xref: /openbmc/linux/fs/f2fs/node.c (revision e7547dac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE) {
89 		struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
90 
91 		mem_size = (atomic_read(&eti->total_ext_tree) *
92 				sizeof(struct extent_tree) +
93 				atomic_read(&eti->total_ext_node) *
94 				sizeof(struct extent_node)) >> PAGE_SHIFT;
95 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
96 	} else if (type == DISCARD_CACHE) {
97 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 	} else if (type == COMPRESS_PAGE) {
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102 		unsigned long free_ram = val.freeram;
103 
104 		/*
105 		 * free memory is lower than watermark or cached page count
106 		 * exceed threshold, deny caching compress page.
107 		 */
108 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
109 			(COMPRESS_MAPPING(sbi)->nrpages <
110 			 free_ram * sbi->compress_percent / 100);
111 #else
112 		res = false;
113 #endif
114 	} else {
115 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
116 			return true;
117 	}
118 	return res;
119 }
120 
121 static void clear_node_page_dirty(struct page *page)
122 {
123 	if (PageDirty(page)) {
124 		f2fs_clear_page_cache_dirty_tag(page);
125 		clear_page_dirty_for_io(page);
126 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
127 	}
128 	ClearPageUptodate(page);
129 }
130 
131 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
132 {
133 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
134 }
135 
136 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138 	struct page *src_page;
139 	struct page *dst_page;
140 	pgoff_t dst_off;
141 	void *src_addr;
142 	void *dst_addr;
143 	struct f2fs_nm_info *nm_i = NM_I(sbi);
144 
145 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
146 
147 	/* get current nat block page with lock */
148 	src_page = get_current_nat_page(sbi, nid);
149 	if (IS_ERR(src_page))
150 		return src_page;
151 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
152 	f2fs_bug_on(sbi, PageDirty(src_page));
153 
154 	src_addr = page_address(src_page);
155 	dst_addr = page_address(dst_page);
156 	memcpy(dst_addr, src_addr, PAGE_SIZE);
157 	set_page_dirty(dst_page);
158 	f2fs_put_page(src_page, 1);
159 
160 	set_to_next_nat(nm_i, nid);
161 
162 	return dst_page;
163 }
164 
165 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
166 						nid_t nid, bool no_fail)
167 {
168 	struct nat_entry *new;
169 
170 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
171 					GFP_F2FS_ZERO, no_fail, sbi);
172 	if (new) {
173 		nat_set_nid(new, nid);
174 		nat_reset_flag(new);
175 	}
176 	return new;
177 }
178 
179 static void __free_nat_entry(struct nat_entry *e)
180 {
181 	kmem_cache_free(nat_entry_slab, e);
182 }
183 
184 /* must be locked by nat_tree_lock */
185 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
186 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
187 {
188 	if (no_fail)
189 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
190 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
191 		return NULL;
192 
193 	if (raw_ne)
194 		node_info_from_raw_nat(&ne->ni, raw_ne);
195 
196 	spin_lock(&nm_i->nat_list_lock);
197 	list_add_tail(&ne->list, &nm_i->nat_entries);
198 	spin_unlock(&nm_i->nat_list_lock);
199 
200 	nm_i->nat_cnt[TOTAL_NAT]++;
201 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
202 	return ne;
203 }
204 
205 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
206 {
207 	struct nat_entry *ne;
208 
209 	ne = radix_tree_lookup(&nm_i->nat_root, n);
210 
211 	/* for recent accessed nat entry, move it to tail of lru list */
212 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
213 		spin_lock(&nm_i->nat_list_lock);
214 		if (!list_empty(&ne->list))
215 			list_move_tail(&ne->list, &nm_i->nat_entries);
216 		spin_unlock(&nm_i->nat_list_lock);
217 	}
218 
219 	return ne;
220 }
221 
222 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
223 		nid_t start, unsigned int nr, struct nat_entry **ep)
224 {
225 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
226 }
227 
228 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
229 {
230 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
231 	nm_i->nat_cnt[TOTAL_NAT]--;
232 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
233 	__free_nat_entry(e);
234 }
235 
236 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
237 							struct nat_entry *ne)
238 {
239 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
240 	struct nat_entry_set *head;
241 
242 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
243 	if (!head) {
244 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
245 						GFP_NOFS, true, NULL);
246 
247 		INIT_LIST_HEAD(&head->entry_list);
248 		INIT_LIST_HEAD(&head->set_list);
249 		head->set = set;
250 		head->entry_cnt = 0;
251 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
252 	}
253 	return head;
254 }
255 
256 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
257 						struct nat_entry *ne)
258 {
259 	struct nat_entry_set *head;
260 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
261 
262 	if (!new_ne)
263 		head = __grab_nat_entry_set(nm_i, ne);
264 
265 	/*
266 	 * update entry_cnt in below condition:
267 	 * 1. update NEW_ADDR to valid block address;
268 	 * 2. update old block address to new one;
269 	 */
270 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
271 				!get_nat_flag(ne, IS_DIRTY)))
272 		head->entry_cnt++;
273 
274 	set_nat_flag(ne, IS_PREALLOC, new_ne);
275 
276 	if (get_nat_flag(ne, IS_DIRTY))
277 		goto refresh_list;
278 
279 	nm_i->nat_cnt[DIRTY_NAT]++;
280 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
281 	set_nat_flag(ne, IS_DIRTY, true);
282 refresh_list:
283 	spin_lock(&nm_i->nat_list_lock);
284 	if (new_ne)
285 		list_del_init(&ne->list);
286 	else
287 		list_move_tail(&ne->list, &head->entry_list);
288 	spin_unlock(&nm_i->nat_list_lock);
289 }
290 
291 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
292 		struct nat_entry_set *set, struct nat_entry *ne)
293 {
294 	spin_lock(&nm_i->nat_list_lock);
295 	list_move_tail(&ne->list, &nm_i->nat_entries);
296 	spin_unlock(&nm_i->nat_list_lock);
297 
298 	set_nat_flag(ne, IS_DIRTY, false);
299 	set->entry_cnt--;
300 	nm_i->nat_cnt[DIRTY_NAT]--;
301 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
302 }
303 
304 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
305 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
306 {
307 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308 							start, nr);
309 }
310 
311 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
312 {
313 	return NODE_MAPPING(sbi) == page->mapping &&
314 			IS_DNODE(page) && is_cold_node(page);
315 }
316 
317 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
318 {
319 	spin_lock_init(&sbi->fsync_node_lock);
320 	INIT_LIST_HEAD(&sbi->fsync_node_list);
321 	sbi->fsync_seg_id = 0;
322 	sbi->fsync_node_num = 0;
323 }
324 
325 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
326 							struct page *page)
327 {
328 	struct fsync_node_entry *fn;
329 	unsigned long flags;
330 	unsigned int seq_id;
331 
332 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
333 					GFP_NOFS, true, NULL);
334 
335 	get_page(page);
336 	fn->page = page;
337 	INIT_LIST_HEAD(&fn->list);
338 
339 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
340 	list_add_tail(&fn->list, &sbi->fsync_node_list);
341 	fn->seq_id = sbi->fsync_seg_id++;
342 	seq_id = fn->seq_id;
343 	sbi->fsync_node_num++;
344 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
345 
346 	return seq_id;
347 }
348 
349 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
350 {
351 	struct fsync_node_entry *fn;
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
355 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
356 		if (fn->page == page) {
357 			list_del(&fn->list);
358 			sbi->fsync_node_num--;
359 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
360 			kmem_cache_free(fsync_node_entry_slab, fn);
361 			put_page(page);
362 			return;
363 		}
364 	}
365 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
366 	f2fs_bug_on(sbi, 1);
367 }
368 
369 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
374 	sbi->fsync_seg_id = 0;
375 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
376 }
377 
378 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
379 {
380 	struct f2fs_nm_info *nm_i = NM_I(sbi);
381 	struct nat_entry *e;
382 	bool need = false;
383 
384 	f2fs_down_read(&nm_i->nat_tree_lock);
385 	e = __lookup_nat_cache(nm_i, nid);
386 	if (e) {
387 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
388 				!get_nat_flag(e, HAS_FSYNCED_INODE))
389 			need = true;
390 	}
391 	f2fs_up_read(&nm_i->nat_tree_lock);
392 	return need;
393 }
394 
395 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
396 {
397 	struct f2fs_nm_info *nm_i = NM_I(sbi);
398 	struct nat_entry *e;
399 	bool is_cp = true;
400 
401 	f2fs_down_read(&nm_i->nat_tree_lock);
402 	e = __lookup_nat_cache(nm_i, nid);
403 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
404 		is_cp = false;
405 	f2fs_up_read(&nm_i->nat_tree_lock);
406 	return is_cp;
407 }
408 
409 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
410 {
411 	struct f2fs_nm_info *nm_i = NM_I(sbi);
412 	struct nat_entry *e;
413 	bool need_update = true;
414 
415 	f2fs_down_read(&nm_i->nat_tree_lock);
416 	e = __lookup_nat_cache(nm_i, ino);
417 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
418 			(get_nat_flag(e, IS_CHECKPOINTED) ||
419 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
420 		need_update = false;
421 	f2fs_up_read(&nm_i->nat_tree_lock);
422 	return need_update;
423 }
424 
425 /* must be locked by nat_tree_lock */
426 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
427 						struct f2fs_nat_entry *ne)
428 {
429 	struct f2fs_nm_info *nm_i = NM_I(sbi);
430 	struct nat_entry *new, *e;
431 
432 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
433 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
434 		return;
435 
436 	new = __alloc_nat_entry(sbi, nid, false);
437 	if (!new)
438 		return;
439 
440 	f2fs_down_write(&nm_i->nat_tree_lock);
441 	e = __lookup_nat_cache(nm_i, nid);
442 	if (!e)
443 		e = __init_nat_entry(nm_i, new, ne, false);
444 	else
445 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
446 				nat_get_blkaddr(e) !=
447 					le32_to_cpu(ne->block_addr) ||
448 				nat_get_version(e) != ne->version);
449 	f2fs_up_write(&nm_i->nat_tree_lock);
450 	if (e != new)
451 		__free_nat_entry(new);
452 }
453 
454 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
455 			block_t new_blkaddr, bool fsync_done)
456 {
457 	struct f2fs_nm_info *nm_i = NM_I(sbi);
458 	struct nat_entry *e;
459 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
460 
461 	f2fs_down_write(&nm_i->nat_tree_lock);
462 	e = __lookup_nat_cache(nm_i, ni->nid);
463 	if (!e) {
464 		e = __init_nat_entry(nm_i, new, NULL, true);
465 		copy_node_info(&e->ni, ni);
466 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
467 	} else if (new_blkaddr == NEW_ADDR) {
468 		/*
469 		 * when nid is reallocated,
470 		 * previous nat entry can be remained in nat cache.
