xref: /openbmc/linux/fs/f2fs/node.h (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 /* start node id of a node block dedicated to the given node id */
9 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10 
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13 
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES	8
16 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17 
18 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
19 
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE		128
22 
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD	1
25 
26 /* control dirty nats ratio threshold (default: 10% over max nid count) */
27 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
28 /* control total # of nats */
29 #define DEF_NAT_CACHE_THRESHOLD			100000
30 
31 /* vector size for gang look-up from nat cache that consists of radix tree */
32 #define NATVEC_SIZE	64
33 #define SETVEC_SIZE	32
34 
35 /* return value for read_node_page */
36 #define LOCKED_PAGE	1
37 
38 /* For flag in struct node_info */
39 enum {
40 	IS_CHECKPOINTED,	/* is it checkpointed before? */
41 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
42 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
43 	IS_DIRTY,		/* this nat entry is dirty? */
44 	IS_PREALLOC,		/* nat entry is preallocated */
45 };
46 
47 /*
48  * For node information
49  */
50 struct node_info {
51 	nid_t nid;		/* node id */
52 	nid_t ino;		/* inode number of the node's owner */
53 	block_t	blk_addr;	/* block address of the node */
54 	unsigned char version;	/* version of the node */
55 	unsigned char flag;	/* for node information bits */
56 };
57 
58 struct nat_entry {
59 	struct list_head list;	/* for clean or dirty nat list */
60 	struct node_info ni;	/* in-memory node information */
61 };
62 
63 #define nat_get_nid(nat)		((nat)->ni.nid)
64 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
65 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
66 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
67 #define nat_get_ino(nat)		((nat)->ni.ino)
68 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
69 #define nat_get_version(nat)		((nat)->ni.version)
70 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
71 
72 #define inc_node_version(version)	(++(version))
73 
74 static inline void copy_node_info(struct node_info *dst,
75 						struct node_info *src)
76 {
77 	dst->nid = src->nid;
78 	dst->ino = src->ino;
79 	dst->blk_addr = src->blk_addr;
80 	dst->version = src->version;
81 	/* should not copy flag here */
82 }
83 
84 static inline void set_nat_flag(struct nat_entry *ne,
85 				unsigned int type, bool set)
86 {
87 	unsigned char mask = 0x01 << type;
88 	if (set)
89 		ne->ni.flag |= mask;
90 	else
91 		ne->ni.flag &= ~mask;
92 }
93 
94 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
95 {
96 	unsigned char mask = 0x01 << type;
97 	return ne->ni.flag & mask;
98 }
99 
100 static inline void nat_reset_flag(struct nat_entry *ne)
101 {
102 	/* these states can be set only after checkpoint was done */
103 	set_nat_flag(ne, IS_CHECKPOINTED, true);
104 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
106 }
107 
108 static inline void node_info_from_raw_nat(struct node_info *ni,
109 						struct f2fs_nat_entry *raw_ne)
110 {
111 	ni->ino = le32_to_cpu(raw_ne->ino);
112 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113 	ni->version = raw_ne->version;
114 }
115 
116 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117 						struct node_info *ni)
118 {
119 	raw_ne->ino = cpu_to_le32(ni->ino);
120 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121 	raw_ne->version = ni->version;
122 }
123 
124 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125 {
126 	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127 					NM_I(sbi)->dirty_nats_ratio / 100;
128 }
129 
130 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131 {
132 	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133 }
134 
135 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136 {
137 	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138 }
139 
140 enum mem_type {
141 	FREE_NIDS,	/* indicates the free nid list */
142 	NAT_ENTRIES,	/* indicates the cached nat entry */
143 	DIRTY_DENTS,	/* indicates dirty dentry pages */
144 	INO_ENTRIES,	/* indicates inode entries */
145 	EXTENT_CACHE,	/* indicates extent cache */
146 	INMEM_PAGES,	/* indicates inmemory pages */
147 	BASE_CHECK,	/* check kernel status */
148 };
149 
150 struct nat_entry_set {
151 	struct list_head set_list;	/* link with other nat sets */
152 	struct list_head entry_list;	/* link with dirty nat entries */
153 	nid_t set;			/* set number*/
154 	unsigned int entry_cnt;		/* the # of nat entries in set */
155 };
156 
157 struct free_nid {
158 	struct list_head list;	/* for free node id list */
159 	nid_t nid;		/* node id */
