xref: /openbmc/linux/fs/f2fs/node.c (revision f7d84fa7)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 				sizeof(struct free_nid)) >> PAGE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 		if (excess_cached_nats(sbi))
56 			res = false;
57 	} else if (type == DIRTY_DENTS) {
58 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 			return false;
60 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 	} else if (type == INO_ENTRIES) {
63 		int i;
64 
65 		for (i = 0; i <= UPDATE_INO; i++)
66 			mem_size += sbi->im[i].ino_num *
67 						sizeof(struct ino_entry);
68 		mem_size >>= PAGE_SHIFT;
69 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
70 	} else if (type == EXTENT_CACHE) {
71 		mem_size = (atomic_read(&sbi->total_ext_tree) *
72 				sizeof(struct extent_tree) +
73 				atomic_read(&sbi->total_ext_node) *
74 				sizeof(struct extent_node)) >> PAGE_SHIFT;
75 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 	} else {
77 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
78 			return true;
79 	}
80 	return res;
81 }
82 
83 static void clear_node_page_dirty(struct page *page)
84 {
85 	struct address_space *mapping = page->mapping;
86 	unsigned int long flags;
87 
88 	if (PageDirty(page)) {
89 		spin_lock_irqsave(&mapping->tree_lock, flags);
90 		radix_tree_tag_clear(&mapping->page_tree,
91 				page_index(page),
92 				PAGECACHE_TAG_DIRTY);
93 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
94 
95 		clear_page_dirty_for_io(page);
96 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 	}
98 	ClearPageUptodate(page);
99 }
100 
101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 {
103 	pgoff_t index = current_nat_addr(sbi, nid);
104 	return get_meta_page(sbi, index);
105 }
106 
107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 {
109 	struct page *src_page;
110 	struct page *dst_page;
111 	pgoff_t src_off;
112 	pgoff_t dst_off;
113 	void *src_addr;
114 	void *dst_addr;
115 	struct f2fs_nm_info *nm_i = NM_I(sbi);
116 
117 	src_off = current_nat_addr(sbi, nid);
118 	dst_off = next_nat_addr(sbi, src_off);
119 
120 	/* get current nat block page with lock */
121 	src_page = get_meta_page(sbi, src_off);
122 	dst_page = grab_meta_page(sbi, dst_off);
123 	f2fs_bug_on(sbi, PageDirty(src_page));
124 
125 	src_addr = page_address(src_page);
126 	dst_addr = page_address(dst_page);
127 	memcpy(dst_addr, src_addr, PAGE_SIZE);
128 	set_page_dirty(dst_page);
129 	f2fs_put_page(src_page, 1);
130 
131 	set_to_next_nat(nm_i, nid);
132 
133 	return dst_page;
134 }
135 
136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 {
138 	return radix_tree_lookup(&nm_i->nat_root, n);
139 }
140 
141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
142 		nid_t start, unsigned int nr, struct nat_entry **ep)
143 {
144 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
145 }
146 
147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 {
149 	list_del(&e->list);
150 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
151 	nm_i->nat_cnt--;
152 	kmem_cache_free(nat_entry_slab, e);
153 }
154 
155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
156 						struct nat_entry *ne)
157 {
158 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
159 	struct nat_entry_set *head;
160 
161 	if (get_nat_flag(ne, IS_DIRTY))
162 		return;
163 
164 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
165 	if (!head) {
166 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
167 
168 		INIT_LIST_HEAD(&head->entry_list);
169 		INIT_LIST_HEAD(&head->set_list);
170 		head->set = set;
171 		head->entry_cnt = 0;
172 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
173 	}
174 	list_move_tail(&ne->list, &head->entry_list);
175 	nm_i->dirty_nat_cnt++;
176 	head->entry_cnt++;
177 	set_nat_flag(ne, IS_DIRTY, true);
178 }
179 
180 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
181 		struct nat_entry_set *set, struct nat_entry *ne)
182 {
183 	list_move_tail(&ne->list, &nm_i->nat_entries);
184 	set_nat_flag(ne, IS_DIRTY, false);
185 	set->entry_cnt--;
186 	nm_i->dirty_nat_cnt--;
187 }
188 
189 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
190 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
191 {
192 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
193 							start, nr);
194 }
195 
196 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
197 {
198 	struct f2fs_nm_info *nm_i = NM_I(sbi);
199 	struct nat_entry *e;
200 	bool need = false;
201 
202 	down_read(&nm_i->nat_tree_lock);
203 	e = __lookup_nat_cache(nm_i, nid);
204 	if (e) {
205 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
206 				!get_nat_flag(e, HAS_FSYNCED_INODE))
207 			need = true;
208 	}
209 	up_read(&nm_i->nat_tree_lock);
210 	return need;
211 }
212 
213 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
214 {
215 	struct f2fs_nm_info *nm_i = NM_I(sbi);
216 	struct nat_entry *e;
217 	bool is_cp = true;
218 
219 	down_read(&nm_i->nat_tree_lock);
220 	e = __lookup_nat_cache(nm_i, nid);
221 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
222 		is_cp = false;
223 	up_read(&nm_i->nat_tree_lock);
224 	return is_cp;
225 }
226 
227 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
228 {
229 	struct f2fs_nm_info *nm_i = NM_I(sbi);
230 	struct nat_entry *e;
231 	bool need_update = true;
232 
233 	down_read(&nm_i->nat_tree_lock);
234 	e = __lookup_nat_cache(nm_i, ino);
235 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
236 			(get_nat_flag(e, IS_CHECKPOINTED) ||
237 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
238 		need_update = false;
239 	up_read(&nm_i->nat_tree_lock);
240 	return need_update;
241 }
242 
243 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
244 								bool no_fail)
245 {
246 	struct nat_entry *new;
247 
248 	if (no_fail) {
249 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
250 		f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
251 	} else {
252 		new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 		if (!new)
254 			return NULL;
255 		if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
256 			kmem_cache_free(nat_entry_slab, new);
257 			return NULL;
258 		}
259 	}
260 
261 	memset(new, 0, sizeof(struct nat_entry));
262 	nat_set_nid(new, nid);
263 	nat_reset_flag(new);
264 	list_add_tail(&new->list, &nm_i->nat_entries);
265 	nm_i->nat_cnt++;
266 	return new;
267 }
268 
269 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
270 						struct f2fs_nat_entry *ne)
271 {
272 	struct f2fs_nm_info *nm_i = NM_I(sbi);
273 	struct nat_entry *e;
274 
275 	e = __lookup_nat_cache(nm_i, nid);
276 	if (!e) {
277 		e = grab_nat_entry(nm_i, nid, false);
278 		if (e)
279 			node_info_from_raw_nat(&e->ni, ne);
280 	} else {
281 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
282 				nat_get_blkaddr(e) !=
283 					le32_to_cpu(ne->block_addr) ||
284 				nat_get_version(e) != ne->version);
285 	}
286 }
287 
288 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
289 			block_t new_blkaddr, bool fsync_done)
290 {
291 	struct f2fs_nm_info *nm_i = NM_I(sbi);
292 	struct nat_entry *e;
293 
294 	down_write(&nm_i->nat_tree_lock);
295 	e = __lookup_nat_cache(nm_i, ni->nid);
296 	if (!e) {
297 		e = grab_nat_entry(nm_i, ni->nid, true);
298 		copy_node_info(&e->ni, ni);
299 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
300 	} else if (new_blkaddr == NEW_ADDR) {
301 		/*
302 		 * when nid is reallocated,
303 		 * previous nat entry can be remained in nat cache.
304 		 * So, reinitialize it with new information.
305 		 */
306 		copy_node_info(&e->ni, ni);
307 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
308 	}
309 
310 	/* sanity check */
311 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
312 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
313 			new_blkaddr == NULL_ADDR);
314 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
315 			new_blkaddr == NEW_ADDR);
316 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
317 			nat_get_blkaddr(e) != NULL_ADDR &&
318 			new_blkaddr == NEW_ADDR);
319 
320 	/* increment version no as node is removed */
321 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
322 		unsigned char version = nat_get_version(e);
323 		nat_set_version(e, inc_node_version(version));
324 
325 		/* in order to reuse the nid */
326 		if (nm_i->next_scan_nid > ni->nid)
327 			nm_i->next_scan_nid = ni->nid;
328 	}
329 
330 	/* change address */
331 	nat_set_blkaddr(e, new_blkaddr);
332 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
333 		set_nat_flag(e, IS_CHECKPOINTED, false);
334 	__set_nat_cache_dirty(nm_i, e);
335 
336 	/* update fsync_mark if its inode nat entry is still alive */
337 	if (ni->nid != ni->ino)
338 		e = __lookup_nat_cache(nm_i, ni->ino);
339 	if (e) {
340 		if (fsync_done && ni->nid == ni->ino)
341 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
342 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
343 	}
344 	up_write(&nm_i->nat_tree_lock);
345 }
346 
347 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
348 {
349 	struct f2fs_nm_info *nm_i = NM_I(sbi);
350 	int nr = nr_shrink;
351 
352 	if (!down_write_trylock(&nm_i->nat_tree_lock))
353 		return 0;
354 
355 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
356 		struct nat_entry *ne;
357 		ne = list_first_entry(&nm_i->nat_entries,
358 					struct nat_entry, list);
359 		__del_from_nat_cache(nm_i, ne);
360 		nr_shrink--;
361 	}
362 	up_write(&nm_i->nat_tree_lock);
363 	return nr - nr_shrink;
364 }
365 
366 /*
367  * This function always returns success
368  */
369 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
370 {
371 	struct f2fs_nm_info *nm_i = NM_I(sbi);
372 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
373 	struct f2fs_journal *journal = curseg->journal;
374 	nid_t start_nid = START_NID(nid);
375 	struct f2fs_nat_block *nat_blk;
376 	struct page *page = NULL;
377 	struct f2fs_nat_entry ne;
378 	struct nat_entry *e;
379 	pgoff_t index;
380 	int i;
381 
382 	ni->nid = nid;
383 
384 	/* Check nat cache */
385 	down_read(&nm_i->nat_tree_lock);
386 	e = __lookup_nat_cache(nm_i, nid);
387 	if (e) {
388 		ni->ino = nat_get_ino(e);
389 		ni->blk_addr = nat_get_blkaddr(e);
390 		ni->version = nat_get_version(e);
391 		up_read(&nm_i->nat_tree_lock);
392 		return;
393 	}
394 
395 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
396 
397 	/* Check current segment summary */
398 	down_read(&curseg->journal_rwsem);
399 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
400 	if (i >= 0) {
401 		ne = nat_in_journal(journal, i);
402 		node_info_from_raw_nat(ni, &ne);
403 	}
404 	up_read(&curseg->journal_rwsem);
405 	if (i >= 0) {
406 		up_read(&nm_i->nat_tree_lock);
407 		goto cache;
408 	}
409 
410 	/* Fill node_info from nat page */
411 	index = current_nat_addr(sbi, nid);
412 	up_read(&nm_i->nat_tree_lock);
413 
414 	page = get_meta_page(sbi, index);
415 	nat_blk = (struct f2fs_nat_block *)page_address(page);
416 	ne = nat_blk->entries[nid - start_nid];
417 	node_info_from_raw_nat(ni, &ne);
418 	f2fs_put_page(page, 1);
419 cache:
420 	/* cache nat entry */
421 	down_write(&nm_i->nat_tree_lock);
422 	cache_nat_entry(sbi, nid, &ne);
423 	up_write(&nm_i->nat_tree_lock);
424 }
425 
426 /*
427  * readahead MAX_RA_NODE number of node pages.