471 		 * So, reinitialize it with new information.
472 		 */
473 		copy_node_info(&e->ni, ni);
474 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
475 	}
476 	/* let's free early to reduce memory consumption */
477 	if (e != new)
478 		__free_nat_entry(new);
479 
480 	/* sanity check */
481 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
482 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
483 			new_blkaddr == NULL_ADDR);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
485 			new_blkaddr == NEW_ADDR);
486 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
487 			new_blkaddr == NEW_ADDR);
488 
489 	/* increment version no as node is removed */
490 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
491 		unsigned char version = nat_get_version(e);
492 
493 		nat_set_version(e, inc_node_version(version));
494 	}
495 
496 	/* change address */
497 	nat_set_blkaddr(e, new_blkaddr);
498 	if (!__is_valid_data_blkaddr(new_blkaddr))
499 		set_nat_flag(e, IS_CHECKPOINTED, false);
500 	__set_nat_cache_dirty(nm_i, e);
501 
502 	/* update fsync_mark if its inode nat entry is still alive */
503 	if (ni->nid != ni->ino)
504 		e = __lookup_nat_cache(nm_i, ni->ino);
505 	if (e) {
506 		if (fsync_done && ni->nid == ni->ino)
507 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
508 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
509 	}
510 	f2fs_up_write(&nm_i->nat_tree_lock);
511 }
512 
513 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
514 {
515 	struct f2fs_nm_info *nm_i = NM_I(sbi);
516 	int nr = nr_shrink;
517 
518 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
519 		return 0;
520 
521 	spin_lock(&nm_i->nat_list_lock);
522 	while (nr_shrink) {
523 		struct nat_entry *ne;
524 
525 		if (list_empty(&nm_i->nat_entries))
526 			break;
527 
528 		ne = list_first_entry(&nm_i->nat_entries,
529 					struct nat_entry, list);
530 		list_del(&ne->list);
531 		spin_unlock(&nm_i->nat_list_lock);
532 
533 		__del_from_nat_cache(nm_i, ne);
534 		nr_shrink--;
535 
536 		spin_lock(&nm_i->nat_list_lock);
537 	}
538 	spin_unlock(&nm_i->nat_list_lock);
539 
540 	f2fs_up_write(&nm_i->nat_tree_lock);
541 	return nr - nr_shrink;
542 }
543 
544 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
545 				struct node_info *ni, bool checkpoint_context)
546 {
547 	struct f2fs_nm_info *nm_i = NM_I(sbi);
548 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
549 	struct f2fs_journal *journal = curseg->journal;
550 	nid_t start_nid = START_NID(nid);
551 	struct f2fs_nat_block *nat_blk;
552 	struct page *page = NULL;
553 	struct f2fs_nat_entry ne;
554 	struct nat_entry *e;
555 	pgoff_t index;
556 	block_t blkaddr;
557 	int i;
558 
559 	ni->nid = nid;
560 retry:
561 	/* Check nat cache */
562 	f2fs_down_read(&nm_i->nat_tree_lock);
563 	e = __lookup_nat_cache(nm_i, nid);
564 	if (e) {
565 		ni->ino = nat_get_ino(e);
566 		ni->blk_addr = nat_get_blkaddr(e);
567 		ni->version = nat_get_version(e);
568 		f2fs_up_read(&nm_i->nat_tree_lock);
569 		return 0;
570 	}
571 
572 	/*
573 	 * Check current segment summary by trying to grab journal_rwsem first.
574 	 * This sem is on the critical path on the checkpoint requiring the above
575 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
576 	 * while not bothering checkpoint.
577 	 */
578 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
579 		down_read(&curseg->journal_rwsem);
580 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
581 				!down_read_trylock(&curseg->journal_rwsem)) {
582 		f2fs_up_read(&nm_i->nat_tree_lock);
583 		goto retry;
584 	}
585 
586 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
587 	if (i >= 0) {
588 		ne = nat_in_journal(journal, i);
589 		node_info_from_raw_nat(ni, &ne);
590 	}
591 	up_read(&curseg->journal_rwsem);
592 	if (i >= 0) {
593 		f2fs_up_read(&nm_i->nat_tree_lock);
594 		goto cache;
595 	}
596 
597 	/* Fill node_info from nat page */
598 	index = current_nat_addr(sbi, nid);
599 	f2fs_up_read(&nm_i->nat_tree_lock);
600 
601 	page = f2fs_get_meta_page(sbi, index);
602 	if (IS_ERR(page))
603 		return PTR_ERR(page);
604 
605 	nat_blk = (struct f2fs_nat_block *)page_address(page);
606 	ne = nat_blk->entries[nid - start_nid];
607 	node_info_from_raw_nat(ni, &ne);
608 	f2fs_put_page(page, 1);
609 cache:
610 	blkaddr = le32_to_cpu(ne.block_addr);
611 	if (__is_valid_data_blkaddr(blkaddr) &&
612 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
613 		return -EFAULT;
614 
615 	/* cache nat entry */
616 	cache_nat_entry(sbi, nid, &ne);
617 	return 0;
618 }
619 
620 /*
621  * readahead MAX_RA_NODE number of node pages.
622  */
623 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
624 {
625 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
626 	struct blk_plug plug;
627 	int i, end;
628 	nid_t nid;
629 
630 	blk_start_plug(&plug);
631 
632 	/* Then, try readahead for siblings of the desired node */
633 	end = start + n;
634 	end = min(end, NIDS_PER_BLOCK);
635 	for (i = start; i < end; i++) {
636 		nid = get_nid(parent, i, false);
637 		f2fs_ra_node_page(sbi, nid);
638 	}
639 
640 	blk_finish_plug(&plug);
641 }
642 
643 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
644 {
645 	const long direct_index = ADDRS_PER_INODE(dn->inode);
646 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
647 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
648 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
649 	int cur_level = dn->cur_level;
650 	int max_level = dn->max_level;
651 	pgoff_t base = 0;
652 
653 	if (!dn->max_level)
654 		return pgofs + 1;
655 
656 	while (max_level-- > cur_level)
657 		skipped_unit *= NIDS_PER_BLOCK;
658 
659 	switch (dn->max_level) {
660 	case 3:
661 		base += 2 * indirect_blks;
662 		fallthrough;
663 	case 2:
664 		base += 2 * direct_blks;
665 		fallthrough;
666 	case 1:
667 		base += direct_index;
668 		break;
669 	default:
670 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
671 	}
672 
673 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
674 }
675 
676 /*
677  * The maximum depth is four.
678  * Offset[0] will have raw inode offset.
679  */
680 static int get_node_path(struct inode *inode, long block,
681 				int offset[4], unsigned int noffset[4])
682 {
683 	const long direct_index = ADDRS_PER_INODE(inode);
684 	const long direct_blks = ADDRS_PER_BLOCK(inode);
685 	const long dptrs_per_blk = NIDS_PER_BLOCK;
686 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
687 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
688 	int n = 0;
689 	int level = 0;
690 
691 	noffset[0] = 0;
692 
693 	if (block < direct_index) {
694 		offset[n] = block;
695 		goto got;
696 	}
697 	block -= direct_index;
698 	if (block < direct_blks) {
699 		offset[n++] = NODE_DIR1_BLOCK;
700 		noffset[n] = 1;
701 		offset[n] = block;
702 		level = 1;
703 		goto got;
704 	}
705 	block -= direct_blks;
706 	if (block < direct_blks) {
707 		offset[n++] = NODE_DIR2_BLOCK;
708 		noffset[n] = 2;
709 		offset[n] = block;
710 		level = 1;
711 		goto got;
712 	}
713 	block -= direct_blks;
714 	if (block < indirect_blks) {
715 		offset[n++] = NODE_IND1_BLOCK;
716 		noffset[n] = 3;
717 		offset[n++] = block / direct_blks;
718 		noffset[n] = 4 + offset[n - 1];
719 		offset[n] = block % direct_blks;
720 		level = 2;
721 		goto got;
722 	}
723 	block -= indirect_blks;
724 	if (block < indirect_blks) {
725 		offset[n++] = NODE_IND2_BLOCK;
726 		noffset[n] = 4 + dptrs_per_blk;
727 		offset[n++] = block / direct_blks;
728 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
729 		offset[n] = block % direct_blks;
730 		level = 2;
731 		goto got;
732 	}
733 	block -= indirect_blks;
734 	if (block < dindirect_blks) {
735 		offset[n++] = NODE_DIND_BLOCK;
736 		noffset[n] = 5 + (dptrs_per_blk * 2);
737 		offset[n++] = block / indirect_blks;
738 		noffset[n] = 6 + (dptrs_per_blk * 2) +
739 			      offset[n - 1] * (dptrs_per_blk + 1);
740 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
741 		noffset[n] = 7 + (dptrs_per_blk * 2) +
742 			      offset[n - 2] * (dptrs_per_blk + 1) +
743 			      offset[n - 1];
744 		offset[n] = block % direct_blks;
745 		level = 3;
746 		goto got;
747 	} else {
748 		return -E2BIG;
749 	}
750 got:
751 	return level;
752 }
753 
754 /*
755  * Caller should call f2fs_put_dnode(dn).
