type { 138 FREE_NIDS, /* indicates the free nid list */ 139 NAT_ENTRIES, /* indicates the cached nat entry */ 140 DIRTY_DENTS, /* indicates dirty dentry pages */ 141 INO_ENTRIES, /* indicates inode entries */ 142 EXTENT_CACHE, /* indicates extent cache */ 143 INMEM_PAGES, /* indicates inmemory pages */ 144 BASE_CHECK, /* check kernel status */ 145 }; 146 147 struct nat_entry_set { 148 struct list_head set_list; /* link with other nat sets */ 149 struct list_head entry_list; /* link with dirty nat entries */ 150 nid_t set; /* set number*/ 151 unsigned int entry_cnt; /* the # of nat entries in set */ 152 }; 153 154 struct free_nid { 155 struct list_head list; /* for free node id list */ 156 nid_t nid; /* node id */ 157 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 158 }; 159 160 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 161 { 162 struct f2fs_nm_info *nm_i = NM_I(sbi); 163 struct free_nid *fnid; 164 165 spin_lock(&nm_i->nid_list_lock); 166 if (nm_i->nid_cnt[FREE_NID] <= 0) { 167 spin_unlock(&nm_i->nid_list_lock); 168 return; 169 } 170 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 171 *nid = fnid->nid; 172 spin_unlock(&nm_i->nid_list_lock); 173 } 174 175 /* 176 * inline functions 177 */ 178 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 179 { 180 struct f2fs_nm_info *nm_i = NM_I(sbi); 181 182 #ifdef CONFIG_F2FS_CHECK_FS 183 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 184 nm_i->bitmap_size)) 185 f2fs_bug_on(sbi, 1); 186 #endif 187 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 188 } 189 190 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 191 { 192 struct f2fs_nm_info *nm_i = NM_I(sbi); 193 pgoff_t block_off; 194 pgoff_t block_addr; 195 196 /* 197 * block_off = segment_off * 512 + off_in_segment 198 * OLD = (segment_off * 512) * 2 + off_in_segment 199 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 200 */ 201 block_off = NAT_BLOCK_OFFSET(start); 202 203 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 204 (block_off << 1) - 205 (block_off & (sbi->blocks_per_seg - 1))); 206 207 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 208 block_addr += sbi->blocks_per_seg; 209 210 return block_addr; 211 } 212 213 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 214 pgoff_t block_addr) 215 { 216 struct f2fs_nm_info *nm_i = NM_I(sbi); 217 218 block_addr -= nm_i->nat_blkaddr; 219 block_addr ^= 1 << sbi->log_blocks_per_seg; 220 return block_addr + nm_i->nat_blkaddr; 221 } 222 223 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 224 { 225 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 226 227 f2fs_change_bit(block_off, nm_i->nat_bitmap); 228 #ifdef CONFIG_F2FS_CHECK_FS 229 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 230 #endif 231 } 232 233 static inline nid_t ino_of_node(struct page *node_page) 234 { 235 struct f2fs_node *rn = F2FS_NODE(node_page); 236 return le32_to_cpu(rn->footer.ino); 237 } 238 239 static inline nid_t nid_of_node(struct page *node_page) 240 { 241 struct f2fs_node *rn = F2FS_NODE(node_page); 242 return le32_to_cpu(rn->footer.nid); 243 } 244 245 static inline unsigned int ofs_of_node(struct page *node_page) 246 { 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 unsigned flag = le32_to_cpu(rn->footer.flag); 249 return flag >> OFFSET_BIT_SHIFT; 250 } 251 252 static inline __u64 cpver_of_node(struct page *node_page) 253 { 254 struct f2fs_node *rn = F2FS_NODE(node_page); 255 return le64_to_cpu(rn->footer.cp_ver); 256 } 257 258 static inline block_t next_blkaddr_of_node(struct page *node_page) 259 { 260 struct f2fs_node *rn = F2FS_NODE(node_page); 261 return le32_to_cpu(rn->footer.next_blkaddr); 262 } 263 264 static inline void fill_node_footer(struct page *page, nid_t nid, 265 nid_t ino, unsigned int ofs, bool reset) 266 { 267 struct f2fs_node *rn = F2FS_NODE(page); 268 unsigned int old_flag = 0; 269 270 if (reset) 271 memset(rn, 0, sizeof(*rn)); 272 else 273 old_flag = le32_to_cpu(rn->footer.flag); 274 275 rn->footer.nid = cpu_to_le32(nid); 276 rn->footer.ino = cpu_to_le32(ino); 277 278 /* should remain old flag bits such as COLD_BIT_SHIFT */ 279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 280 (old_flag & OFFSET_BIT_MASK)); 281 } 282 283 static inline void copy_node_footer(struct page *dst, struct page *src) 284 { 285 struct f2fs_node *src_rn = F2FS_NODE(src); 286 struct f2fs_node *dst_rn = F2FS_NODE(dst); 287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 288 } 289 