428  */
429 static void ra_node_pages(struct page *parent, int start, int n)
430 {
431 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
432 	struct blk_plug plug;
433 	int i, end;
434 	nid_t nid;
435 
436 	blk_start_plug(&plug);
437 
438 	/* Then, try readahead for siblings of the desired node */
439 	end = start + n;
440 	end = min(end, NIDS_PER_BLOCK);
441 	for (i = start; i < end; i++) {
442 		nid = get_nid(parent, i, false);
443 		ra_node_page(sbi, nid);
444 	}
445 
446 	blk_finish_plug(&plug);
447 }
448 
449 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
450 {
451 	const long direct_index = ADDRS_PER_INODE(dn->inode);
452 	const long direct_blks = ADDRS_PER_BLOCK;
453 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
454 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
455 	int cur_level = dn->cur_level;
456 	int max_level = dn->max_level;
457 	pgoff_t base = 0;
458 
459 	if (!dn->max_level)
460 		return pgofs + 1;
461 
462 	while (max_level-- > cur_level)
463 		skipped_unit *= NIDS_PER_BLOCK;
464 
465 	switch (dn->max_level) {
466 	case 3:
467 		base += 2 * indirect_blks;
468 	case 2:
469 		base += 2 * direct_blks;
470 	case 1:
471 		base += direct_index;
472 		break;
473 	default:
474 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
475 	}
476 
477 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
478 }
479 
480 /*
481  * The maximum depth is four.
482  * Offset[0] will have raw inode offset.
483  */
484 static int get_node_path(struct inode *inode, long block,
485 				int offset[4], unsigned int noffset[4])
486 {
487 	const long direct_index = ADDRS_PER_INODE(inode);
488 	const long direct_blks = ADDRS_PER_BLOCK;
489 	const long dptrs_per_blk = NIDS_PER_BLOCK;
490 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
491 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
492 	int n = 0;
493 	int level = 0;
494 
495 	noffset[0] = 0;
496 
497 	if (block < direct_index) {
498 		offset[n] = block;
499 		goto got;
500 	}
501 	block -= direct_index;
502 	if (block < direct_blks) {
503 		offset[n++] = NODE_DIR1_BLOCK;
504 		noffset[n] = 1;
505 		offset[n] = block;
506 		level = 1;
507 		goto got;
508 	}
509 	block -= direct_blks;
510 	if (block < direct_blks) {
511 		offset[n++] = NODE_DIR2_BLOCK;
512 		noffset[n] = 2;
513 		offset[n] = block;
514 		level = 1;
515 		goto got;
516 	}
517 	block -= direct_blks;
518 	if (block < indirect_blks) {
519 		offset[n++] = NODE_IND1_BLOCK;
520 		noffset[n] = 3;
521 		offset[n++] = block / direct_blks;
522 		noffset[n] = 4 + offset[n - 1];
523 		offset[n] = block % direct_blks;
524 		level = 2;
525 		goto got;
526 	}
527 	block -= indirect_blks;
528 	if (block < indirect_blks) {
529 		offset[n++] = NODE_IND2_BLOCK;
530 		noffset[n] = 4 + dptrs_per_blk;
531 		offset[n++] = block / direct_blks;
532 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
533 		offset[n] = block % direct_blks;
534 		level = 2;
535 		goto got;
536 	}
537 	block -= indirect_blks;
538 	if (block < dindirect_blks) {
539 		offset[n++] = NODE_DIND_BLOCK;
540 		noffset[n] = 5 + (dptrs_per_blk * 2);
541 		offset[n++] = block / indirect_blks;
542 		noffset[n] = 6 + (dptrs_per_blk * 2) +
543 			      offset[n - 1] * (dptrs_per_blk + 1);
544 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
545 		noffset[n] = 7 + (dptrs_per_blk * 2) +
546 			      offset[n - 2] * (dptrs_per_blk + 1) +
547 			      offset[n - 1];
548 		offset[n] = block % direct_blks;
549 		level = 3;
550 		goto got;
551 	} else {
552 		BUG();
553 	}
554 got:
555 	return level;
556 }
557 
558 /*
559  * Caller should call f2fs_put_dnode(dn).
560  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
561  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
562  * In the case of RDONLY_NODE, we don't need to care about mutex.
563  */
564 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
565 {
566 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
567 	struct page *npage[4];
568 	struct page *parent = NULL;
569 	int offset[4];
570 	unsigned int noffset[4];
571 	nid_t nids[4];
572 	int level, i = 0;
573 	int err = 0;
574 
575 	level = get_node_path(dn->inode, index, offset, noffset);
576 
577 	nids[0] = dn->inode->i_ino;
578 	npage[0] = dn->inode_page;
579 
580 	if (!npage[0]) {
581 		npage[0] = get_node_page(sbi, nids[0]);
582 		if (IS_ERR(npage[0]))
583 			return PTR_ERR(npage[0]);
584 	}
585 
586 	/* if inline_data is set, should not report any block indices */
587 	if (f2fs_has_inline_data(dn->inode) && index) {
588 		err = -ENOENT;
589 		f2fs_put_page(npage[0], 1);
590 		goto release_out;
591 	}
592 
593 	parent = npage[0];
594 	if (level != 0)
595 		nids[1] = get_nid(parent, offset[0], true);
596 	dn->inode_page = npage[0];
597 	dn->inode_page_locked = true;
598 
599 	/* get indirect or direct nodes */
600 	for (i = 1; i <= level; i++) {
601 		bool done = false;
602 
603 		if (!nids[i] && mode == ALLOC_NODE) {
604 			/* alloc new node */
605 			if (!alloc_nid(sbi, &(nids[i]))) {
606 				err = -ENOSPC;
607 				goto release_pages;
608 			}
609 
610 			dn->nid = nids[i];
611 			npage[i] = new_node_page(dn, noffset[i], NULL);
612 			if (IS_ERR(npage[i])) {
613 				alloc_nid_failed(sbi, nids[i]);
614 				err = PTR_ERR(npage[i]);
615 				goto release_pages;
616 			}
617 
618 			set_nid(parent, offset[i - 1], nids[i], i == 1);
619 			alloc_nid_done(sbi, nids[i]);
620 			done = true;
621 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
622 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
623 			if (IS_ERR(npage[i])) {
624 				err = PTR_ERR(npage[i]);
625 				goto release_pages;
626 			}
627 			done = true;
628 		}
629 		if (i == 1) {
630 			dn->inode_page_locked = false;
631 			unlock_page(parent);
632 		} else {
633 			f2fs_put_page(parent, 1);
634 		}
635 
636 		if (!done) {
637 			npage[i] = get_node_page(sbi, nids[i]);
638 			if (IS_ERR(npage[i])) {
639 				err = PTR_ERR(npage[i]);
640 				f2fs_put_page(npage[0], 0);
641 				goto release_out;
642 			}
643 		}
644 		if (i < level) {
645 			parent = npage[i];
646 			nids[i + 1] = get_nid(parent, offset[i], false);
647 		}
648 	}
649 	dn->nid = nids[level];
650 	dn->ofs_in_node = offset[level];
651 	dn->node_page = npage[level];
652 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
653 	return 0;
654 
655 release_pages:
656 	f2fs_put_page(parent, 1);
657 	if (i > 1)
658 		f2fs_put_page(npage[0], 0);
659 release_out:
660 	dn->inode_page = NULL;
661 	dn->node_page = NULL;
662 	if (err == -ENOENT) {
663 		dn->cur_level = i;
664 		dn->max_level = level;
665 		dn->ofs_in_node = offset[level];
666 	}
667 	return err;
668 }
669 
670 static void truncate_node(struct dnode_of_data *dn)
671 {
672 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
673 	struct node_info ni;
674 
675 	get_node_info(sbi, dn->nid, &ni);
676 	if (dn->inode->i_blocks == 0) {
677 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
678 		goto invalidate;
679 	}
680 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
681 
682 	/* Deallocate node address */
683 	invalidate_blocks(sbi, ni.blk_addr);
684 	dec_valid_node_count(sbi, dn->inode);
685 	set_node_addr(sbi, &ni, NULL_ADDR, false);
686 
687 	if (dn->nid == dn->inode->i_ino) {
688 		remove_orphan_inode(sbi, dn->nid);
689 		dec_valid_inode_count(sbi);
690 		f2fs_inode_synced(dn->inode);
691 	}
692 invalidate:
693 	clear_node_page_dirty(dn->node_page);
694 	set_sbi_flag(sbi, SBI_IS_DIRTY);
695 
696 	f2fs_put_page(dn->node_page, 1);
697 
698 	invalidate_mapping_pages(NODE_MAPPING(sbi),
699 			dn->node_page->index, dn->node_page->index);
700 
701 	dn->node_page = NULL;
702 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
703 }
704 
705 static int truncate_dnode(struct dnode_of_data *dn)
706 {
707 	struct page *page;
708 
709 	if (dn->nid == 0)
710 		return 1;
711 
712 	/* get direct node */
713 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
714 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
715 		return 1;
716 	else if (IS_ERR(page))
717 		return PTR_ERR(page);
718 
719 	/* Make dnode_of_data for parameter */
720 	dn->node_page = page;
721 	dn->ofs_in_node = 0;
722 	truncate_data_blocks(dn);
723 	truncate_node(dn);
724 	return 1;
725 }
726 
727 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
728 						int ofs, int depth)
729 {
730 	struct dnode_of_data rdn = *dn;
731 	struct page *page;
732 	struct f2fs_node *rn;
733 	nid_t child_nid;
734 	unsigned int child_nofs;
735 	int freed = 0;
736 	int i, ret;
737 
738 	if (dn->nid == 0)
739 		return NIDS_PER_BLOCK + 1;
740 
741 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
742 
743 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
744 	if (IS_ERR(page)) {
745 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
746 		return PTR_ERR(page);
747 	}
748 
749 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
750 