756  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
757  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
758  */
759 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
760 {
761 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
762 	struct page *npage[4];
763 	struct page *parent = NULL;
764 	int offset[4];
765 	unsigned int noffset[4];
766 	nid_t nids[4];
767 	int level, i = 0;
768 	int err = 0;
769 
770 	level = get_node_path(dn->inode, index, offset, noffset);
771 	if (level < 0)
772 		return level;
773 
774 	nids[0] = dn->inode->i_ino;
775 	npage[0] = dn->inode_page;
776 
777 	if (!npage[0]) {
778 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
779 		if (IS_ERR(npage[0]))
780 			return PTR_ERR(npage[0]);
781 	}
782 
783 	/* if inline_data is set, should not report any block indices */
784 	if (f2fs_has_inline_data(dn->inode) && index) {
785 		err = -ENOENT;
786 		f2fs_put_page(npage[0], 1);
787 		goto release_out;
788 	}
789 
790 	parent = npage[0];
791 	if (level != 0)
792 		nids[1] = get_nid(parent, offset[0], true);
793 	dn->inode_page = npage[0];
794 	dn->inode_page_locked = true;
795 
796 	/* get indirect or direct nodes */
797 	for (i = 1; i <= level; i++) {
798 		bool done = false;
799 
800 		if (!nids[i] && mode == ALLOC_NODE) {
801 			/* alloc new node */
802 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
803 				err = -ENOSPC;
804 				goto release_pages;
805 			}
806 
807 			dn->nid = nids[i];
808 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
809 			if (IS_ERR(npage[i])) {
810 				f2fs_alloc_nid_failed(sbi, nids[i]);
811 				err = PTR_ERR(npage[i]);
812 				goto release_pages;
813 			}
814 
815 			set_nid(parent, offset[i - 1], nids[i], i == 1);
816 			f2fs_alloc_nid_done(sbi, nids[i]);
817 			done = true;
818 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
819 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
820 			if (IS_ERR(npage[i])) {
821 				err = PTR_ERR(npage[i]);
822 				goto release_pages;
823 			}
824 			done = true;
825 		}
826 		if (i == 1) {
827 			dn->inode_page_locked = false;
828 			unlock_page(parent);
829 		} else {
830 			f2fs_put_page(parent, 1);
831 		}
832 
833 		if (!done) {
834 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
835 			if (IS_ERR(npage[i])) {
836 				err = PTR_ERR(npage[i]);
837 				f2fs_put_page(npage[0], 0);
838 				goto release_out;
839 			}
840 		}
841 		if (i < level) {
842 			parent = npage[i];
843 			nids[i + 1] = get_nid(parent, offset[i], false);
844 		}
845 	}
846 	dn->nid = nids[level];
847 	dn->ofs_in_node = offset[level];
848 	dn->node_page = npage[level];
849 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
850 
851 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
852 					f2fs_sb_has_readonly(sbi)) {
853 		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
854 		block_t blkaddr;
855 
856 		if (!c_len)
857 			goto out;
858 
859 		blkaddr = f2fs_data_blkaddr(dn);
860 		if (blkaddr == COMPRESS_ADDR)
861 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
862 						dn->ofs_in_node + 1);
863 
864 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
865 					index, blkaddr,
866 					F2FS_I(dn->inode)->i_cluster_size,
867 					c_len);
868 	}
869 out:
870 	return 0;
871 
872 release_pages:
873 	f2fs_put_page(parent, 1);
874 	if (i > 1)
875 		f2fs_put_page(npage[0], 0);
876 release_out:
877 	dn->inode_page = NULL;
878 	dn->node_page = NULL;
879 	if (err == -ENOENT) {
880 		dn->cur_level = i;
881 		dn->max_level = level;
882 		dn->ofs_in_node = offset[level];
883 	}
884 	return err;
885 }
886 
887 static int truncate_node(struct dnode_of_data *dn)
888 {
889 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
890 	struct node_info ni;
891 	int err;
892 	pgoff_t index;
893 
894 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
895 	if (err)
896 		return err;
897 
898 	/* Deallocate node address */
899 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
900 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
901 	set_node_addr(sbi, &ni, NULL_ADDR, false);
902 
903 	if (dn->nid == dn->inode->i_ino) {
904 		f2fs_remove_orphan_inode(sbi, dn->nid);
905 		dec_valid_inode_count(sbi);
906 		f2fs_inode_synced(dn->inode);
907 	}
908 
909 	clear_node_page_dirty(dn->node_page);
910 	set_sbi_flag(sbi, SBI_IS_DIRTY);
911 
912 	index = dn->node_page->index;
913 	f2fs_put_page(dn->node_page, 1);
914 
915 	invalidate_mapping_pages(NODE_MAPPING(sbi),
916 			index, index);
917 
918 	dn->node_page = NULL;
919 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
920 
921 	return 0;
922 }
923 
924 static int truncate_dnode(struct dnode_of_data *dn)
925 {
926 	struct page *page;
927 	int err;
928 
929 	if (dn->nid == 0)
930 		return 1;
931 
932 	/* get direct node */
933 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
934 	if (PTR_ERR(page) == -ENOENT)
935 		return 1;
936 	else if (IS_ERR(page))
937 		return PTR_ERR(page);
938 
939 	/* Make dnode_of_data for parameter */
940 	dn->node_page = page;
941 	dn->ofs_in_node = 0;
942 	f2fs_truncate_data_blocks(dn);
943 	err = truncate_node(dn);
944 	if (err)
945 		return err;
946 
947 	return 1;
948 }
949 
950 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
951 						int ofs, int depth)
952 {
953 	struct dnode_of_data rdn = *dn;
954 	struct page *page;
955 	struct f2fs_node *rn;
956 	nid_t child_nid;
957 	unsigned int child_nofs;
958 	int freed = 0;
959 	int i, ret;
960 
961 	if (dn->nid == 0)
962 		return NIDS_PER_BLOCK + 1;
963 
964 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
965 
966 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
967 	if (IS_ERR(page)) {
968 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
969 		return PTR_ERR(page);
970 	}
971 
972 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
973 
974 	rn = F2FS_NODE(page);
975 	if (depth < 3) {
976 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
977 			child_nid = le32_to_cpu(rn->in.nid[i]);
978 			if (child_nid == 0)
979 				continue;
980 			rdn.nid = child_nid;
981 			ret = truncate_dnode(&rdn);
982 			if (ret < 0)
983 				goto out_err;
984 			if (set_nid(page, i, 0, false))
985 				dn->node_changed = true;
986 		}
987 	} else {
988 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
989 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
990 			child_nid = le32_to_cpu(rn->in.nid[i]);
991 			if (child_nid == 0) {
992 				child_nofs += NIDS_PER_BLOCK + 1;
993 				continue;
994 			}
995 			rdn.nid = child_nid;
996 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
997 			if (ret == (NIDS_PER_BLOCK + 1)) {
998 				if (set_nid(page, i, 0, false))
999 					dn->node_changed = true;
1000 				child_nofs += ret;
1001 			} else if (ret < 0 && ret != -ENOENT) {
1002 				goto out_err;
1003 			}
1004 		}
1005 		freed = child_nofs;
1006 	}
1007 
1008 	if (!ofs) {
1009 		/* remove current indirect node */
1010 		dn->node_page = page;
1011 		ret = truncate_node(dn);
1012 		if (ret)
1013 			goto out_err;
1014 		freed++;
1015 	} else {
1016 		f2fs_put_page(page, 1);
1017 	}
1018 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1019 	return freed;
1020 
1021 out_err:
1022 	f2fs_put_page(page, 1);
1023 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1024 	return ret;
1025 }
1026 
1027 static int truncate_partial_nodes(struct dnode_of_data *dn,
1028 			struct f2fs_inode *ri, int *offset, int depth)
1029 {
1030 	struct page *pages[2];
1031 	nid_t nid[3];
1032 	nid_t child_nid;
1033 	int err = 0;
1034 	int i;
1035 	int idx = depth - 2;
1036 
1037 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1038 	if (!nid[0])
1039 		return 0;
1040 
1041 	/* get indirect nodes in the path */
1042 	for (i = 0; i < idx + 1; i++) {
1043 		/* reference count'll be increased */
1044 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1045 		if (IS_ERR(pages[i])) {
1046 			err = PTR_ERR(pages[i]);
1047 			idx = i - 1;
1048 			goto fail;
1049 		}
1050 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1051 	}
1052 
1053 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1054 
1055 	/* free direct nodes linked to a partial indirect node */
1056 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1057 		child_nid = get_nid(pages[idx], i, false);
1058 		if (!child_nid)
1059 			continue;
1060 		dn->nid = child_nid;
1061 		err = truncate_dnode(dn);
1062 		if (err < 0)
1063 			goto fail;
1064 		if (set_nid(pages[idx], i, 0, false))
1065 			dn->node_changed = true;
1066 	}
1067 
1068 	if (offset[idx + 1] == 0) {
1069 		dn->node_page = pages[idx];
1070 		dn->nid = nid[idx];
1071 		err = truncate_node(dn);
1072 		if (err)
1073 			goto fail;
1074 	} else {
1075 		f2fs_put_page(pages[idx], 1);
1076 	}
1077 	offset[idx]++;
1078 	offset[idx + 1] = 0;
1079 	idx--;
1080 fail:
1081 	for (i = idx; i >= 0; i--)
1082 		f2fs_put_page(pages[i], 1);
1083 
1084 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1085 
1086 	return err;
1087 }
1088 
1089 /*
1090  * All the block addresses of data and nodes should be nullified.
1091  */
1092 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1093 {
1094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1095 	int err = 0, cont = 1;
1096 	int level, offset[4], noffset[4];
1097 	unsigned int nofs = 0;
1098 	struct f2fs_inode *ri;
1099 	struct dnode_of_data dn;
1100 	struct page *page;
1101 
1102 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1103 
1104 	level = get_node_path(inode, from, offset, noffset);
1105 	if (level < 0) {
1106 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1107 		return level;
1108 	}
1109 
1110 	page = f2fs_get_node_page(sbi, inode->i_ino);
1111 	if (IS_ERR(page)) {
1112 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1113 		return PTR_ERR(page);
1114 	}
1115 
1116 	set_new_dnode(&dn, inode, page, NULL, 0);
1117 	unlock_page(page);
1118 
1119 	ri = F2FS_INODE(page);
1120 	switch (level) {
1121 	case 0:
1122 	case 1:
1123 		nofs = noffset[1];
1124 		break;
1125 	case 2:
1126 		nofs = noffset[1];
1127 		if (!offset[level - 1])
1128 			goto skip_partial;
1129 		err = truncate_partial_nodes(&dn, ri, offset, level);
1130 		if (err < 0 && err != -ENOENT)
1131 			goto fail;
1132 		nofs += 1 + NIDS_PER_BLOCK;
1133 		break;
1134 	case 3:
1135 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1136 		if (!offset[level - 1])
1137 			goto skip_partial;
1138 		err = truncate_partial_nodes(&dn, ri, offset, level);
1139 		if (err < 0 && err != -ENOENT)
1140 			goto fail;
1141 		break;
1142 	default:
1143 		BUG();
1144 	}
1145 
1146 skip_partial:
1147 	while (cont) {
1148 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1149 		switch (offset[0]) {
1150 		case NODE_DIR1_BLOCK:
1151 		case NODE_DIR2_BLOCK:
1152 			err = truncate_dnode(&dn);
1153 			break;
1154 
1155 		case NODE_IND1_BLOCK:
1156 		case NODE_IND2_BLOCK:
1157 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1158 			break;
1159 
1160 		case NODE_DIND_BLOCK:
1161 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1162 			cont = 0;
1163 			break;
1164 
1165 		default:
1166 			BUG();
1167 		}
1168 		if (err < 0 && err != -ENOENT)
1169 			goto fail;
1170 		if (offset[1] == 0 &&
1171 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1172 			lock_page(page);
1173 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1174 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1175 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1176 			set_page_dirty(page);
1177 			unlock_page(page);
1178 		}
1179 		offset[1] = 0;
1180 		offset[0]++;
1181 		nofs += err;
1182 	}
1183 fail:
1184 	f2fs_put_page(page, 0);
1185 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1186 	return err > 0 ? 0 : err;
1187 }
1188 
1189 /* caller must lock inode page */
1190 int f2fs_truncate_xattr_node(struct inode *inode)
1191 {
1192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1193 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1194 	struct dnode_of_data dn;
1195 	struct page *npage;
1196 	int err;
1197 
1198 	if (!nid)
1199 		return 0;
1200 
1201 	npage = f2fs_get_node_page(sbi, nid);
1202 	if (IS_ERR(npage))
1203 		return PTR_ERR(npage);
1204 
1205 	set_new_dnode(&dn, inode, NULL, npage, nid);
1206 	err = truncate_node(&dn);
1207 	if (err) {
1208 		f2fs_put_page(npage, 1);
1209 		return err;
1210 	}
1211 
1212 	f2fs_i_xnid_write(inode, 0);
1213 
1214 	return 0;
1215 }
1216 
1217 /*
1218  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1219  * f2fs_unlock_op().