160 	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
161 };
162 
163 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164 {
165 	struct f2fs_nm_info *nm_i = NM_I(sbi);
166 	struct free_nid *fnid;
167 
168 	spin_lock(&nm_i->nid_list_lock);
169 	if (nm_i->nid_cnt[FREE_NID] <= 0) {
170 		spin_unlock(&nm_i->nid_list_lock);
171 		return;
172 	}
173 	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174 	*nid = fnid->nid;
175 	spin_unlock(&nm_i->nid_list_lock);
176 }
177 
178 /*
179  * inline functions
180  */
181 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182 {
183 	struct f2fs_nm_info *nm_i = NM_I(sbi);
184 
185 #ifdef CONFIG_F2FS_CHECK_FS
186 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187 						nm_i->bitmap_size))
188 		f2fs_bug_on(sbi, 1);
189 #endif
190 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191 }
192 
193 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194 {
195 	struct f2fs_nm_info *nm_i = NM_I(sbi);
196 	pgoff_t block_off;
197 	pgoff_t block_addr;
198 
199 	/*
200 	 * block_off = segment_off * 512 + off_in_segment
201 	 * OLD = (segment_off * 512) * 2 + off_in_segment
202 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203 	 */
204 	block_off = NAT_BLOCK_OFFSET(start);
205 
206 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207 		(block_off << 1) -
208 		(block_off & (sbi->blocks_per_seg - 1)));
209 
210 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211 		block_addr += sbi->blocks_per_seg;
212 
213 	return block_addr;
214 }
215 
216 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217 						pgoff_t block_addr)
218 {
219 	struct f2fs_nm_info *nm_i = NM_I(sbi);
220 
221 	block_addr -= nm_i->nat_blkaddr;
222 	block_addr ^= 1 << sbi->log_blocks_per_seg;
223 	return block_addr + nm_i->nat_blkaddr;
224 }
225 
226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227 {
228 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229 
230 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
231 #ifdef CONFIG_F2FS_CHECK_FS
232 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233 #endif
234 }
235 
236 static inline nid_t ino_of_node(struct page *node_page)
237 {
238 	struct f2fs_node *rn = F2FS_NODE(node_page);
239 	return le32_to_cpu(rn->footer.ino);
240 }
241 
242 static inline nid_t nid_of_node(struct page *node_page)
243 {
244 	struct f2fs_node *rn = F2FS_NODE(node_page);
245 	return le32_to_cpu(rn->footer.nid);
246 }
247 
248 static inline unsigned int ofs_of_node(struct page *node_page)
249 {
250 	struct f2fs_node *rn = F2FS_NODE(node_page);
251 	unsigned flag = le32_to_cpu(rn->footer.flag);
252 	return flag >> OFFSET_BIT_SHIFT;
253 }
254 
255 static inline __u64 cpver_of_node(struct page *node_page)
256 {
257 	struct f2fs_node *rn = F2FS_NODE(node_page);
258 	return le64_to_cpu(rn->footer.cp_ver);
259 }
260 
261 static inline block_t next_blkaddr_of_node(struct page *node_page)
262 {
263 	struct f2fs_node *rn = F2FS_NODE(node_page);
264 	return le32_to_cpu(rn->footer.next_blkaddr);
265 }
266 
267 static inline void fill_node_footer(struct page *page, nid_t nid,
268 				nid_t ino, unsigned int ofs, bool reset)
269 {
270 	struct f2fs_node *rn = F2FS_NODE(page);
271 	unsigned int old_flag = 0;
272 
273 	if (reset)
274 		memset(rn, 0, sizeof(*rn));
275 	else
276 		old_flag = le32_to_cpu(rn->footer.flag);
277 
278 	rn->footer.nid = cpu_to_le32(nid);
279 	rn->footer.ino = cpu_to_le32(ino);
280 
281 	/* should remain old flag bits such as COLD_BIT_SHIFT */
282 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283 					(old_flag & OFFSET_BIT_MASK));
284 }
285 
286 static inline void copy_node_footer(struct page *dst, struct page *src)
287 {
288 	struct f2fs_node *src_rn = F2FS_NODE(src);
289 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
290 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291 }
292 
293 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294 {
295 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296 	struct f2fs_node *rn = F2FS_NODE(page);
297 	__u64 cp_ver = cur_cp_version(ckpt);
298 
299 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300 		cp_ver |= (cur_cp_crc(ckpt) << 32);
301 
302 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304 }
305 
306 static inline bool is_recoverable_dnode(struct page *page)
307 {
308 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 	__u64 cp_ver = cur_cp_version(ckpt);
310 
311 	/* Don't care crc part, if fsck.f2fs sets it. */
312 	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313 		return (cp_ver << 32) == (cpver_of_node(page) << 32);
314 
315 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316 		cp_ver |= (cur_cp_crc(ckpt) << 32);
317 
318 	return cp_ver == cpver_of_node(page);
319 }
320 
321 /*
322  * f2fs assigns the following node offsets described as (num).