751 	rn = F2FS_NODE(page);
752 	if (depth < 3) {
753 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
754 			child_nid = le32_to_cpu(rn->in.nid[i]);
755 			if (child_nid == 0)
756 				continue;
757 			rdn.nid = child_nid;
758 			ret = truncate_dnode(&rdn);
759 			if (ret < 0)
760 				goto out_err;
761 			if (set_nid(page, i, 0, false))
762 				dn->node_changed = true;
763 		}
764 	} else {
765 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
766 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
767 			child_nid = le32_to_cpu(rn->in.nid[i]);
768 			if (child_nid == 0) {
769 				child_nofs += NIDS_PER_BLOCK + 1;
770 				continue;
771 			}
772 			rdn.nid = child_nid;
773 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
774 			if (ret == (NIDS_PER_BLOCK + 1)) {
775 				if (set_nid(page, i, 0, false))
776 					dn->node_changed = true;
777 				child_nofs += ret;
778 			} else if (ret < 0 && ret != -ENOENT) {
779 				goto out_err;
780 			}
781 		}
782 		freed = child_nofs;
783 	}
784 
785 	if (!ofs) {
786 		/* remove current indirect node */
787 		dn->node_page = page;
788 		truncate_node(dn);
789 		freed++;
790 	} else {
791 		f2fs_put_page(page, 1);
792 	}
793 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
794 	return freed;
795 
796 out_err:
797 	f2fs_put_page(page, 1);
798 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
799 	return ret;
800 }
801 
802 static int truncate_partial_nodes(struct dnode_of_data *dn,
803 			struct f2fs_inode *ri, int *offset, int depth)
804 {
805 	struct page *pages[2];
806 	nid_t nid[3];
807 	nid_t child_nid;
808 	int err = 0;
809 	int i;
810 	int idx = depth - 2;
811 
812 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
813 	if (!nid[0])
814 		return 0;
815 
816 	/* get indirect nodes in the path */
817 	for (i = 0; i < idx + 1; i++) {
818 		/* reference count'll be increased */
819 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
820 		if (IS_ERR(pages[i])) {
821 			err = PTR_ERR(pages[i]);
822 			idx = i - 1;
823 			goto fail;
824 		}
825 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
826 	}
827 
828 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
829 
830 	/* free direct nodes linked to a partial indirect node */
831 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
832 		child_nid = get_nid(pages[idx], i, false);
833 		if (!child_nid)
834 			continue;
835 		dn->nid = child_nid;
836 		err = truncate_dnode(dn);
837 		if (err < 0)
838 			goto fail;
839 		if (set_nid(pages[idx], i, 0, false))
840 			dn->node_changed = true;
841 	}
842 
843 	if (offset[idx + 1] == 0) {
844 		dn->node_page = pages[idx];
845 		dn->nid = nid[idx];
846 		truncate_node(dn);
847 	} else {
848 		f2fs_put_page(pages[idx], 1);
849 	}
850 	offset[idx]++;
851 	offset[idx + 1] = 0;
852 	idx--;
853 fail:
854 	for (i = idx; i >= 0; i--)
855 		f2fs_put_page(pages[i], 1);
856 
857 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
858 
859 	return err;
860 }
861 
862 /*
863  * All the block addresses of data and nodes should be nullified.
864  */
865 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
866 {
867 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868 	int err = 0, cont = 1;
869 	int level, offset[4], noffset[4];
870 	unsigned int nofs = 0;
871 	struct f2fs_inode *ri;
872 	struct dnode_of_data dn;
873 	struct page *page;
874 
875 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
876 
877 	level = get_node_path(inode, from, offset, noffset);
878 
879 	page = get_node_page(sbi, inode->i_ino);
880 	if (IS_ERR(page)) {
881 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
882 		return PTR_ERR(page);
883 	}
884 
885 	set_new_dnode(&dn, inode, page, NULL, 0);
886 	unlock_page(page);
887 
888 	ri = F2FS_INODE(page);
889 	switch (level) {
890 	case 0:
891 	case 1:
892 		nofs = noffset[1];
893 		break;
894 	case 2:
895 		nofs = noffset[1];
896 		if (!offset[level - 1])
897 			goto skip_partial;
898 		err = truncate_partial_nodes(&dn, ri, offset, level);
899 		if (err < 0 && err != -ENOENT)
900 			goto fail;
901 		nofs += 1 + NIDS_PER_BLOCK;
902 		break;
903 	case 3:
904 		nofs = 5 + 2 * NIDS_PER_BLOCK;
905 		if (!offset[level - 1])
906 			goto skip_partial;
907 		err = truncate_partial_nodes(&dn, ri, offset, level);
908 		if (err < 0 && err != -ENOENT)
909 			goto fail;
910 		break;
911 	default:
912 		BUG();
913 	}
914 
915 skip_partial:
916 	while (cont) {
917 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
918 		switch (offset[0]) {
919 		case NODE_DIR1_BLOCK:
920 		case NODE_DIR2_BLOCK:
921 			err = truncate_dnode(&dn);
922 			break;
923 
924 		case NODE_IND1_BLOCK:
925 		case NODE_IND2_BLOCK:
926 			err = truncate_nodes(&dn, nofs, offset[1], 2);
927 			break;
928 
929 		case NODE_DIND_BLOCK:
930 			err = truncate_nodes(&dn, nofs, offset[1], 3);
931 			cont = 0;
932 			break;
933 
934 		default:
935 			BUG();
936 		}
937 		if (err < 0 && err != -ENOENT)
938 			goto fail;
939 		if (offset[1] == 0 &&
940 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
941 			lock_page(page);
942 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
943 			f2fs_wait_on_page_writeback(page, NODE, true);
944 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
945 			set_page_dirty(page);
946 			unlock_page(page);
947 		}
948 		offset[1] = 0;
949 		offset[0]++;
950 		nofs += err;
951 	}
952 fail:
953 	f2fs_put_page(page, 0);
954 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
955 	return err > 0 ? 0 : err;
956 }
957 
958 int truncate_xattr_node(struct inode *inode, struct page *page)
959 {
960 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
961 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
962 	struct dnode_of_data dn;
963 	struct page *npage;
964 
965 	if (!nid)
966 		return 0;
967 
968 	npage = get_node_page(sbi, nid);
969 	if (IS_ERR(npage))
970 		return PTR_ERR(npage);
971 
972 	f2fs_i_xnid_write(inode, 0);
973 
974 	set_new_dnode(&dn, inode, page, npage, nid);
975 
976 	if (page)
977 		dn.inode_page_locked = true;
978 	truncate_node(&dn);
979 	return 0;
980 }
981 
982 /*
983  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
984  * f2fs_unlock_op().
985  */
986 int remove_inode_page(struct inode *inode)
987 {
988 	struct dnode_of_data dn;
989 	int err;
990 
991 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
992 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
993 	if (err)
994 		return err;
995 
996 	err = truncate_xattr_node(inode, dn.inode_page);
997 	if (err) {
998 		f2fs_put_dnode(&dn);
999 		return err;
1000 	}
1001 
1002 	/* remove potential inline_data blocks */
1003 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1004 				S_ISLNK(inode->i_mode))
1005 		truncate_data_blocks_range(&dn, 1);
1006 
1007 	/* 0 is possible, after f2fs_new_inode() has failed */
1008 	f2fs_bug_on(F2FS_I_SB(inode),
1009 			inode->i_blocks != 0 && inode->i_blocks != 1);
1010 
1011 	/* will put inode & node pages */
1012 	truncate_node(&dn);
1013 	return 0;
1014 }
1015 
1016 struct page *new_inode_page(struct inode *inode)
1017 {
1018 	struct dnode_of_data dn;
1019 
1020 	/* allocate inode page for new inode */
1021 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1022 
1023 	/* caller should f2fs_put_page(page, 1); */
1024 	return new_node_page(&dn, 0, NULL);
1025 }
1026 
1027 struct page *new_node_page(struct dnode_of_data *dn,
1028 				unsigned int ofs, struct page *ipage)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031 	struct node_info new_ni;
1032 	struct page *page;
1033 	int err;
1034 
1035 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1036 		return ERR_PTR(-EPERM);
1037 
1038 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1039 	if (!page)
1040 		return ERR_PTR(-ENOMEM);
1041 
1042 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1043 		err = -ENOSPC;
1044 		goto fail;
1045 	}
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 	get_node_info(sbi, dn->nid, &new_ni);
1048 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1049 #endif
1050 	new_ni.nid = dn->nid;
1051 	new_ni.ino = dn->inode->i_ino;
1052 	new_ni.blk_addr = NULL_ADDR;
1053 	new_ni.flag = 0;
1054 	new_ni.version = 0;
1055 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1056 
1057 	f2fs_wait_on_page_writeback(page, NODE, true);
1058 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1059 	set_cold_node(dn->inode, page);
1060 	if (!PageUptodate(page))
1061 		SetPageUptodate(page);
1062 	if (set_page_dirty(page))
1063 		dn->node_changed = true;
1064 
1065 	if (f2fs_has_xattr_block(ofs))
1066 		f2fs_i_xnid_write(dn->inode, dn->nid);
1067 
1068 	if (ofs == 0)
1069 		inc_valid_inode_count(sbi);
1070 	return page;
1071 
1072 fail:
1073 	clear_node_page_dirty(page);
1074 	f2fs_put_page(page, 1);
1075 	return ERR_PTR(err);
1076 }
1077 
1078 /*
1079  * Caller should do after getting the following values.