1220  */
1221 int f2fs_remove_inode_page(struct inode *inode)
1222 {
1223 	struct dnode_of_data dn;
1224 	int err;
1225 
1226 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1227 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1228 	if (err)
1229 		return err;
1230 
1231 	err = f2fs_truncate_xattr_node(inode);
1232 	if (err) {
1233 		f2fs_put_dnode(&dn);
1234 		return err;
1235 	}
1236 
1237 	/* remove potential inline_data blocks */
1238 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1239 				S_ISLNK(inode->i_mode))
1240 		f2fs_truncate_data_blocks_range(&dn, 1);
1241 
1242 	/* 0 is possible, after f2fs_new_inode() has failed */
1243 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1244 		f2fs_put_dnode(&dn);
1245 		return -EIO;
1246 	}
1247 
1248 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1249 		f2fs_warn(F2FS_I_SB(inode),
1250 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1251 			inode->i_ino, (unsigned long long)inode->i_blocks);
1252 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1253 	}
1254 
1255 	/* will put inode & node pages */
1256 	err = truncate_node(&dn);
1257 	if (err) {
1258 		f2fs_put_dnode(&dn);
1259 		return err;
1260 	}
1261 	return 0;
1262 }
1263 
1264 struct page *f2fs_new_inode_page(struct inode *inode)
1265 {
1266 	struct dnode_of_data dn;
1267 
1268 	/* allocate inode page for new inode */
1269 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1270 
1271 	/* caller should f2fs_put_page(page, 1); */
1272 	return f2fs_new_node_page(&dn, 0);
1273 }
1274 
1275 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1276 {
1277 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1278 	struct node_info new_ni;
1279 	struct page *page;
1280 	int err;
1281 
1282 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1283 		return ERR_PTR(-EPERM);
1284 
1285 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1286 	if (!page)
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1290 		goto fail;
1291 
1292 #ifdef CONFIG_F2FS_CHECK_FS
1293 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1294 	if (err) {
1295 		dec_valid_node_count(sbi, dn->inode, !ofs);
1296 		goto fail;
1297 	}
1298 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1299 		err = -EFSCORRUPTED;
1300 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1301 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1302 		goto fail;
1303 	}
1304 #endif
1305 	new_ni.nid = dn->nid;
1306 	new_ni.ino = dn->inode->i_ino;
1307 	new_ni.blk_addr = NULL_ADDR;
1308 	new_ni.flag = 0;
1309 	new_ni.version = 0;
1310 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1311 
1312 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1313 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1314 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1315 	if (!PageUptodate(page))
1316 		SetPageUptodate(page);
1317 	if (set_page_dirty(page))
1318 		dn->node_changed = true;
1319 
1320 	if (f2fs_has_xattr_block(ofs))
1321 		f2fs_i_xnid_write(dn->inode, dn->nid);
1322 
1323 	if (ofs == 0)
1324 		inc_valid_inode_count(sbi);
1325 	return page;
1326 
1327 fail:
1328 	clear_node_page_dirty(page);
1329 	f2fs_put_page(page, 1);
1330 	return ERR_PTR(err);
1331 }
1332 
1333 /*
1334  * Caller should do after getting the following values.
1335  * 0: f2fs_put_page(page, 0)
1336  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1337  */
1338 static int read_node_page(struct page *page, blk_opf_t op_flags)
1339 {
1340 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1341 	struct node_info ni;
1342 	struct f2fs_io_info fio = {
1343 		.sbi = sbi,
1344 		.type = NODE,
1345 		.op = REQ_OP_READ,
1346 		.op_flags = op_flags,
1347 		.page = page,
1348 		.encrypted_page = NULL,
1349 	};
1350 	int err;
1351 
1352 	if (PageUptodate(page)) {
1353 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1354 			ClearPageUptodate(page);
1355 			return -EFSBADCRC;
1356 		}
1357 		return LOCKED_PAGE;
1358 	}
1359 
1360 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1361 	if (err)
1362 		return err;
1363 
1364 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1365 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1366 		ClearPageUptodate(page);
1367 		return -ENOENT;
1368 	}
1369 
1370 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1371 
1372 	err = f2fs_submit_page_bio(&fio);
1373 
1374 	if (!err)
1375 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1376 
1377 	return err;
1378 }
1379 
1380 /*
1381  * Readahead a node page
1382  */
1383 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1384 {
1385 	struct page *apage;
1386 	int err;
1387 
1388 	if (!nid)
1389 		return;
1390 	if (f2fs_check_nid_range(sbi, nid))
1391 		return;
1392 
1393 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1394 	if (apage)
1395 		return;
1396 
1397 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1398 	if (!apage)
1399 		return;
1400 
1401 	err = read_node_page(apage, REQ_RAHEAD);
1402 	f2fs_put_page(apage, err ? 1 : 0);
1403 }
1404 
1405 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1406 					struct page *parent, int start)
1407 {
1408 	struct page *page;
1409 	int err;
1410 
1411 	if (!nid)
1412 		return ERR_PTR(-ENOENT);
1413 	if (f2fs_check_nid_range(sbi, nid))
1414 		return ERR_PTR(-EINVAL);
1415 repeat:
1416 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1417 	if (!page)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	err = read_node_page(page, 0);
1421 	if (err < 0) {
1422 		goto out_put_err;
1423 	} else if (err == LOCKED_PAGE) {
1424 		err = 0;
1425 		goto page_hit;
1426 	}
1427 
1428 	if (parent)
1429 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1430 
1431 	lock_page(page);
1432 
1433 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1434 		f2fs_put_page(page, 1);
1435 		goto repeat;
1436 	}
1437 
1438 	if (unlikely(!PageUptodate(page))) {
1439 		err = -EIO;
1440 		goto out_err;
1441 	}
1442 
1443 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1444 		err = -EFSBADCRC;
1445 		goto out_err;
1446 	}
1447 page_hit:
1448 	if (likely(nid == nid_of_node(page)))
1449 		return page;
1450 
1451 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1452 			  nid, nid_of_node(page), ino_of_node(page),
1453 			  ofs_of_node(page), cpver_of_node(page),
1454 			  next_blkaddr_of_node(page));
1455 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1456 	err = -EINVAL;
1457 out_err:
1458 	ClearPageUptodate(page);
1459 out_put_err:
1460 	/* ENOENT comes from read_node_page which is not an error. */
1461 	if (err != -ENOENT)
1462 		f2fs_handle_page_eio(sbi, page->index, NODE);
1463 	f2fs_put_page(page, 1);
1464 	return ERR_PTR(err);
1465 }
1466 
1467 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1468 {
1469 	return __get_node_page(sbi, nid, NULL, 0);
1470 }
1471 
1472 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1473 {
1474 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1475 	nid_t nid = get_nid(parent, start, false);
1476 
1477 	return __get_node_page(sbi, nid, parent, start);
1478 }
1479 
1480 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1481 {
1482 	struct inode *inode;
1483 	struct page *page;
1484 	int ret;
1485 
1486 	/* should flush inline_data before evict_inode */
1487 	inode = ilookup(sbi->sb, ino);
1488 	if (!inode)
1489 		return;
1490 
1491 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1492 					FGP_LOCK|FGP_NOWAIT, 0);
1493 	if (!page)
1494 		goto iput_out;
1495 
1496 	if (!PageUptodate(page))
1497 		goto page_out;
1498 
1499 	if (!PageDirty(page))
1500 		goto page_out;
1501 
1502 	if (!clear_page_dirty_for_io(page))
1503 		goto page_out;
1504 
1505 	ret = f2fs_write_inline_data(inode, page);
1506 	inode_dec_dirty_pages(inode);
1507 	f2fs_remove_dirty_inode(inode);
1508 	if (ret)
1509 		set_page_dirty(page);
1510 page_out:
1511 	f2fs_put_page(page, 1);
1512 iput_out:
1513 	iput(inode);
1514 }
1515 
1516 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1517 {
1518 	pgoff_t index;
1519 	struct pagevec pvec;
1520 	struct page *last_page = NULL;
1521 	int nr_pages;
1522 
1523 	pagevec_init(&pvec);
1524 	index = 0;
1525 
1526 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1527 				PAGECACHE_TAG_DIRTY))) {
1528 		int i;
1529 
1530 		for (i = 0; i < nr_pages; i++) {
1531 			struct page *page = pvec.pages[i];
1532 
1533 			if (unlikely(f2fs_cp_error(sbi))) {
1534 				f2fs_put_page(last_page, 0);
1535 				pagevec_release(&pvec);
1536 				return ERR_PTR(-EIO);
1537 			}
1538 
1539 			if (!IS_DNODE(page) || !is_cold_node(page))
1540 				continue;
1541 			if (ino_of_node(page) != ino)
1542 				continue;
1543 
1544 			lock_page(page);
1545 
1546 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1547 continue_unlock:
1548 				unlock_page(page);
1549 				continue;
1550 			}
1551 			if (ino_of_node(page) != ino)
1552 				goto continue_unlock;
1553 
1554 			if (!PageDirty(page)) {
1555 				/* someone wrote it for us */
1556 				goto continue_unlock;
1557 			}
1558 
1559 			if (last_page)
1560 				f2fs_put_page(last_page, 0);
1561 
1562 			get_page(page);
1563 			last_page = page;
1564 			unlock_page(page);
1565 		}
1566 		pagevec_release(&pvec);
1567 		cond_resched();
1568 	}
1569 	return last_page;
1570 }
1571 
1572 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1573 				struct writeback_control *wbc, bool do_balance,
1574 				enum iostat_type io_type, unsigned int *seq_id)
1575 {
1576 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1577 	nid_t nid;
1578 	struct node_info ni;