290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 291 { 292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 293 struct f2fs_node *rn = F2FS_NODE(page); 294 __u64 cp_ver = cur_cp_version(ckpt); 295 296 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 297 cp_ver |= (cur_cp_crc(ckpt) << 32); 298 299 rn->footer.cp_ver = cpu_to_le64(cp_ver); 300 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 301 } 302 303 static inline bool is_recoverable_dnode(struct page *page) 304 { 305 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 306 __u64 cp_ver = cur_cp_version(ckpt); 307 308 /* Don't care crc part, if fsck.f2fs sets it. */ 309 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 310 return (cp_ver << 32) == (cpver_of_node(page) << 32); 311 312 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 313 cp_ver |= (cur_cp_crc(ckpt) << 32); 314 315 return cp_ver == cpver_of_node(page); 316 } 317 318 /* 319 * f2fs assigns the following node offsets described as (num). 320 * N = NIDS_PER_BLOCK 321 * 322 * Inode block (0) 323 * |- direct node (1) 324 * |- direct node (2) 325 * |- indirect node (3) 326 * | `- direct node (4 => 4 + N - 1) 327 * |- indirect node (4 + N) 328 * | `- direct node (5 + N => 5 + 2N - 1) 329 * `- double indirect node (5 + 2N) 330 * `- indirect node (6 + 2N) 331 * `- direct node 332 * ...... 333 * `- indirect node ((6 + 2N) + x(N + 1)) 334 * `- direct node 335 * ...... 336 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 337 * `- direct node 338 */ 339 static inline bool IS_DNODE(struct page *node_page) 340 { 341 unsigned int ofs = ofs_of_node(node_page); 342 343 if (f2fs_has_xattr_block(ofs)) 344 return true; 345 346 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 347 ofs == 5 + 2 * NIDS_PER_BLOCK) 348 return false; 349 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 350 ofs -= 6 + 2 * NIDS_PER_BLOCK; 351 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 352 return false; 353 } 354 return true; 355 } 356 357 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 358 { 359 struct f2fs_node *rn = F2FS_NODE(p); 360 361 f2fs_wait_on_page_writeback(p, NODE, true); 362 363 if (i) 364 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 365 else 366 rn->in.nid[off] = cpu_to_le32(nid); 367 return set_page_dirty(p); 368 } 369 370 static inline nid_t get_nid(struct page *p, int off, bool i) 371 { 372 struct f2fs_node *rn = F2FS_NODE(p); 373 374 if (i) 375 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 376 return le32_to_cpu(rn->in.nid[off]); 377 } 378 379 /* 380 * Coldness identification: 381 * - Mark cold files in f2fs_inode_info 382 * - Mark cold node blocks in their node footer 383 * - Mark cold data pages in page cache 384 */ 385 static inline int is_cold_data(struct page *page) 386 { 387 return PageChecked(page); 388 } 389 390 static inline void set_cold_data(struct page *page) 391 { 392 SetPageChecked(page); 393 } 394 395 static inline void clear_cold_data(struct page *page) 396 { 397 ClearPageChecked(page); 398 } 399 400 static inline int is_node(struct page *page, int type) 401 { 402 struct f2fs_node *rn = F2FS_NODE(page); 403 return le32_to_cpu(rn->footer.flag) & (1 << type); 404 } 405 406 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 407 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 408 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 409 410 static inline int is_inline_node(struct page *page) 411 { 412 return PageChecked(page); 413 } 414 415 static inline void set_inline_node(struct page *page) 416 { 417 SetPageChecked(page); 418 } 419 420 static inline void clear_inline_node(struct page *page) 421 { 422 ClearPageChecked(page); 423 } 424 425 static inline void set_cold_node(struct inode *inode, struct page *page) 426 { 427 struct f2fs_node *rn = F2FS_NODE(page); 428 unsigned int flag = le32_to_cpu(rn->footer.flag); 429 430 if (S_ISDIR(inode->i_mode)) 431 flag &= ~(0x1 << COLD_BIT_SHIFT); 432 else 433 flag |= (0x1 << COLD_BIT_SHIFT); 434 rn->footer.flag = cpu_to_le32(flag); 435 } 436 437 static inline void set_mark(struct page *page, int mark, int type) 438 { 439 struct f2fs_node *rn = F2FS_NODE(page); 440 unsigned int flag = le32_to_cpu(rn->footer.flag); 441 if (mark) 442 flag |= (0x1 << type); 443 else 444 flag &= ~(0x1 << type); 445 rn->footer.flag = cpu_to_le32(flag); 446 } 447 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 448 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 449