1080  * 0: f2fs_put_page(page, 0)
1081  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1082  */
1083 static int read_node_page(struct page *page, int op_flags)
1084 {
1085 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1086 	struct node_info ni;
1087 	struct f2fs_io_info fio = {
1088 		.sbi = sbi,
1089 		.type = NODE,
1090 		.op = REQ_OP_READ,
1091 		.op_flags = op_flags,
1092 		.page = page,
1093 		.encrypted_page = NULL,
1094 	};
1095 
1096 	if (PageUptodate(page))
1097 		return LOCKED_PAGE;
1098 
1099 	get_node_info(sbi, page->index, &ni);
1100 
1101 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1102 		ClearPageUptodate(page);
1103 		return -ENOENT;
1104 	}
1105 
1106 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1107 	return f2fs_submit_page_bio(&fio);
1108 }
1109 
1110 /*
1111  * Readahead a node page
1112  */
1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1114 {
1115 	struct page *apage;
1116 	int err;
1117 
1118 	if (!nid)
1119 		return;
1120 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1121 
1122 	rcu_read_lock();
1123 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1124 	rcu_read_unlock();
1125 	if (apage)
1126 		return;
1127 
1128 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1129 	if (!apage)
1130 		return;
1131 
1132 	err = read_node_page(apage, REQ_RAHEAD);
1133 	f2fs_put_page(apage, err ? 1 : 0);
1134 }
1135 
1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1137 					struct page *parent, int start)
1138 {
1139 	struct page *page;
1140 	int err;
1141 
1142 	if (!nid)
1143 		return ERR_PTR(-ENOENT);
1144 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1145 repeat:
1146 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1147 	if (!page)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	err = read_node_page(page, 0);
1151 	if (err < 0) {
1152 		f2fs_put_page(page, 1);
1153 		return ERR_PTR(err);
1154 	} else if (err == LOCKED_PAGE) {
1155 		goto page_hit;
1156 	}
1157 
1158 	if (parent)
1159 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1160 
1161 	lock_page(page);
1162 
1163 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1164 		f2fs_put_page(page, 1);
1165 		goto repeat;
1166 	}
1167 
1168 	if (unlikely(!PageUptodate(page)))
1169 		goto out_err;
1170 page_hit:
1171 	if(unlikely(nid != nid_of_node(page))) {
1172 		f2fs_bug_on(sbi, 1);
1173 		ClearPageUptodate(page);
1174 out_err:
1175 		f2fs_put_page(page, 1);
1176 		return ERR_PTR(-EIO);
1177 	}
1178 	return page;
1179 }
1180 
1181 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1182 {
1183 	return __get_node_page(sbi, nid, NULL, 0);
1184 }
1185 
1186 struct page *get_node_page_ra(struct page *parent, int start)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1189 	nid_t nid = get_nid(parent, start, false);
1190 
1191 	return __get_node_page(sbi, nid, parent, start);
1192 }
1193 
1194 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1195 {
1196 	struct inode *inode;
1197 	struct page *page;
1198 	int ret;
1199 
1200 	/* should flush inline_data before evict_inode */
1201 	inode = ilookup(sbi->sb, ino);
1202 	if (!inode)
1203 		return;
1204 
1205 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1206 	if (!page)
1207 		goto iput_out;
1208 
1209 	if (!PageUptodate(page))
1210 		goto page_out;
1211 
1212 	if (!PageDirty(page))
1213 		goto page_out;
1214 
1215 	if (!clear_page_dirty_for_io(page))
1216 		goto page_out;
1217 
1218 	ret = f2fs_write_inline_data(inode, page);
1219 	inode_dec_dirty_pages(inode);
1220 	remove_dirty_inode(inode);
1221 	if (ret)
1222 		set_page_dirty(page);
1223 page_out:
1224 	f2fs_put_page(page, 1);
1225 iput_out:
1226 	iput(inode);
1227 }
1228 
1229 void move_node_page(struct page *node_page, int gc_type)
1230 {
1231 	if (gc_type == FG_GC) {
1232 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1233 		struct writeback_control wbc = {
1234 			.sync_mode = WB_SYNC_ALL,
1235 			.nr_to_write = 1,
1236 			.for_reclaim = 0,
1237 		};
1238 
1239 		set_page_dirty(node_page);
1240 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1241 
1242 		f2fs_bug_on(sbi, PageWriteback(node_page));
1243 		if (!clear_page_dirty_for_io(node_page))
1244 			goto out_page;
1245 
1246 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1247 			unlock_page(node_page);
1248 		goto release_page;
1249 	} else {
1250 		/* set page dirty and write it */
1251 		if (!PageWriteback(node_page))
1252 			set_page_dirty(node_page);
1253 	}
1254 out_page:
1255 	unlock_page(node_page);
1256 release_page:
1257 	f2fs_put_page(node_page, 0);
1258 }
1259 
1260 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1261 {
1262 	pgoff_t index, end;
1263 	struct pagevec pvec;
1264 	struct page *last_page = NULL;
1265 
1266 	pagevec_init(&pvec, 0);
1267 	index = 0;
1268 	end = ULONG_MAX;
1269 
1270 	while (index <= end) {
1271 		int i, nr_pages;
1272 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1273 				PAGECACHE_TAG_DIRTY,
1274 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1275 		if (nr_pages == 0)
1276 			break;
1277 
1278 		for (i = 0; i < nr_pages; i++) {
1279 			struct page *page = pvec.pages[i];
1280 
1281 			if (unlikely(f2fs_cp_error(sbi))) {
1282 				f2fs_put_page(last_page, 0);
1283 				pagevec_release(&pvec);
1284 				return ERR_PTR(-EIO);
1285 			}
1286 
1287 			if (!IS_DNODE(page) || !is_cold_node(page))
1288 				continue;
1289 			if (ino_of_node(page) != ino)
1290 				continue;
1291 
1292 			lock_page(page);
1293 
1294 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1295 continue_unlock:
1296 				unlock_page(page);
1297 				continue;
1298 			}
1299 			if (ino_of_node(page) != ino)
1300 				goto continue_unlock;
1301 
1302 			if (!PageDirty(page)) {
1303 				/* someone wrote it for us */
1304 				goto continue_unlock;
1305 			}
1306 
1307 			if (last_page)
1308 				f2fs_put_page(last_page, 0);
1309 
1310 			get_page(page);
1311 			last_page = page;
1312 			unlock_page(page);
1313 		}
1314 		pagevec_release(&pvec);
1315 		cond_resched();
1316 	}
1317 	return last_page;
1318 }
1319 
1320 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1321 				struct writeback_control *wbc)
1322 {
1323 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1324 	nid_t nid;
1325 	struct node_info ni;
1326 	struct f2fs_io_info fio = {
1327 		.sbi = sbi,
1328 		.type = NODE,
1329 		.op = REQ_OP_WRITE,
1330 		.op_flags = wbc_to_write_flags(wbc),
1331 		.page = page,
1332 		.encrypted_page = NULL,
1333 		.submitted = false,
1334 	};
1335 
1336 	trace_f2fs_writepage(page, NODE);
1337 
1338 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1339 		goto redirty_out;
1340 	if (unlikely(f2fs_cp_error(sbi)))
1341 		goto redirty_out;
1342 
1343 	/* get old block addr of this node page */
1344 	nid = nid_of_node(page);
1345 	f2fs_bug_on(sbi, page->index != nid);
1346 
1347 	if (wbc->for_reclaim) {
1348 		if (!down_read_trylock(&sbi->node_write))
1349 			goto redirty_out;
1350 	} else {
1351 		down_read(&sbi->node_write);
1352 	}
1353 
1354 	get_node_info(sbi, nid, &ni);
1355 
1356 	/* This page is already truncated */
1357 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1358 		ClearPageUptodate(page);
1359 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1360 		up_read(&sbi->node_write);
1361 		unlock_page(page);
1362 		return 0;
1363 	}
1364 
1365 	if (atomic && !test_opt(sbi, NOBARRIER))
1366 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1367 
1368 	set_page_writeback(page);
1369 	fio.old_blkaddr = ni.blk_addr;
1370 	write_node_page(nid, &fio);
1371 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1372 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1373 	up_read(&sbi->node_write);
1374 
1375 	if (wbc->for_reclaim) {
1376 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1377 						page->index, NODE, WRITE);
1378 		submitted = NULL;
1379 	}
1380 
1381 	unlock_page(page);
1382 
1383 	if (unlikely(f2fs_cp_error(sbi))) {
1384 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1385 		submitted = NULL;
1386 	}
1387 	if (submitted)
1388 		*submitted = fio.submitted;
1389 
1390 	return 0;
1391 
1392 redirty_out:
1393 	redirty_page_for_writepage(wbc, page);
1394 	return AOP_WRITEPAGE_ACTIVATE;
1395 }
1396 
1397 static int f2fs_write_node_page(struct page *page,
1398 				struct writeback_control *wbc)
1399 {
1400 	return __write_node_page(page, false, NULL, wbc);
1401 }
1402 
1403 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1404 			struct writeback_control *wbc, bool atomic)
1405 {
1406 	pgoff_t index, end;
1407 	pgoff_t last_idx = ULONG_MAX;
1408 	struct pagevec pvec;
1409 	int ret = 0;
1410 	struct page *last_page = NULL;
1411 	bool marked = false;
1412 	nid_t ino = inode->i_ino;
1413 
1414 	if (atomic) {
1415 		last_page = last_fsync_dnode(sbi, ino);
1416 		if (IS_ERR_OR_NULL(last_page))
1417 			return PTR_ERR_OR_ZERO(last_page);
1418 	}
1419 retry:
1420 	pagevec_init(&pvec, 0);
1421 	index = 0;
1422 	end = ULONG_MAX;
1423 
1424 	while (index <= end) {
1425 		int i, nr_pages;
1426 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1427 				PAGECACHE_TAG_DIRTY,
1428 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1429 		if (nr_pages == 0)
1430 			break;
1431 
1432 		for (i = 0; i < nr_pages; i++) {
1433 			struct page *page = pvec.pages[i];
1434 			bool submitted = false;
1435 
1436 			if (unlikely(f2fs_cp_error(sbi))) {