1579 	struct f2fs_io_info fio = {
1580 		.sbi = sbi,
1581 		.ino = ino_of_node(page),
1582 		.type = NODE,
1583 		.op = REQ_OP_WRITE,
1584 		.op_flags = wbc_to_write_flags(wbc),
1585 		.page = page,
1586 		.encrypted_page = NULL,
1587 		.submitted = false,
1588 		.io_type = io_type,
1589 		.io_wbc = wbc,
1590 	};
1591 	unsigned int seq;
1592 
1593 	trace_f2fs_writepage(page, NODE);
1594 
1595 	if (unlikely(f2fs_cp_error(sbi))) {
1596 		ClearPageUptodate(page);
1597 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1598 		unlock_page(page);
1599 		return 0;
1600 	}
1601 
1602 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1603 		goto redirty_out;
1604 
1605 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1606 			wbc->sync_mode == WB_SYNC_NONE &&
1607 			IS_DNODE(page) && is_cold_node(page))
1608 		goto redirty_out;
1609 
1610 	/* get old block addr of this node page */
1611 	nid = nid_of_node(page);
1612 	f2fs_bug_on(sbi, page->index != nid);
1613 
1614 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1615 		goto redirty_out;
1616 
1617 	if (wbc->for_reclaim) {
1618 		if (!f2fs_down_read_trylock(&sbi->node_write))
1619 			goto redirty_out;
1620 	} else {
1621 		f2fs_down_read(&sbi->node_write);
1622 	}
1623 
1624 	/* This page is already truncated */
1625 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1626 		ClearPageUptodate(page);
1627 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1628 		f2fs_up_read(&sbi->node_write);
1629 		unlock_page(page);
1630 		return 0;
1631 	}
1632 
1633 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1634 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1635 					DATA_GENERIC_ENHANCE)) {
1636 		f2fs_up_read(&sbi->node_write);
1637 		goto redirty_out;
1638 	}
1639 
1640 	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1641 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1642 
1643 	/* should add to global list before clearing PAGECACHE status */
1644 	if (f2fs_in_warm_node_list(sbi, page)) {
1645 		seq = f2fs_add_fsync_node_entry(sbi, page);
1646 		if (seq_id)
1647 			*seq_id = seq;
1648 	}
1649 
1650 	set_page_writeback(page);
1651 	ClearPageError(page);
1652 
1653 	fio.old_blkaddr = ni.blk_addr;
1654 	f2fs_do_write_node_page(nid, &fio);
1655 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1656 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1657 	f2fs_up_read(&sbi->node_write);
1658 
1659 	if (wbc->for_reclaim) {
1660 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1661 		submitted = NULL;
1662 	}
1663 
1664 	unlock_page(page);
1665 
1666 	if (unlikely(f2fs_cp_error(sbi))) {
1667 		f2fs_submit_merged_write(sbi, NODE);
1668 		submitted = NULL;
1669 	}
1670 	if (submitted)
1671 		*submitted = fio.submitted;
1672 
1673 	if (do_balance)
1674 		f2fs_balance_fs(sbi, false);
1675 	return 0;
1676 
1677 redirty_out:
1678 	redirty_page_for_writepage(wbc, page);
1679 	return AOP_WRITEPAGE_ACTIVATE;
1680 }
1681 
1682 int f2fs_move_node_page(struct page *node_page, int gc_type)
1683 {
1684 	int err = 0;
1685 
1686 	if (gc_type == FG_GC) {
1687 		struct writeback_control wbc = {
1688 			.sync_mode = WB_SYNC_ALL,
1689 			.nr_to_write = 1,
1690 			.for_reclaim = 0,
1691 		};
1692 
1693 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1694 
1695 		set_page_dirty(node_page);
1696 
1697 		if (!clear_page_dirty_for_io(node_page)) {
1698 			err = -EAGAIN;
1699 			goto out_page;
1700 		}
1701 
1702 		if (__write_node_page(node_page, false, NULL,
1703 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1704 			err = -EAGAIN;
1705 			unlock_page(node_page);
1706 		}
1707 		goto release_page;
1708 	} else {
1709 		/* set page dirty and write it */
1710 		if (!PageWriteback(node_page))
1711 			set_page_dirty(node_page);
1712 	}
1713 out_page:
1714 	unlock_page(node_page);
1715 release_page:
1716 	f2fs_put_page(node_page, 0);
1717 	return err;
1718 }
1719 
1720 static int f2fs_write_node_page(struct page *page,
1721 				struct writeback_control *wbc)
1722 {
1723 	return __write_node_page(page, false, NULL, wbc, false,
1724 						FS_NODE_IO, NULL);
1725 }
1726 
1727 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1728 			struct writeback_control *wbc, bool atomic,
1729 			unsigned int *seq_id)
1730 {
1731 	pgoff_t index;
1732 	struct pagevec pvec;
1733 	int ret = 0;
1734 	struct page *last_page = NULL;
1735 	bool marked = false;
1736 	nid_t ino = inode->i_ino;
1737 	int nr_pages;
1738 	int nwritten = 0;
1739 
1740 	if (atomic) {
1741 		last_page = last_fsync_dnode(sbi, ino);
1742 		if (IS_ERR_OR_NULL(last_page))
1743 			return PTR_ERR_OR_ZERO(last_page);
1744 	}
1745 retry:
1746 	pagevec_init(&pvec);
1747 	index = 0;
1748 
1749 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1750 				PAGECACHE_TAG_DIRTY))) {
1751 		int i;
1752 
1753 		for (i = 0; i < nr_pages; i++) {
1754 			struct page *page = pvec.pages[i];
1755 			bool submitted = false;
1756 
1757 			if (unlikely(f2fs_cp_error(sbi))) {
1758 				f2fs_put_page(last_page, 0);
1759 				pagevec_release(&pvec);
1760 				ret = -EIO;
1761 				goto out;
1762 			}
1763 
1764 			if (!IS_DNODE(page) || !is_cold_node(page))
1765 				continue;
1766 			if (ino_of_node(page) != ino)
1767 				continue;
1768 
1769 			lock_page(page);
1770 
1771 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1772 continue_unlock:
1773 				unlock_page(page);
1774 				continue;
1775 			}
1776 			if (ino_of_node(page) != ino)
1777 				goto continue_unlock;
1778 
1779 			if (!PageDirty(page) && page != last_page) {
1780 				/* someone wrote it for us */
1781 				goto continue_unlock;
1782 			}
1783 
1784 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1785 
1786 			set_fsync_mark(page, 0);
1787 			set_dentry_mark(page, 0);
1788 
1789 			if (!atomic || page == last_page) {
1790 				set_fsync_mark(page, 1);
1791 				percpu_counter_inc(&sbi->rf_node_block_count);
1792 				if (IS_INODE(page)) {
1793 					if (is_inode_flag_set(inode,
1794 								FI_DIRTY_INODE))
1795 						f2fs_update_inode(inode, page);
1796 					set_dentry_mark(page,
1797 						f2fs_need_dentry_mark(sbi, ino));
1798 				}
1799 				/* may be written by other thread */
1800 				if (!PageDirty(page))
1801 					set_page_dirty(page);
1802 			}
1803 
1804 			if (!clear_page_dirty_for_io(page))
1805 				goto continue_unlock;
1806 
1807 			ret = __write_node_page(page, atomic &&
1808 						page == last_page,
1809 						&submitted, wbc, true,
1810 						FS_NODE_IO, seq_id);
1811 			if (ret) {
1812 				unlock_page(page);
1813 				f2fs_put_page(last_page, 0);
1814 				break;
1815 			} else if (submitted) {
1816 				nwritten++;
1817 			}
1818 
1819 			if (page == last_page) {
1820 				f2fs_put_page(page, 0);
1821 				marked = true;
1822 				break;
1823 			}
1824 		}
1825 		pagevec_release(&pvec);
1826 		cond_resched();
1827 
1828 		if (ret || marked)
1829 			break;
1830 	}
1831 	if (!ret && atomic && !marked) {
1832 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1833 			   ino, last_page->index);
1834 		lock_page(last_page);
1835 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1836 		set_page_dirty(last_page);
1837 		unlock_page(last_page);
1838 		goto retry;
1839 	}
1840 out:
1841 	if (nwritten)
1842 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1843 	return ret ? -EIO : 0;
1844 }
1845 
1846 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1847 {
1848 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1849 	bool clean;
1850 
1851 	if (inode->i_ino != ino)
1852 		return 0;
1853 
1854 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1855 		return 0;
1856 
1857 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1858 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1859 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1860 
1861 	if (clean)
1862 		return 0;
1863 
1864 	inode = igrab(inode);
1865 	if (!inode)
1866 		return 0;
1867 	return 1;
1868 }
1869 
1870 static bool flush_dirty_inode(struct page *page)
1871 {
1872 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1873 	struct inode *inode;
1874 	nid_t ino = ino_of_node(page);
1875 
1876 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1877 	if (!inode)
1878 		return false;
1879 
1880 	f2fs_update_inode(inode, page);
1881 	unlock_page(page);
1882 
1883 	iput(inode);
1884 	return true;
1885 }
1886 
1887 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1888 {
1889 	pgoff_t index = 0;
1890 	struct pagevec pvec;
1891 	int nr_pages;
1892 
1893 	pagevec_init(&pvec);
1894 
1895 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1896 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1897 		int i;
1898 
1899 		for (i = 0; i < nr_pages; i++) {
1900 			struct page *page = pvec.pages[i];
1901 
1902 			if (!IS_DNODE(page))
1903 				continue;
1904 
1905 			lock_page(page);
1906 
1907 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1908 continue_unlock:
1909 				unlock_page(page);
1910 				continue;
1911 			}
1912 
1913 			if (!PageDirty(page)) {
1914 				/* someone wrote it for us */
1915 				goto continue_unlock;
1916 			}
1917 
1918 			/* flush inline_data, if it's async context. */
1919 			if (page_private_inline(page)) {
1920 				clear_page_private_inline(page);
1921 				unlock_page(page);
1922 				flush_inline_data(sbi, ino_of_node(page));
1923 				continue;
1924 			}
1925 			unlock_page(page);
1926 		}
1927 		pagevec_release(&pvec);
1928 		cond_resched();
1929 	}
1930 }
1931 
1932 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1933 				struct writeback_control *wbc,