323  * N = NIDS_PER_BLOCK
324  *
325  *  Inode block (0)
326  *    |- direct node (1)
327  *    |- direct node (2)
328  *    |- indirect node (3)
329  *    |            `- direct node (4 => 4 + N - 1)
330  *    |- indirect node (4 + N)
331  *    |            `- direct node (5 + N => 5 + 2N - 1)
332  *    `- double indirect node (5 + 2N)
333  *                 `- indirect node (6 + 2N)
334  *                       `- direct node
335  *                 ......
336  *                 `- indirect node ((6 + 2N) + x(N + 1))
337  *                       `- direct node
338  *                 ......
339  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340  *                       `- direct node
341  */
342 static inline bool IS_DNODE(struct page *node_page)
343 {
344 	unsigned int ofs = ofs_of_node(node_page);
345 
346 	if (f2fs_has_xattr_block(ofs))
347 		return true;
348 
349 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350 			ofs == 5 + 2 * NIDS_PER_BLOCK)
351 		return false;
352 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
354 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355 			return false;
356 	}
357 	return true;
358 }
359 
360 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361 {
362 	struct f2fs_node *rn = F2FS_NODE(p);
363 
364 	f2fs_wait_on_page_writeback(p, NODE, true);
365 
366 	if (i)
367 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368 	else
369 		rn->in.nid[off] = cpu_to_le32(nid);
370 	return set_page_dirty(p);
371 }
372 
373 static inline nid_t get_nid(struct page *p, int off, bool i)
374 {
375 	struct f2fs_node *rn = F2FS_NODE(p);
376 
377 	if (i)
378 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379 	return le32_to_cpu(rn->in.nid[off]);
380 }
381 
382 /*
383  * Coldness identification:
384  *  - Mark cold files in f2fs_inode_info
385  *  - Mark cold node blocks in their node footer
386  *  - Mark cold data pages in page cache
387  */
388 static inline int is_cold_data(struct page *page)
389 {
390 	return PageChecked(page);
391 }
392 
393 static inline void set_cold_data(struct page *page)
394 {
395 	SetPageChecked(page);
396 }
397 
398 static inline void clear_cold_data(struct page *page)
399 {
400 	ClearPageChecked(page);
401 }
402 
403 static inline int is_node(struct page *page, int type)
404 {
405 	struct f2fs_node *rn = F2FS_NODE(page);
406 	return le32_to_cpu(rn->footer.flag) & (1 << type);
407 }
408 
409 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
410 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
411 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
412 
413 static inline int is_inline_node(struct page *page)
414 {
415 	return PageChecked(page);
416 }
417 
418 static inline void set_inline_node(struct page *page)
419 {
420 	SetPageChecked(page);
421 }
422 
423 static inline void clear_inline_node(struct page *page)
424 {
425 	ClearPageChecked(page);
426 }
427 
428 static inline void set_cold_node(struct page *page, bool is_dir)
429 {
430 	struct f2fs_node *rn = F2FS_NODE(page);
431 	unsigned int flag = le32_to_cpu(rn->footer.flag);
432 
433 	if (is_dir)
434 		flag &= ~(0x1 << COLD_BIT_SHIFT);
435 	else
436 		flag |= (0x1 << COLD_BIT_SHIFT);
437 	rn->footer.flag = cpu_to_le32(flag);
438 }
439 
440 static inline void set_mark(struct page *page, int mark, int type)
441 {
442 	struct f2fs_node *rn = F2FS_NODE(page);
443 	unsigned int flag = le32_to_cpu(rn->footer.flag);
444 	if (mark)
445 		flag |= (0x1 << type);
446 	else
447 		flag &= ~(0x1 << type);
448 	rn->footer.flag = cpu_to_le32(flag);
449 
450 #ifdef CONFIG_F2FS_CHECK_FS
451 	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452 #endif
453 }
454 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
455 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
456