1437 				f2fs_put_page(last_page, 0);
1438 				pagevec_release(&pvec);
1439 				ret = -EIO;
1440 				goto out;
1441 			}
1442 
1443 			if (!IS_DNODE(page) || !is_cold_node(page))
1444 				continue;
1445 			if (ino_of_node(page) != ino)
1446 				continue;
1447 
1448 			lock_page(page);
1449 
1450 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1451 continue_unlock:
1452 				unlock_page(page);
1453 				continue;
1454 			}
1455 			if (ino_of_node(page) != ino)
1456 				goto continue_unlock;
1457 
1458 			if (!PageDirty(page) && page != last_page) {
1459 				/* someone wrote it for us */
1460 				goto continue_unlock;
1461 			}
1462 
1463 			f2fs_wait_on_page_writeback(page, NODE, true);
1464 			BUG_ON(PageWriteback(page));
1465 
1466 			set_fsync_mark(page, 0);
1467 			set_dentry_mark(page, 0);
1468 
1469 			if (!atomic || page == last_page) {
1470 				set_fsync_mark(page, 1);
1471 				if (IS_INODE(page)) {
1472 					if (is_inode_flag_set(inode,
1473 								FI_DIRTY_INODE))
1474 						update_inode(inode, page);
1475 					set_dentry_mark(page,
1476 						need_dentry_mark(sbi, ino));
1477 				}
1478 				/*  may be written by other thread */
1479 				if (!PageDirty(page))
1480 					set_page_dirty(page);
1481 			}
1482 
1483 			if (!clear_page_dirty_for_io(page))
1484 				goto continue_unlock;
1485 
1486 			ret = __write_node_page(page, atomic &&
1487 						page == last_page,
1488 						&submitted, wbc);
1489 			if (ret) {
1490 				unlock_page(page);
1491 				f2fs_put_page(last_page, 0);
1492 				break;
1493 			} else if (submitted) {
1494 				last_idx = page->index;
1495 			}
1496 
1497 			if (page == last_page) {
1498 				f2fs_put_page(page, 0);
1499 				marked = true;
1500 				break;
1501 			}
1502 		}
1503 		pagevec_release(&pvec);
1504 		cond_resched();
1505 
1506 		if (ret || marked)
1507 			break;
1508 	}
1509 	if (!ret && atomic && !marked) {
1510 		f2fs_msg(sbi->sb, KERN_DEBUG,
1511 			"Retry to write fsync mark: ino=%u, idx=%lx",
1512 					ino, last_page->index);
1513 		lock_page(last_page);
1514 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1515 		set_page_dirty(last_page);
1516 		unlock_page(last_page);
1517 		goto retry;
1518 	}
1519 out:
1520 	if (last_idx != ULONG_MAX)
1521 		f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1522 							NODE, WRITE);
1523 	return ret ? -EIO: 0;
1524 }
1525 
1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1527 {
1528 	pgoff_t index, end;
1529 	struct pagevec pvec;
1530 	int step = 0;
1531 	int nwritten = 0;
1532 	int ret = 0;
1533 
1534 	pagevec_init(&pvec, 0);
1535 
1536 next_step:
1537 	index = 0;
1538 	end = ULONG_MAX;
1539 
1540 	while (index <= end) {
1541 		int i, nr_pages;
1542 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1543 				PAGECACHE_TAG_DIRTY,
1544 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1545 		if (nr_pages == 0)
1546 			break;
1547 
1548 		for (i = 0; i < nr_pages; i++) {
1549 			struct page *page = pvec.pages[i];
1550 			bool submitted = false;
1551 
1552 			if (unlikely(f2fs_cp_error(sbi))) {
1553 				pagevec_release(&pvec);
1554 				ret = -EIO;
1555 				goto out;
1556 			}
1557 
1558 			/*
1559 			 * flushing sequence with step:
1560 			 * 0. indirect nodes
1561 			 * 1. dentry dnodes
1562 			 * 2. file dnodes
1563 			 */
1564 			if (step == 0 && IS_DNODE(page))
1565 				continue;
1566 			if (step == 1 && (!IS_DNODE(page) ||
1567 						is_cold_node(page)))
1568 				continue;
1569 			if (step == 2 && (!IS_DNODE(page) ||
1570 						!is_cold_node(page)))
1571 				continue;
1572 lock_node:
1573 			if (!trylock_page(page))
1574 				continue;
1575 
1576 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1577 continue_unlock:
1578 				unlock_page(page);
1579 				continue;
1580 			}
1581 
1582 			if (!PageDirty(page)) {
1583 				/* someone wrote it for us */
1584 				goto continue_unlock;
1585 			}
1586 
1587 			/* flush inline_data */
1588 			if (is_inline_node(page)) {
1589 				clear_inline_node(page);
1590 				unlock_page(page);
1591 				flush_inline_data(sbi, ino_of_node(page));
1592 				goto lock_node;
1593 			}
1594 
1595 			f2fs_wait_on_page_writeback(page, NODE, true);
1596 
1597 			BUG_ON(PageWriteback(page));
1598 			if (!clear_page_dirty_for_io(page))
1599 				goto continue_unlock;
1600 
1601 			set_fsync_mark(page, 0);
1602 			set_dentry_mark(page, 0);
1603 
1604 			ret = __write_node_page(page, false, &submitted, wbc);
1605 			if (ret)
1606 				unlock_page(page);
1607 			else if (submitted)
1608 				nwritten++;
1609 
1610 			if (--wbc->nr_to_write == 0)
1611 				break;
1612 		}
1613 		pagevec_release(&pvec);
1614 		cond_resched();
1615 
1616 		if (wbc->nr_to_write == 0) {
1617 			step = 2;
1618 			break;
1619 		}
1620 	}
1621 
1622 	if (step < 2) {
1623 		step++;
1624 		goto next_step;
1625 	}
1626 out:
1627 	if (nwritten)
1628 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1629 	return ret;
1630 }
1631 
1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1633 {
1634 	pgoff_t index = 0, end = ULONG_MAX;
1635 	struct pagevec pvec;
1636 	int ret2, ret = 0;
1637 
1638 	pagevec_init(&pvec, 0);
1639 
1640 	while (index <= end) {
1641 		int i, nr_pages;
1642 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1643 				PAGECACHE_TAG_WRITEBACK,
1644 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1645 		if (nr_pages == 0)
1646 			break;
1647 
1648 		for (i = 0; i < nr_pages; i++) {
1649 			struct page *page = pvec.pages[i];
1650 
1651 			/* until radix tree lookup accepts end_index */
1652 			if (unlikely(page->index > end))
1653 				continue;
1654 
1655 			if (ino && ino_of_node(page) == ino) {
1656 				f2fs_wait_on_page_writeback(page, NODE, true);
1657 				if (TestClearPageError(page))
1658 					ret = -EIO;
1659 			}
1660 		}
1661 		pagevec_release(&pvec);
1662 		cond_resched();
1663 	}
1664 
1665 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1666 	if (!ret)
1667 		ret = ret2;
1668 	return ret;
1669 }
1670 
1671 static int f2fs_write_node_pages(struct address_space *mapping,
1672 			    struct writeback_control *wbc)
1673 {
1674 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1675 	struct blk_plug plug;
1676 	long diff;
1677 
1678 	/* balancing f2fs's metadata in background */
1679 	f2fs_balance_fs_bg(sbi);
1680 
1681 	/* collect a number of dirty node pages and write together */
1682 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1683 		goto skip_write;
1684 
1685 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1686 
1687 	diff = nr_pages_to_write(sbi, NODE, wbc);
1688 	wbc->sync_mode = WB_SYNC_NONE;
1689 	blk_start_plug(&plug);
1690 	sync_node_pages(sbi, wbc);
1691 	blk_finish_plug(&plug);
1692 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1693 	return 0;
1694 
1695 skip_write:
1696 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1697 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1698 	return 0;
1699 }
1700 
1701 static int f2fs_set_node_page_dirty(struct page *page)
1702 {
1703 	trace_f2fs_set_page_dirty(page, NODE);
1704 
1705 	if (!PageUptodate(page))
1706 		SetPageUptodate(page);
1707 	if (!PageDirty(page)) {
1708 		f2fs_set_page_dirty_nobuffers(page);
1709 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1710 		SetPagePrivate(page);
1711 		f2fs_trace_pid(page);
1712 		return 1;
1713 	}
1714 	return 0;
1715 }
1716 
1717 /*
1718  * Structure of the f2fs node operations
1719  */
1720 const struct address_space_operations f2fs_node_aops = {
1721 	.writepage	= f2fs_write_node_page,
1722 	.writepages	= f2fs_write_node_pages,
1723 	.set_page_dirty	= f2fs_set_node_page_dirty,
1724 	.invalidatepage	= f2fs_invalidate_page,
1725 	.releasepage	= f2fs_release_page,
1726 #ifdef CONFIG_MIGRATION
1727 	.migratepage    = f2fs_migrate_page,
1728 #endif
1729 };
1730 
1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1732 						nid_t n)
1733 {
1734 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1735 }
1736 
1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1738 			struct free_nid *i, enum nid_list list, bool new)
1739 {
1740 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1741 
1742 	if (new) {
1743 		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1744 		if (err)
1745 			return err;
1746 	}
1747 
1748 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1749 						i->state != NID_ALLOC);
1750 	nm_i->nid_cnt[list]++;
1751 	list_add_tail(&i->list, &nm_i->nid_list[list]);
1752 	return 0;
1753 }
1754 
1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1756 			struct free_nid *i, enum nid_list list, bool reuse)
1757 {
1758 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1759 
1760 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1761 						i->state != NID_ALLOC);
1762 	nm_i->nid_cnt[list]--;
1763 	list_del(&i->list);
1764 	if (!reuse)
1765 		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1766 }
1767 
1768 /* return if the nid is recognized as free */
1769 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1770 {
1771 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772 	struct free_nid *i, *e;
1773 	struct nat_entry *ne;
1774 	int err = -EINVAL;
1775 	bool ret = false;
1776 
1777 	/* 0 nid should not be used */
1778 	if (unlikely(nid == 0))
1779 		return false;
1780 
1781 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1782 	i->nid = nid;
1783 	i->state = NID_NEW;