1934 				bool do_balance, enum iostat_type io_type)
1935 {
1936 	pgoff_t index;
1937 	struct pagevec pvec;
1938 	int step = 0;
1939 	int nwritten = 0;
1940 	int ret = 0;
1941 	int nr_pages, done = 0;
1942 
1943 	pagevec_init(&pvec);
1944 
1945 next_step:
1946 	index = 0;
1947 
1948 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1949 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1950 		int i;
1951 
1952 		for (i = 0; i < nr_pages; i++) {
1953 			struct page *page = pvec.pages[i];
1954 			bool submitted = false;
1955 
1956 			/* give a priority to WB_SYNC threads */
1957 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1958 					wbc->sync_mode == WB_SYNC_NONE) {
1959 				done = 1;
1960 				break;
1961 			}
1962 
1963 			/*
1964 			 * flushing sequence with step:
1965 			 * 0. indirect nodes
1966 			 * 1. dentry dnodes
1967 			 * 2. file dnodes
1968 			 */
1969 			if (step == 0 && IS_DNODE(page))
1970 				continue;
1971 			if (step == 1 && (!IS_DNODE(page) ||
1972 						is_cold_node(page)))
1973 				continue;
1974 			if (step == 2 && (!IS_DNODE(page) ||
1975 						!is_cold_node(page)))
1976 				continue;
1977 lock_node:
1978 			if (wbc->sync_mode == WB_SYNC_ALL)
1979 				lock_page(page);
1980 			else if (!trylock_page(page))
1981 				continue;
1982 
1983 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1984 continue_unlock:
1985 				unlock_page(page);
1986 				continue;
1987 			}
1988 
1989 			if (!PageDirty(page)) {
1990 				/* someone wrote it for us */
1991 				goto continue_unlock;
1992 			}
1993 
1994 			/* flush inline_data/inode, if it's async context. */
1995 			if (!do_balance)
1996 				goto write_node;
1997 
1998 			/* flush inline_data */
1999 			if (page_private_inline(page)) {
2000 				clear_page_private_inline(page);
2001 				unlock_page(page);
2002 				flush_inline_data(sbi, ino_of_node(page));
2003 				goto lock_node;
2004 			}
2005 
2006 			/* flush dirty inode */
2007 			if (IS_INODE(page) && flush_dirty_inode(page))
2008 				goto lock_node;
2009 write_node:
2010 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2011 
2012 			if (!clear_page_dirty_for_io(page))
2013 				goto continue_unlock;
2014 
2015 			set_fsync_mark(page, 0);
2016 			set_dentry_mark(page, 0);
2017 
2018 			ret = __write_node_page(page, false, &submitted,
2019 						wbc, do_balance, io_type, NULL);
2020 			if (ret)
2021 				unlock_page(page);
2022 			else if (submitted)
2023 				nwritten++;
2024 
2025 			if (--wbc->nr_to_write == 0)
2026 				break;
2027 		}
2028 		pagevec_release(&pvec);
2029 		cond_resched();
2030 
2031 		if (wbc->nr_to_write == 0) {
2032 			step = 2;
2033 			break;
2034 		}
2035 	}
2036 
2037 	if (step < 2) {
2038 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2039 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2040 			goto out;
2041 		step++;
2042 		goto next_step;
2043 	}
2044 out:
2045 	if (nwritten)
2046 		f2fs_submit_merged_write(sbi, NODE);
2047 
2048 	if (unlikely(f2fs_cp_error(sbi)))
2049 		return -EIO;
2050 	return ret;
2051 }
2052 
2053 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2054 						unsigned int seq_id)
2055 {
2056 	struct fsync_node_entry *fn;
2057 	struct page *page;
2058 	struct list_head *head = &sbi->fsync_node_list;
2059 	unsigned long flags;
2060 	unsigned int cur_seq_id = 0;
2061 	int ret2, ret = 0;
2062 
2063 	while (seq_id && cur_seq_id < seq_id) {
2064 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2065 		if (list_empty(head)) {
2066 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2067 			break;
2068 		}
2069 		fn = list_first_entry(head, struct fsync_node_entry, list);
2070 		if (fn->seq_id > seq_id) {
2071 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2072 			break;
2073 		}
2074 		cur_seq_id = fn->seq_id;
2075 		page = fn->page;
2076 		get_page(page);
2077 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2078 
2079 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2080 		if (TestClearPageError(page))
2081 			ret = -EIO;
2082 
2083 		put_page(page);
2084 
2085 		if (ret)
2086 			break;
2087 	}
2088 
2089 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2090 	if (!ret)
2091 		ret = ret2;
2092 
2093 	return ret;
2094 }
2095 
2096 static int f2fs_write_node_pages(struct address_space *mapping,
2097 			    struct writeback_control *wbc)
2098 {
2099 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2100 	struct blk_plug plug;
2101 	long diff;
2102 
2103 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2104 		goto skip_write;
2105 
2106 	/* balancing f2fs's metadata in background */
2107 	f2fs_balance_fs_bg(sbi, true);
2108 
2109 	/* collect a number of dirty node pages and write together */
2110 	if (wbc->sync_mode != WB_SYNC_ALL &&
2111 			get_pages(sbi, F2FS_DIRTY_NODES) <
2112 					nr_pages_to_skip(sbi, NODE))
2113 		goto skip_write;
2114 
2115 	if (wbc->sync_mode == WB_SYNC_ALL)
2116 		atomic_inc(&sbi->wb_sync_req[NODE]);
2117 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2118 		/* to avoid potential deadlock */
2119 		if (current->plug)
2120 			blk_finish_plug(current->plug);
2121 		goto skip_write;
2122 	}
2123 
2124 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2125 
2126 	diff = nr_pages_to_write(sbi, NODE, wbc);
2127 	blk_start_plug(&plug);
2128 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2129 	blk_finish_plug(&plug);
2130 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2131 
2132 	if (wbc->sync_mode == WB_SYNC_ALL)
2133 		atomic_dec(&sbi->wb_sync_req[NODE]);
2134 	return 0;
2135 
2136 skip_write:
2137 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2138 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2139 	return 0;
2140 }
2141 
2142 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2143 		struct folio *folio)
2144 {
2145 	trace_f2fs_set_page_dirty(&folio->page, NODE);
2146 
2147 	if (!folio_test_uptodate(folio))
2148 		folio_mark_uptodate(folio);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 	if (IS_INODE(&folio->page))
2151 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2152 #endif
2153 	if (filemap_dirty_folio(mapping, folio)) {
2154 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2155 		set_page_private_reference(&folio->page);
2156 		return true;
2157 	}
2158 	return false;
2159 }
2160 
2161 /*
2162  * Structure of the f2fs node operations
2163  */
2164 const struct address_space_operations f2fs_node_aops = {
2165 	.writepage	= f2fs_write_node_page,
2166 	.writepages	= f2fs_write_node_pages,
2167 	.dirty_folio	= f2fs_dirty_node_folio,
2168 	.invalidate_folio = f2fs_invalidate_folio,
2169 	.release_folio	= f2fs_release_folio,
2170 	.migrate_folio	= filemap_migrate_folio,
2171 };
2172 
2173 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2174 						nid_t n)
2175 {
2176 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2177 }
2178 
2179 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2180 				struct free_nid *i)
2181 {
2182 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2183 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2184 
2185 	if (err)
2186 		return err;
2187 
2188 	nm_i->nid_cnt[FREE_NID]++;
2189 	list_add_tail(&i->list, &nm_i->free_nid_list);
2190 	return 0;
2191 }
2192 
2193 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2194 			struct free_nid *i, enum nid_state state)
2195 {
2196 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2197 
2198 	f2fs_bug_on(sbi, state != i->state);
2199 	nm_i->nid_cnt[state]--;
2200 	if (state == FREE_NID)
2201 		list_del(&i->list);
2202 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2203 }
2204 
2205 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2206 			enum nid_state org_state, enum nid_state dst_state)
2207 {
2208 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2209 
2210 	f2fs_bug_on(sbi, org_state != i->state);
2211 	i->state = dst_state;
2212 	nm_i->nid_cnt[org_state]--;
2213 	nm_i->nid_cnt[dst_state]++;
2214 
2215 	switch (dst_state) {
2216 	case PREALLOC_NID:
2217 		list_del(&i->list);
2218 		break;
2219 	case FREE_NID:
2220 		list_add_tail(&i->list, &nm_i->free_nid_list);
2221 		break;
2222 	default:
2223 		BUG_ON(1);
2224 	}
2225 }
2226 
2227 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2228 {
2229 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2230 	unsigned int i;
2231 	bool ret = true;
2232 
2233 	f2fs_down_read(&nm_i->nat_tree_lock);
2234 	for (i = 0; i < nm_i->nat_blocks; i++) {
2235 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2236 			ret = false;
2237 			break;
2238 		}
2239 	}
2240 	f2fs_up_read(&nm_i->nat_tree_lock);
2241 
2242 	return ret;
2243 }
2244 
2245 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2246 							bool set, bool build)
2247 {
2248 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2249 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2250 	unsigned int nid_ofs = nid - START_NID(nid);
2251 
2252 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2253 		return;
2254 
2255 	if (set) {
2256 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2257 			return;
2258 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2259 		nm_i->free_nid_count[nat_ofs]++;
2260 	} else {
2261 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2262 			return;
2263 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2264 		if (!build)
2265 			nm_i->free_nid_count[nat_ofs]--;
2266 	}
2267 }
2268 
2269 /* return if the nid is recognized as free */
2270 static bool add_free_nid(struct f2fs_sb_info *sbi,
2271 				nid_t nid, bool build, bool update)
2272 {
2273 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2274 	struct free_nid *i, *e;
2275 	struct nat_entry *ne;
2276 	int err = -EINVAL;
2277 	bool ret = false;
2278 
2279 	/* 0 nid should not be used */
2280 	if (unlikely(nid == 0))
2281 		return false;
2282 
2283 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2284 		return false;
2285 
2286 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2287 	i->nid = nid;
2288 	i->state = FREE_NID;
2289 
2290 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2291 
2292 	spin_lock(&nm_i->nid_list_lock);
2293 
2294 	if (build) {
2295 		/*
2296 		 *   Thread A             Thread B
2297 		 *  - f2fs_create
2298 		 *   - f2fs_new_inode
2299 		 *    - f2fs_alloc_nid
2300 		 *     - __insert_nid_to_list(PREALLOC_NID)
2301 		 *                     - f2fs_balance_fs_bg
2302 		 *                      - f2fs_build_free_nids
2303 		 *                       - __f2fs_build_free_nids
2304 		 *                        - scan_nat_page
2305 		 *                         - add_free_nid
2306 		 *                          - __lookup_nat_cache
2307 		 *  - f2fs_add_link
2308 		 *   - f2fs_init_inode_metadata
2309 		 *    - f2fs_new_inode_page
2310 		 *     - f2fs_new_node_page
2311 		 *      - set_node_addr
2312 		 *  - f2fs_alloc_nid_done
2313 		 *   - __remove_nid_from_list(PREALLOC_NID)
2314 		 *                         - __insert_nid_to_list(FREE_NID)
2315 		 */
2316 		ne = __lookup_nat_cache(nm_i, nid);
2317 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2318 				nat_get_blkaddr(ne) != NULL_ADDR))
2319 			goto err_out;
2320 
2321 		e = __lookup_free_nid_list(nm_i, nid);
2322 		if (e) {
2323 			if (e->state == FREE_NID)
2324 				ret = true;
2325 			goto err_out;
2326 		}
2327 	}
2328 	ret = true;
2329 	err = __insert_free_nid(sbi, i);
2330 err_out:
2331 	if (update) {
2332 		update_free_nid_bitmap(sbi, nid, ret, build);
2333 		if (!build)
2334 			nm_i->available_nids++;
2335 	}
2336 	spin_unlock(&nm_i->nid_list_lock);
2337 	radix_tree_preload_end();
2338 
2339 	if (err)
2340 		kmem_cache_free(free_nid_slab, i);
2341 	return ret;
2342 }
2343 
2344 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2345 {
2346 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2347 	struct free_nid *i;
2348 	bool need_free = false;
2349 
2350 	spin_lock(&nm_i->nid_list_lock);
2351 	i = __lookup_free_nid_list(nm_i, nid);
2352 	if (i && i->state == FREE_NID) {
2353 		__remove_free_nid(sbi, i, FREE_NID);
2354 		need_free = true;
2355 	}
2356 	spin_unlock(&nm_i->nid_list_lock);
2357 
2358 	if (need_free)
2359 		kmem_cache_free(free_nid_slab, i);
2360 }
2361 
2362 static int scan_nat_page(struct f2fs_sb_info *sbi,
2363 			struct page *nat_page, nid_t start_nid)
2364 {
2365 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2367 	block_t blk_addr;
2368 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2369 	int i;
2370 
2371 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2372 
2373 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2374 
2375 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2376 		if (unlikely(start_nid >= nm_i->max_nid))
2377 			break;
2378 
2379 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2380 
2381 		if (blk_addr == NEW_ADDR)
2382 			return -EINVAL;
2383 
2384 		if (blk_addr == NULL_ADDR) {
2385 			add_free_nid(sbi, start_nid, true, true);
2386 		} else {
2387 			spin_lock(&NM_I(sbi)->nid_list_lock);
2388 			update_free_nid_bitmap(sbi, start_nid, false, true);
2389 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2390 		}
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2397 {
2398 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2399 	struct f2fs_journal *journal = curseg->journal;
2400 	int i;
2401 
2402 	down_read(&curseg->journal_rwsem);
2403 	for (i = 0; i < nats_in_cursum(journal); i++) {
2404 		block_t addr;
2405 		nid_t nid;
2406 
2407 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2408 		nid = le32_to_cpu(nid_in_journal(journal, i));
2409 		if (addr == NULL_ADDR)
2410 			add_free_nid(sbi, nid, true, false);
2411 		else
2412 			remove_free_nid(sbi, nid);
2413 	}
2414 	up_read(&curseg->journal_rwsem);
2415 }
2416 
2417 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2418 {
2419 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2420 	unsigned int i, idx;
2421 	nid_t nid;
2422 
2423 	f2fs_down_read(&nm_i->nat_tree_lock);
2424 
2425 	for (i = 0; i < nm_i->nat_blocks; i++) {
2426 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2427 			continue;
2428 		if (!nm_i->free_nid_count[i])
2429 			continue;
2430 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2431 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2432 						NAT_ENTRY_PER_BLOCK, idx);
2433 			if (idx >= NAT_ENTRY_PER_BLOCK)
2434 				break;
2435 
2436 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2437 			add_free_nid(sbi, nid, true, false);
2438 
2439 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2440 				goto out;
2441 		}
2442 	}
2443 out:
2444 	scan_curseg_cache(sbi);
2445 
2446 	f2fs_up_read(&nm_i->nat_tree_lock);
2447 }
2448 
2449 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2450 						bool sync, bool mount)
2451 {
2452 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2453 	int i = 0, ret;
2454 	nid_t nid = nm_i->next_scan_nid;
2455 
2456 	if (unlikely(nid >= nm_i->max_nid))
2457 		nid = 0;
2458 
2459 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2460 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2461 
2462 	/* Enough entries */
2463 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2464 		return 0;
2465 
2466 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2467 		return 0;
2468 
2469 	if (!mount) {
2470 		/* try to find free nids in free_nid_bitmap */
2471 		scan_free_nid_bits(sbi);
2472 
2473 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2474 			return 0;
2475 	}
2476 
2477 	/* readahead nat pages to be scanned */
2478 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2479 							META_NAT, true);
2480 
2481 	f2fs_down_read(&nm_i->nat_tree_lock);
2482 
2483 	while (1) {
2484 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2485 						nm_i->nat_block_bitmap)) {
2486 			struct page *page = get_current_nat_page(sbi, nid);
2487 
2488 			if (IS_ERR(page)) {
2489 				ret = PTR_ERR(page);
2490 			} else {
2491 				ret = scan_nat_page(sbi, page, nid);
2492 				f2fs_put_page(page, 1);
2493 			}
2494 
2495 			if (ret) {
2496 				f2fs_up_read(&nm_i->nat_tree_lock);
2497 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2498 				return ret;
2499 			}
2500 		}
2501 
2502 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2503 		if (unlikely(nid >= nm_i->max_nid))
2504 			nid = 0;
2505 
2506 		if (++i >= FREE_NID_PAGES)
2507 			break;
2508 	}
2509 
2510 	/* go to the next free nat pages to find free nids abundantly */
2511 	nm_i->next_scan_nid = nid;
2512 
2513 	/* find free nids from current sum_pages */
2514 	scan_curseg_cache(sbi);
2515 
2516 	f2fs_up_read(&nm_i->nat_tree_lock);
2517 
2518 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2519 					nm_i->ra_nid_pages, META_NAT, false);
2520 
2521 	return 0;
2522 }
2523 
2524 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2525 {
2526 	int ret;
2527 
2528 	mutex_lock(&NM_I(sbi)->build_lock);
2529 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2530 	mutex_unlock(&NM_I(sbi)->build_lock);
2531 
2532 	return ret;
2533 }
2534 
2535 /*
2536  * If this function returns success, caller can obtain a new nid
2537  * from second parameter of this function.
2538  * The returned nid could be used ino as well as nid when inode is created.
2539  */
2540 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2541 {
2542 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2543 	struct free_nid *i = NULL;
2544 retry:
2545 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2546 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2547 		return false;
2548 	}
2549 
2550 	spin_lock(&nm_i->nid_list_lock);
2551 
2552 	if (unlikely(nm_i->available_nids == 0)) {
2553 		spin_unlock(&nm_i->nid_list_lock);
2554 		return false;
2555 	}
2556 
2557 	/* We should not use stale free nids created by f2fs_build_free_nids */
2558 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2559 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2560 		i = list_first_entry(&nm_i->free_nid_list,
2561 					struct free_nid, list);
2562 		*nid = i->nid;
2563 
2564 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2565 		nm_i->available_nids--;
2566 
2567 		update_free_nid_bitmap(sbi, *nid, false, false);
2568 
2569 		spin_unlock(&nm_i->nid_list_lock);
2570 		return true;
2571 	}
2572 	spin_unlock(&nm_i->nid_list_lock);
2573 
2574 	/* Let's scan nat pages and its caches to get free nids */
2575 	if (!f2fs_build_free_nids(sbi, true, false))
2576 		goto retry;
2577 	return false;
2578 }
2579 
2580 /*
2581  * f2fs_alloc_nid() should be called prior to this function.
2582  */
2583 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2584 {
2585 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2586 	struct free_nid *i;
2587 
2588 	spin_lock(&nm_i->nid_list_lock);
2589 	i = __lookup_free_nid_list(nm_i, nid);
2590 	f2fs_bug_on(sbi, !i);
2591 	__remove_free_nid(sbi, i, PREALLOC_NID);
2592 	spin_unlock(&nm_i->nid_list_lock);
2593 
2594 	kmem_cache_free(free_nid_slab, i);
2595 }
2596 
2597 /*
2598  * f2fs_alloc_nid() should be called prior to this function.