1784 
1785 	if (radix_tree_preload(GFP_NOFS))
1786 		goto err;
1787 
1788 	spin_lock(&nm_i->nid_list_lock);
1789 
1790 	if (build) {
1791 		/*
1792 		 *   Thread A             Thread B
1793 		 *  - f2fs_create
1794 		 *   - f2fs_new_inode
1795 		 *    - alloc_nid
1796 		 *     - __insert_nid_to_list(ALLOC_NID_LIST)
1797 		 *                     - f2fs_balance_fs_bg
1798 		 *                      - build_free_nids
1799 		 *                       - __build_free_nids
1800 		 *                        - scan_nat_page
1801 		 *                         - add_free_nid
1802 		 *                          - __lookup_nat_cache
1803 		 *  - f2fs_add_link
1804 		 *   - init_inode_metadata
1805 		 *    - new_inode_page
1806 		 *     - new_node_page
1807 		 *      - set_node_addr
1808 		 *  - alloc_nid_done
1809 		 *   - __remove_nid_from_list(ALLOC_NID_LIST)
1810 		 *                         - __insert_nid_to_list(FREE_NID_LIST)
1811 		 */
1812 		ne = __lookup_nat_cache(nm_i, nid);
1813 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1814 				nat_get_blkaddr(ne) != NULL_ADDR))
1815 			goto err_out;
1816 
1817 		e = __lookup_free_nid_list(nm_i, nid);
1818 		if (e) {
1819 			if (e->state == NID_NEW)
1820 				ret = true;
1821 			goto err_out;
1822 		}
1823 	}
1824 	ret = true;
1825 	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1826 err_out:
1827 	spin_unlock(&nm_i->nid_list_lock);
1828 	radix_tree_preload_end();
1829 err:
1830 	if (err)
1831 		kmem_cache_free(free_nid_slab, i);
1832 	return ret;
1833 }
1834 
1835 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1836 {
1837 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1838 	struct free_nid *i;
1839 	bool need_free = false;
1840 
1841 	spin_lock(&nm_i->nid_list_lock);
1842 	i = __lookup_free_nid_list(nm_i, nid);
1843 	if (i && i->state == NID_NEW) {
1844 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1845 		need_free = true;
1846 	}
1847 	spin_unlock(&nm_i->nid_list_lock);
1848 
1849 	if (need_free)
1850 		kmem_cache_free(free_nid_slab, i);
1851 }
1852 
1853 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1854 							bool set, bool build)
1855 {
1856 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1857 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1858 	unsigned int nid_ofs = nid - START_NID(nid);
1859 
1860 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1861 		return;
1862 
1863 	if (set)
1864 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1865 	else
1866 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1867 
1868 	if (set)
1869 		nm_i->free_nid_count[nat_ofs]++;
1870 	else if (!build)
1871 		nm_i->free_nid_count[nat_ofs]--;
1872 }
1873 
1874 static void scan_nat_page(struct f2fs_sb_info *sbi,
1875 			struct page *nat_page, nid_t start_nid)
1876 {
1877 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1878 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1879 	block_t blk_addr;
1880 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1881 	int i;
1882 
1883 	if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1884 		return;
1885 
1886 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1887 
1888 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1889 
1890 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1891 		bool freed = false;
1892 
1893 		if (unlikely(start_nid >= nm_i->max_nid))
1894 			break;
1895 
1896 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1897 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1898 		if (blk_addr == NULL_ADDR)
1899 			freed = add_free_nid(sbi, start_nid, true);
1900 		spin_lock(&NM_I(sbi)->nid_list_lock);
1901 		update_free_nid_bitmap(sbi, start_nid, freed, true);
1902 		spin_unlock(&NM_I(sbi)->nid_list_lock);
1903 	}
1904 }
1905 
1906 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1907 {
1908 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1909 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1910 	struct f2fs_journal *journal = curseg->journal;
1911 	unsigned int i, idx;
1912 
1913 	down_read(&nm_i->nat_tree_lock);
1914 
1915 	for (i = 0; i < nm_i->nat_blocks; i++) {
1916 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
1917 			continue;
1918 		if (!nm_i->free_nid_count[i])
1919 			continue;
1920 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1921 			nid_t nid;
1922 
1923 			if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1924 				continue;
1925 
1926 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
1927 			add_free_nid(sbi, nid, true);
1928 
1929 			if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1930 				goto out;
1931 		}
1932 	}
1933 out:
1934 	down_read(&curseg->journal_rwsem);
1935 	for (i = 0; i < nats_in_cursum(journal); i++) {
1936 		block_t addr;
1937 		nid_t nid;
1938 
1939 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1940 		nid = le32_to_cpu(nid_in_journal(journal, i));
1941 		if (addr == NULL_ADDR)
1942 			add_free_nid(sbi, nid, true);
1943 		else
1944 			remove_free_nid(sbi, nid);
1945 	}
1946 	up_read(&curseg->journal_rwsem);
1947 	up_read(&nm_i->nat_tree_lock);
1948 }
1949 
1950 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1951 {
1952 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1954 	struct f2fs_journal *journal = curseg->journal;
1955 	int i = 0;
1956 	nid_t nid = nm_i->next_scan_nid;
1957 
1958 	if (unlikely(nid >= nm_i->max_nid))
1959 		nid = 0;
1960 
1961 	/* Enough entries */
1962 	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1963 		return;
1964 
1965 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1966 		return;
1967 
1968 	if (!mount) {
1969 		/* try to find free nids in free_nid_bitmap */
1970 		scan_free_nid_bits(sbi);
1971 
1972 		if (nm_i->nid_cnt[FREE_NID_LIST])
1973 			return;
1974 	}
1975 
1976 	/* readahead nat pages to be scanned */
1977 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1978 							META_NAT, true);
1979 
1980 	down_read(&nm_i->nat_tree_lock);
1981 
1982 	while (1) {
1983 		struct page *page = get_current_nat_page(sbi, nid);
1984 
1985 		scan_nat_page(sbi, page, nid);
1986 		f2fs_put_page(page, 1);
1987 
1988 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1989 		if (unlikely(nid >= nm_i->max_nid))
1990 			nid = 0;
1991 
1992 		if (++i >= FREE_NID_PAGES)
1993 			break;
1994 	}
1995 
1996 	/* go to the next free nat pages to find free nids abundantly */
1997 	nm_i->next_scan_nid = nid;
1998 
1999 	/* find free nids from current sum_pages */
2000 	down_read(&curseg->journal_rwsem);
2001 	for (i = 0; i < nats_in_cursum(journal); i++) {
2002 		block_t addr;
2003 
2004 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2005 		nid = le32_to_cpu(nid_in_journal(journal, i));
2006 		if (addr == NULL_ADDR)
2007 			add_free_nid(sbi, nid, true);
2008 		else
2009 			remove_free_nid(sbi, nid);
2010 	}
2011 	up_read(&curseg->journal_rwsem);
2012 	up_read(&nm_i->nat_tree_lock);
2013 
2014 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2015 					nm_i->ra_nid_pages, META_NAT, false);
2016 }
2017 
2018 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2019 {
2020 	mutex_lock(&NM_I(sbi)->build_lock);
2021 	__build_free_nids(sbi, sync, mount);
2022 	mutex_unlock(&NM_I(sbi)->build_lock);
2023 }
2024 
2025 /*
2026  * If this function returns success, caller can obtain a new nid
2027  * from second parameter of this function.
2028  * The returned nid could be used ino as well as nid when inode is created.
2029  */
2030 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2031 {
2032 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2033 	struct free_nid *i = NULL;
2034 retry:
2035 #ifdef CONFIG_F2FS_FAULT_INJECTION
2036 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2037 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2038 		return false;
2039 	}
2040 #endif
2041 	spin_lock(&nm_i->nid_list_lock);
2042 
2043 	if (unlikely(nm_i->available_nids == 0)) {
2044 		spin_unlock(&nm_i->nid_list_lock);
2045 		return false;
2046 	}
2047 
2048 	/* We should not use stale free nids created by build_free_nids */
2049 	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2050 		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2051 		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2052 					struct free_nid, list);
2053 		*nid = i->nid;
2054 
2055 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2056 		i->state = NID_ALLOC;
2057 		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2058 		nm_i->available_nids--;
2059 
2060 		update_free_nid_bitmap(sbi, *nid, false, false);
2061 
2062 		spin_unlock(&nm_i->nid_list_lock);
2063 		return true;
2064 	}
2065 	spin_unlock(&nm_i->nid_list_lock);
2066 
2067 	/* Let's scan nat pages and its caches to get free nids */
2068 	build_free_nids(sbi, true, false);
2069 	goto retry;
2070 }
2071 
2072 /*
2073  * alloc_nid() should be called prior to this function.
2074  */
2075 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2076 {
2077 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2078 	struct free_nid *i;
2079 
2080 	spin_lock(&nm_i->nid_list_lock);
2081 	i = __lookup_free_nid_list(nm_i, nid);
2082 	f2fs_bug_on(sbi, !i);
2083 	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2084 	spin_unlock(&nm_i->nid_list_lock);
2085 
2086 	kmem_cache_free(free_nid_slab, i);
2087 }
2088 
2089 /*
2090  * alloc_nid() should be called prior to this function.
2091  */
2092 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2093 {
2094 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2095 	struct free_nid *i;
2096 	bool need_free = false;
2097 
2098 	if (!nid)
2099 		return;
2100 
2101 	spin_lock(&nm_i->nid_list_lock);
2102 	i = __lookup_free_nid_list(nm_i, nid);
2103 	f2fs_bug_on(sbi, !i);
2104 
2105 	if (!available_free_memory(sbi, FREE_NIDS)) {
2106 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2107 		need_free = true;
2108 	} else {
2109 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2110 		i->state = NID_NEW;
2111 		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2112 	}
2113 
2114 	nm_i->available_nids++;
2115 
2116 	update_free_nid_bitmap(sbi, nid, true, false);
2117 
2118 	spin_unlock(&nm_i->nid_list_lock);
2119 
2120 	if (need_free)
2121 		kmem_cache_free(free_nid_slab, i);
2122 }
2123 
2124 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2125 {
2126 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2127 	struct free_nid *i, *next;
2128 	int nr = nr_shrink;
2129 
2130 	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2131 		return 0;
2132 
2133 	if (!mutex_trylock(&nm_i->build_lock))
2134 		return 0;
2135 
2136 	spin_lock(&nm_i->nid_list_lock);
2137 	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2138 									list) {
2139 		if (nr_shrink <= 0 ||
2140 				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2141 			break;
2142 
2143 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2144 		kmem_cache_free(free_nid_slab, i);
2145 		nr_shrink--;
2146 	}
2147 	spin_unlock(&nm_i->nid_list_lock);
2148 	mutex_unlock(&nm_i->build_lock);
2149 
2150 	return nr - nr_shrink;
2151 }
2152 
2153 void recover_inline_xattr(struct inode *inode, struct page *page)
2154 {
2155 	void *src_addr, *dst_addr;
2156 	size_t inline_size;
2157 	struct page *ipage;
2158 	struct f2fs_inode *ri;
2159 
2160 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2161 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2162 
2163 	ri = F2FS_INODE(page);
2164 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2165 		clear_inode_flag(inode, FI_INLINE_XATTR);
2166 		goto update_inode;
2167 	}
2168 
2169 	dst_addr = inline_xattr_addr(ipage);
2170 	src_addr = inline_xattr_addr(page);
2171 	inline_size = inline_xattr_size(inode);
2172 
2173 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2174 	memcpy(dst_addr, src_addr, inline_size);
2175 update_inode:
2176 	update_inode(inode, ipage);
2177 	f2fs_put_page(ipage, 1);
2178 }
2179 
2180 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2181 {
2182 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2183 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2184 	nid_t new_xnid = nid_of_node(page);
2185 	struct node_info ni;
2186 	struct page *xpage;
2187 
2188 	if (!prev_xnid)
2189 		goto recover_xnid;
2190 
2191 	/* 1: invalidate the previous xattr nid */
2192 	get_node_info(sbi, prev_xnid, &ni);
2193 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2194 	invalidate_blocks(sbi, ni.blk_addr);
2195 	dec_valid_node_count(sbi, inode);
2196 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2197 
2198 recover_xnid:
2199 	/* 2: update xattr nid in inode */
2200 	remove_free_nid(sbi, new_xnid);
2201 	f2fs_i_xnid_write(inode, new_xnid);
2202 	if (unlikely(!inc_valid_node_count(sbi, inode)))
2203 		f2fs_bug_on(sbi, 1);
2204 	update_inode_page(inode);
2205 
2206 	/* 3: update and set xattr node page dirty */
2207 	xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2208 	if (!xpage)
2209 		return -ENOMEM;
2210 
2211 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2212 
2213 	get_node_info(sbi, new_xnid, &ni);
2214 	ni.ino = inode->i_ino;
2215 	set_node_addr(sbi, &ni, NEW_ADDR, false);
2216 	set_page_dirty(xpage);
2217 	f2fs_put_page(xpage, 1);
2218 
2219 	return 0;
2220 }
2221 
2222 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2223 {
2224 	struct f2fs_inode *src, *dst;
2225 	nid_t ino = ino_of_node(page);
2226 	struct node_info old_ni, new_ni;
2227 	struct page *ipage;
2228 
2229 	get_node_info(sbi, ino, &old_ni);
2230 
2231 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2232 		return -EINVAL;
2233 retry:
2234 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2235 	if (!ipage) {
2236 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2237 		goto retry;
2238 	}
2239 
2240 	/* Should not use this inode from free nid list */
2241 	remove_free_nid(sbi, ino);
2242 
2243 	if (!PageUptodate(ipage))
2244 		SetPageUptodate(ipage);
2245 	fill_node_footer(ipage, ino, ino, 0, true);
2246 
2247 	src = F2FS_INODE(page);
2248 	dst = F2FS_INODE(ipage);
2249 
2250 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2251 	dst->i_size = 0;
2252 	dst->i_blocks = cpu_to_le64(1);
2253 	dst->i_links = cpu_to_le32(1);
2254 	dst->i_xattr_nid = 0;
2255 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2256 
2257 	new_ni = old_ni;
2258 	new_ni.ino = ino;
2259 
2260 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2261 		WARN_ON(1);
2262 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2263 	inc_valid_inode_count(sbi);
2264 	set_page_dirty(ipage);
2265 	f2fs_put_page(ipage, 1);
2266 	return 0;
2267 }
2268 
2269 int restore_node_summary(struct f2fs_sb_info *sbi,
2270 			unsigned int segno, struct f2fs_summary_block *sum)
2271 {
2272 	struct f2fs_node *rn;
2273 	struct f2fs_summary *sum_entry;
2274 	block_t addr;
2275 	int i, idx, last_offset, nrpages;
2276 
2277 	/* scan the node segment */
2278 	last_offset = sbi->blocks_per_seg;
2279 	addr = START_BLOCK(sbi, segno);
2280 	sum_entry = &sum->entries[0];
2281 
2282 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2283 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2284 
2285 		/* readahead node pages */
2286 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2287 
2288 		for (idx = addr; idx < addr + nrpages; idx++) {
2289 			struct page *page = get_tmp_page(sbi, idx);
2290 
2291 			rn = F2FS_NODE(page);
2292 			sum_entry->nid = rn->footer.nid;
2293 			sum_entry->version = 0;
2294 			sum_entry->ofs_in_node = 0;
2295 			sum_entry++;
2296 			f2fs_put_page(page, 1);
2297 		}
2298 
2299 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2300 							addr + nrpages);
2301 	}
2302 	return 0;
2303 }
2304 
2305 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2306 {
2307 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2308 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2309 	struct f2fs_journal *journal = curseg->journal;
2310 	int i;
2311 
2312 	down_write(&curseg->journal_rwsem);
2313 	for (i = 0; i < nats_in_cursum(journal); i++) {
2314 		struct nat_entry *ne;
2315 		struct f2fs_nat_entry raw_ne;
2316 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2317 
2318 		raw_ne = nat_in_journal(journal, i);
2319 
2320 		ne = __lookup_nat_cache(nm_i, nid);
2321 		if (!ne) {
2322 			ne = grab_nat_entry(nm_i, nid, true);
2323 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2324 		}
2325 
2326 		/*
2327 		 * if a free nat in journal has not been used after last
2328 		 * checkpoint, we should remove it from available nids,
2329 		 * since later we will add it again.
2330 		 */
2331 		if (!get_nat_flag(ne, IS_DIRTY) &&
2332 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2333 			spin_lock(&nm_i->nid_list_lock);
2334 			nm_i->available_nids--;
2335 			spin_unlock(&nm_i->nid_list_lock);
2336 		}
2337 
2338 		__set_nat_cache_dirty(nm_i, ne);
2339 	}
2340 	update_nats_in_cursum(journal, -i);
2341 	up_write(&curseg->journal_rwsem);
2342 }
2343 
2344 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2345 						struct list_head *head, int max)
2346 {
2347 	struct nat_entry_set *cur;
2348 
2349 	if (nes->entry_cnt >= max)
2350 		goto add_out;
2351 
2352 	list_for_each_entry(cur, head, set_list) {
2353 		if (cur->entry_cnt >= nes->entry_cnt) {
2354 			list_add(&nes->set_list, cur->set_list.prev);
2355 			return;
2356 		}
2357 	}
2358 add_out:
2359 	list_add_tail(&nes->set_list, head);
2360 }
2361 
2362 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2363 						struct page *page)
2364 {
2365 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2367 	struct f2fs_nat_block *nat_blk = page_address(page);
2368 	int valid = 0;
2369 	int i;
2370 
2371 	if (!enabled_nat_bits(sbi, NULL))
2372 		return;
2373 
2374 	for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2375 		if (start_nid == 0 && i == 0)
2376 			valid++;
2377 		if (nat_blk->entries[i].block_addr)
2378 			valid++;
2379 	}
2380 	if (valid == 0) {
2381 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2382 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2383 		return;
2384 	}
2385 
2386 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2387 	if (valid == NAT_ENTRY_PER_BLOCK)
2388 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2389 	else
2390 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2391 }
2392 
2393 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2394 		struct nat_entry_set *set, struct cp_control *cpc)
2395 {
2396 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2397 	struct f2fs_journal *journal = curseg->journal;
2398 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2399 	bool to_journal = true;
2400 	struct f2fs_nat_block *nat_blk;
2401 	struct nat_entry *ne, *cur;
2402 	struct page *page = NULL;
2403 
2404 	/*
2405 	 * there are two steps to flush nat entries:
2406 	 * #1, flush nat entries to journal in current hot data summary block.
2407 	 * #2, flush nat entries to nat page.
2408 	 */
2409 	if (enabled_nat_bits(sbi, cpc) ||
2410 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2411 		to_journal = false;
2412 
2413 	if (to_journal) {
2414 		down_write(&curseg->journal_rwsem);
2415 	} else {
2416 		page = get_next_nat_page(sbi, start_nid);
2417 		nat_blk = page_address(page);
2418 		f2fs_bug_on(sbi, !nat_blk);
2419 	}
2420 
2421 	/* flush dirty nats in nat entry set */
2422 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2423 		struct f2fs_nat_entry *raw_ne;
2424 		nid_t nid = nat_get_nid(ne);
2425 		int offset;
2426 
2427 		if (nat_get_blkaddr(ne) == NEW_ADDR)
2428 			continue;
2429 
2430 		if (to_journal) {
2431 			offset = lookup_journal_in_cursum(journal,
2432 							NAT_JOURNAL, nid, 1);
2433 			f2fs_bug_on(sbi, offset < 0);
2434 			raw_ne = &nat_in_journal(journal, offset);
2435 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2436 		} else {
2437 			raw_ne = &nat_blk->entries[nid - start_nid];
2438 		}
2439 		raw_nat_from_node_info(raw_ne, &ne->ni);
2440 		nat_reset_flag(ne);
2441 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2442 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2443 			add_free_nid(sbi, nid, false);
2444 			spin_lock(&NM_I(sbi)->nid_list_lock);
2445 			NM_I(sbi)->available_nids++;
2446 			update_free_nid_bitmap(sbi, nid, true, false);
2447 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2448 		} else {
2449 			spin_lock(&NM_I(sbi)->nid_list_lock);
2450 			update_free_nid_bitmap(sbi, nid, false, false);
2451 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2452 		}
2453 	}
2454 
2455 	if (to_journal) {
2456 		up_write(&curseg->journal_rwsem);
2457 	} else {
2458 		__update_nat_bits(sbi, start_nid, page);
2459 		f2fs_put_page(page, 1);
2460 	}
2461 
2462 	/* Allow dirty nats by node block allocation in write_begin */
2463 	if (!set->entry_cnt) {
2464 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2465 		kmem_cache_free(nat_entry_set_slab, set);
2466 	}
2467 }
2468 
2469 /*
2470  * This function is called during the checkpointing process.
2471  */
2472 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2473 {
2474 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2475 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2476 	struct f2fs_journal *journal = curseg->journal;
2477 	struct nat_entry_set *setvec[SETVEC_SIZE];
2478 	struct nat_entry_set *set, *tmp;
2479 	unsigned int found;
2480 	nid_t set_idx = 0;
2481 	LIST_HEAD(sets);
2482 
2483 	if (!nm_i->dirty_nat_cnt)
2484 		return;
2485 
2486 	down_write(&nm_i->nat_tree_lock);
2487 
2488 	/*
2489 	 * if there are no enough space in journal to store dirty nat
2490 	 * entries, remove all entries from journal and merge them
2491 	 * into nat entry set.
2492 	 */
2493 	if (enabled_nat_bits(sbi, cpc) ||
2494 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2495 		remove_nats_in_journal(sbi);
2496 
2497 	while ((found = __gang_lookup_nat_set(nm_i,
2498 					set_idx, SETVEC_SIZE, setvec))) {
2499 		unsigned idx;
2500 		set_idx = setvec[found - 1]->set + 1;
2501 		for (idx = 0; idx < found; idx++)
2502 			__adjust_nat_entry_set(setvec[idx], &sets,
2503 						MAX_NAT_JENTRIES(journal));
2504 	}
2505 
2506 	/* flush dirty nats in nat entry set */
2507 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2508 		__flush_nat_entry_set(sbi, set, cpc);
2509 
2510 	up_write(&nm_i->nat_tree_lock);
2511 	/* Allow dirty nats by node block allocation in write_begin */
2512 }
2513 
2514 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2515 {
2516 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2518 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2519 	unsigned int i;
2520 	__u64 cp_ver = cur_cp_version(ckpt);
2521 	block_t nat_bits_addr;
2522 
2523 	if (!enabled_nat_bits(sbi, NULL))
2524 		return 0;
2525 
2526 	nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2527 						F2FS_BLKSIZE - 1);
2528 	nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2529 						GFP_KERNEL);
2530 	if (!nm_i->nat_bits)
2531 		return -ENOMEM;
2532 
2533 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2534 						nm_i->nat_bits_blocks;
2535 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2536 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2537 
2538 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2539 					page_address(page), F2FS_BLKSIZE);
2540 		f2fs_put_page(page, 1);
2541 	}
2542 
2543 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2544 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2545 		disable_nat_bits(sbi, true);
2546 		return 0;
2547 	}
2548 
2549 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2550 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2551 
2552 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2553 	return 0;
2554 }
2555 
2556 inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2557 {
2558 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2559 	unsigned int i = 0;
2560 	nid_t nid, last_nid;
2561 
2562 	if (!enabled_nat_bits(sbi, NULL))
2563 		return;
2564 
2565 	for (i = 0; i < nm_i->nat_blocks; i++) {
2566 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2567 		if (i >= nm_i->nat_blocks)
2568 			break;
2569 
2570 		__set_bit_le(i, nm_i->nat_block_bitmap);
2571 
2572 		nid = i * NAT_ENTRY_PER_BLOCK;
2573 		last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2574 
2575 		spin_lock(&NM_I(sbi)->nid_list_lock);
2576 		for (; nid < last_nid; nid++)
2577 			update_free_nid_bitmap(sbi, nid, true, true);
2578 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2579 	}
2580 
2581 	for (i = 0; i < nm_i->nat_blocks; i++) {
2582 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2583 		if (i >= nm_i->nat_blocks)
2584 			break;
2585 
2586 		__set_bit_le(i, nm_i->nat_block_bitmap);
2587 	}
2588 }
2589 
2590 static int init_node_manager(struct f2fs_sb_info *sbi)
2591 {
2592 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2593 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2594 	unsigned char *version_bitmap;
2595 	unsigned int nat_segs;
2596 	int err;
2597 
2598 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2599 
2600 	/* segment_count_nat includes pair segment so divide to 2. */
2601 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2602 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2603 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2604 
2605 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2606 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2607 							F2FS_RESERVED_NODE_NUM;
2608 	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2609 	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2610 	nm_i->nat_cnt = 0;
2611 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2612 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2613 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2614 
2615 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2616 	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2617 	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2618 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2619 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2620 	INIT_LIST_HEAD(&nm_i->nat_entries);
2621 
2622 	mutex_init(&nm_i->build_lock);
2623 	spin_lock_init(&nm_i->nid_list_lock);
2624 	init_rwsem(&nm_i->nat_tree_lock);
2625 
2626 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2627 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2628 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2629 	if (!version_bitmap)
2630 		return -EFAULT;
2631 
2632 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2633 					GFP_KERNEL);
2634 	if (!nm_i->nat_bitmap)
2635 		return -ENOMEM;
2636 
2637 	err = __get_nat_bitmaps(sbi);
2638 	if (err)
2639 		return err;
2640 
2641 #ifdef CONFIG_F2FS_CHECK_FS
2642 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2643 					GFP_KERNEL);
2644 	if (!nm_i->nat_bitmap_mir)
2645 		return -ENOMEM;
2646 #endif
2647 
2648 	return 0;
2649 }
2650 
2651 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2652 {
2653 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2654 
2655 	nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2656 					NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2657 	if (!nm_i->free_nid_bitmap)
2658 		return -ENOMEM;
2659 
2660 	nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2661 								GFP_KERNEL);
2662 	if (!nm_i->nat_block_bitmap)
2663 		return -ENOMEM;
2664 
2665 	nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2666 					sizeof(unsigned short), GFP_KERNEL);
2667 	if (!nm_i->free_nid_count)
2668 		return -ENOMEM;
2669 	return 0;
2670 }
2671 
2672 int build_node_manager(struct f2fs_sb_info *sbi)
2673 {
2674 	int err;
2675 
2676 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2677 	if (!sbi->nm_info)
2678 		return -ENOMEM;
2679 
2680 	err = init_node_manager(sbi);
2681 	if (err)
2682 		return err;
2683 
2684 	err = init_free_nid_cache(sbi);
2685 	if (err)
2686 		return err;
2687 
2688 	/* load free nid status from nat_bits table */
2689 	load_free_nid_bitmap(sbi);
2690 
2691 	build_free_nids(sbi, true, true);
2692 	return 0;
2693 }
2694 
2695 void destroy_node_manager(struct f2fs_sb_info *sbi)
2696 {
2697 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2698 	struct free_nid *i, *next_i;
2699 	struct nat_entry *natvec[NATVEC_SIZE];
2700 	struct nat_entry_set *setvec[SETVEC_SIZE];
2701 	nid_t nid = 0;
2702 	unsigned int found;
2703 
2704 	if (!nm_i)
2705 		return;
2706 
2707 	/* destroy free nid list */
2708 	spin_lock(&nm_i->nid_list_lock);
2709 	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2710 									list) {
2711 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2712 		spin_unlock(&nm_i->nid_list_lock);
2713 		kmem_cache_free(free_nid_slab, i);
2714 		spin_lock(&nm_i->nid_list_lock);
2715 	}
2716 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2717 	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2718 	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2719 	spin_unlock(&nm_i->nid_list_lock);
2720 
2721 	/* destroy nat cache */
2722 	down_write(&nm_i->nat_tree_lock);
2723 	while ((found = __gang_lookup_nat_cache(nm_i,
2724 					nid, NATVEC_SIZE, natvec))) {
2725 		unsigned idx;
2726 
2727 		nid = nat_get_nid(natvec[found - 1]) + 1;
2728 		for (idx = 0; idx < found; idx++)
2729 			__del_from_nat_cache(nm_i, natvec[idx]);
2730 	}
2731 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2732 
2733 	/* destroy nat set cache */
2734 	nid = 0;
2735 	while ((found = __gang_lookup_nat_set(nm_i,
2736 					nid, SETVEC_SIZE, setvec))) {
2737 		unsigned idx;
2738 
2739 		nid = setvec[found - 1]->set + 1;
2740 		for (idx = 0; idx < found; idx++) {
2741 			/* entry_cnt is not zero, when cp_error was occurred */
2742 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2743 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2744 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2745 		}
2746 	}
2747 	up_write(&nm_i->nat_tree_lock);
2748 
2749 	kvfree(nm_i->nat_block_bitmap);
2750 	kvfree(nm_i->free_nid_bitmap);
2751 	kvfree(nm_i->free_nid_count);
2752 
2753 	kfree(nm_i->nat_bitmap);
2754 	kfree(nm_i->nat_bits);
2755 #ifdef CONFIG_F2FS_CHECK_FS
2756 	kfree(nm_i->nat_bitmap_mir);
2757 #endif
2758 	sbi->nm_info = NULL;
2759 	kfree(nm_i);
2760 }
2761 
2762 int __init create_node_manager_caches(void)
2763 {
2764 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2765 			sizeof(struct nat_entry));
2766 	if (!nat_entry_slab)
2767 		goto fail;
2768 
2769 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2770 			sizeof(struct free_nid));
2771 	if (!free_nid_slab)
2772 		goto destroy_nat_entry;
2773 
2774 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2775 			sizeof(struct nat_entry_set));
2776 	if (!nat_entry_set_slab)
2777 		goto destroy_free_nid;
2778 	return 0;
2779 
2780 destroy_free_nid:
2781 	kmem_cache_destroy(free_nid_slab);
2782 destroy_nat_entry:
2783 	kmem_cache_destroy(nat_entry_slab);
2784 fail:
2785 	return -ENOMEM;
2786 }
2787 
2788 void destroy_node_manager_caches(void)
2789 {
2790 	kmem_cache_destroy(nat_entry_set_slab);
2791 	kmem_cache_destroy(free_nid_slab);
2792 	kmem_cache_destroy(nat_entry_slab);
2793 }
2794