2599  */
2600 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2601 {
2602 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2603 	struct free_nid *i;
2604 	bool need_free = false;
2605 
2606 	if (!nid)
2607 		return;
2608 
2609 	spin_lock(&nm_i->nid_list_lock);
2610 	i = __lookup_free_nid_list(nm_i, nid);
2611 	f2fs_bug_on(sbi, !i);
2612 
2613 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2614 		__remove_free_nid(sbi, i, PREALLOC_NID);
2615 		need_free = true;
2616 	} else {
2617 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2618 	}
2619 
2620 	nm_i->available_nids++;
2621 
2622 	update_free_nid_bitmap(sbi, nid, true, false);
2623 
2624 	spin_unlock(&nm_i->nid_list_lock);
2625 
2626 	if (need_free)
2627 		kmem_cache_free(free_nid_slab, i);
2628 }
2629 
2630 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2631 {
2632 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2633 	int nr = nr_shrink;
2634 
2635 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2636 		return 0;
2637 
2638 	if (!mutex_trylock(&nm_i->build_lock))
2639 		return 0;
2640 
2641 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2642 		struct free_nid *i, *next;
2643 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2644 
2645 		spin_lock(&nm_i->nid_list_lock);
2646 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2647 			if (!nr_shrink || !batch ||
2648 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2649 				break;
2650 			__remove_free_nid(sbi, i, FREE_NID);
2651 			kmem_cache_free(free_nid_slab, i);
2652 			nr_shrink--;
2653 			batch--;
2654 		}
2655 		spin_unlock(&nm_i->nid_list_lock);
2656 	}
2657 
2658 	mutex_unlock(&nm_i->build_lock);
2659 
2660 	return nr - nr_shrink;
2661 }
2662 
2663 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2664 {
2665 	void *src_addr, *dst_addr;
2666 	size_t inline_size;
2667 	struct page *ipage;
2668 	struct f2fs_inode *ri;
2669 
2670 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2671 	if (IS_ERR(ipage))
2672 		return PTR_ERR(ipage);
2673 
2674 	ri = F2FS_INODE(page);
2675 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2676 		if (!f2fs_has_inline_xattr(inode)) {
2677 			set_inode_flag(inode, FI_INLINE_XATTR);
2678 			stat_inc_inline_xattr(inode);
2679 		}
2680 	} else {
2681 		if (f2fs_has_inline_xattr(inode)) {
2682 			stat_dec_inline_xattr(inode);
2683 			clear_inode_flag(inode, FI_INLINE_XATTR);
2684 		}
2685 		goto update_inode;
2686 	}
2687 
2688 	dst_addr = inline_xattr_addr(inode, ipage);
2689 	src_addr = inline_xattr_addr(inode, page);
2690 	inline_size = inline_xattr_size(inode);
2691 
2692 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2693 	memcpy(dst_addr, src_addr, inline_size);
2694 update_inode:
2695 	f2fs_update_inode(inode, ipage);
2696 	f2fs_put_page(ipage, 1);
2697 	return 0;
2698 }
2699 
2700 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2701 {
2702 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2703 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2704 	nid_t new_xnid;
2705 	struct dnode_of_data dn;
2706 	struct node_info ni;
2707 	struct page *xpage;
2708 	int err;
2709 
2710 	if (!prev_xnid)
2711 		goto recover_xnid;
2712 
2713 	/* 1: invalidate the previous xattr nid */
2714 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2715 	if (err)
2716 		return err;
2717 
2718 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2719 	dec_valid_node_count(sbi, inode, false);
2720 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2721 
2722 recover_xnid:
2723 	/* 2: update xattr nid in inode */
2724 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2725 		return -ENOSPC;
2726 
2727 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2728 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2729 	if (IS_ERR(xpage)) {
2730 		f2fs_alloc_nid_failed(sbi, new_xnid);
2731 		return PTR_ERR(xpage);
2732 	}
2733 
2734 	f2fs_alloc_nid_done(sbi, new_xnid);
2735 	f2fs_update_inode_page(inode);
2736 
2737 	/* 3: update and set xattr node page dirty */
2738 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2739 
2740 	set_page_dirty(xpage);
2741 	f2fs_put_page(xpage, 1);
2742 
2743 	return 0;
2744 }
2745 
2746 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2747 {
2748 	struct f2fs_inode *src, *dst;
2749 	nid_t ino = ino_of_node(page);
2750 	struct node_info old_ni, new_ni;
2751 	struct page *ipage;
2752 	int err;
2753 
2754 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2755 	if (err)
2756 		return err;
2757 
2758 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2759 		return -EINVAL;
2760 retry:
2761 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2762 	if (!ipage) {
2763 		memalloc_retry_wait(GFP_NOFS);
2764 		goto retry;
2765 	}
2766 
2767 	/* Should not use this inode from free nid list */
2768 	remove_free_nid(sbi, ino);
2769 
2770 	if (!PageUptodate(ipage))
2771 		SetPageUptodate(ipage);
2772 	fill_node_footer(ipage, ino, ino, 0, true);
2773 	set_cold_node(ipage, false);
2774 
2775 	src = F2FS_INODE(page);
2776 	dst = F2FS_INODE(ipage);
2777 
2778 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2779 	dst->i_size = 0;
2780 	dst->i_blocks = cpu_to_le64(1);
2781 	dst->i_links = cpu_to_le32(1);
2782 	dst->i_xattr_nid = 0;
2783 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2784 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2785 		dst->i_extra_isize = src->i_extra_isize;
2786 
2787 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2788 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2789 							i_inline_xattr_size))
2790 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2791 
2792 		if (f2fs_sb_has_project_quota(sbi) &&
2793 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2794 								i_projid))
2795 			dst->i_projid = src->i_projid;
2796 
2797 		if (f2fs_sb_has_inode_crtime(sbi) &&
2798 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2799 							i_crtime_nsec)) {
2800 			dst->i_crtime = src->i_crtime;
2801 			dst->i_crtime_nsec = src->i_crtime_nsec;
2802 		}
2803 	}
2804 
2805 	new_ni = old_ni;
2806 	new_ni.ino = ino;
2807 
2808 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2809 		WARN_ON(1);
2810 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2811 	inc_valid_inode_count(sbi);
2812 	set_page_dirty(ipage);
2813 	f2fs_put_page(ipage, 1);
2814 	return 0;
2815 }
2816 
2817 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2818 			unsigned int segno, struct f2fs_summary_block *sum)
2819 {
2820 	struct f2fs_node *rn;
2821 	struct f2fs_summary *sum_entry;
2822 	block_t addr;
2823 	int i, idx, last_offset, nrpages;
2824 
2825 	/* scan the node segment */
2826 	last_offset = sbi->blocks_per_seg;
2827 	addr = START_BLOCK(sbi, segno);
2828 	sum_entry = &sum->entries[0];
2829 
2830 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2831 		nrpages = bio_max_segs(last_offset - i);
2832 
2833 		/* readahead node pages */
2834 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2835 
2836 		for (idx = addr; idx < addr + nrpages; idx++) {
2837 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2838 
2839 			if (IS_ERR(page))
2840 				return PTR_ERR(page);
2841 
2842 			rn = F2FS_NODE(page);
2843 			sum_entry->nid = rn->footer.nid;
2844 			sum_entry->version = 0;
2845 			sum_entry->ofs_in_node = 0;
2846 			sum_entry++;
2847 			f2fs_put_page(page, 1);
2848 		}
2849 
2850 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2851 							addr + nrpages);
2852 	}
2853 	return 0;
2854 }
2855 
2856 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2857 {
2858 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2859 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2860 	struct f2fs_journal *journal = curseg->journal;
2861 	int i;
2862 
2863 	down_write(&curseg->journal_rwsem);
2864 	for (i = 0; i < nats_in_cursum(journal); i++) {
2865 		struct nat_entry *ne;
2866 		struct f2fs_nat_entry raw_ne;
2867 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2868 
2869 		if (f2fs_check_nid_range(sbi, nid))
2870 			continue;
2871 
2872 		raw_ne = nat_in_journal(journal, i);
2873 
2874 		ne = __lookup_nat_cache(nm_i, nid);
2875 		if (!ne) {
2876 			ne = __alloc_nat_entry(sbi, nid, true);
2877 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2878 		}
2879 
2880 		/*
2881 		 * if a free nat in journal has not been used after last
2882 		 * checkpoint, we should remove it from available nids,
2883 		 * since later we will add it again.
2884 		 */
2885 		if (!get_nat_flag(ne, IS_DIRTY) &&
2886 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2887 			spin_lock(&nm_i->nid_list_lock);
2888 			nm_i->available_nids--;
2889 			spin_unlock(&nm_i->nid_list_lock);
2890 		}
2891 
2892 		__set_nat_cache_dirty(nm_i, ne);
2893 	}
2894 	update_nats_in_cursum(journal, -i);
2895 	up_write(&curseg->journal_rwsem);
2896 }
2897 
2898 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2899 						struct list_head *head, int max)
2900 {
2901 	struct nat_entry_set *cur;
2902 
2903 	if (nes->entry_cnt >= max)
2904 		goto add_out;
2905 
2906 	list_for_each_entry(cur, head, set_list) {
2907 		if (cur->entry_cnt >= nes->entry_cnt) {
2908 			list_add(&nes->set_list, cur->set_list.prev);
2909 			return;
2910 		}
2911 	}
2912 add_out:
2913 	list_add_tail(&nes->set_list, head);
2914 }
2915 
2916 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2917 							unsigned int valid)
2918 {
2919 	if (valid == 0) {
2920 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2921 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2922 		return;
2923 	}
2924 
2925 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2926 	if (valid == NAT_ENTRY_PER_BLOCK)
2927 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2928 	else
2929 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 }
2931 
2932 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2933 						struct page *page)
2934 {
2935 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2936 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2937 	struct f2fs_nat_block *nat_blk = page_address(page);
2938 	int valid = 0;
2939 	int i = 0;
2940 
2941 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2942 		return;
2943 
2944 	if (nat_index == 0) {
2945 		valid = 1;
2946 		i = 1;
2947 	}
2948 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2949 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2950 			valid++;
2951 	}
2952 
2953 	__update_nat_bits(nm_i, nat_index, valid);
2954 }
2955 
2956 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2957 {
2958 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2959 	unsigned int nat_ofs;
2960 
2961 	f2fs_down_read(&nm_i->nat_tree_lock);
2962 
2963 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2964 		unsigned int valid = 0, nid_ofs = 0;
2965 
2966 		/* handle nid zero due to it should never be used */
2967 		if (unlikely(nat_ofs == 0)) {
2968 			valid = 1;
2969 			nid_ofs = 1;
2970 		}
2971 
2972 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2973 			if (!test_bit_le(nid_ofs,
2974 					nm_i->free_nid_bitmap[nat_ofs]))
2975 				valid++;
2976 		}
2977 
2978 		__update_nat_bits(nm_i, nat_ofs, valid);
2979 	}
2980 
2981 	f2fs_up_read(&nm_i->nat_tree_lock);
2982 }
2983 
2984 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2985 		struct nat_entry_set *set, struct cp_control *cpc)
2986 {
2987 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2988 	struct f2fs_journal *journal = curseg->journal;
2989 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2990 	bool to_journal = true;
2991 	struct f2fs_nat_block *nat_blk;
2992 	struct nat_entry *ne, *cur;
2993 	struct page *page = NULL;
2994 
2995 	/*
2996 	 * there are two steps to flush nat entries:
2997 	 * #1, flush nat entries to journal in current hot data summary block.
2998 	 * #2, flush nat entries to nat page.
2999 	 */
3000 	if ((cpc->reason & CP_UMOUNT) ||
3001 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3002 		to_journal = false;
3003 
3004 	if (to_journal) {
3005 		down_write(&curseg->journal_rwsem);
3006 	} else {
3007 		page = get_next_nat_page(sbi, start_nid);
3008 		if (IS_ERR(page))
3009 			return PTR_ERR(page);
3010 
3011 		nat_blk = page_address(page);
3012 		f2fs_bug_on(sbi, !nat_blk);
3013 	}
3014 
3015 	/* flush dirty nats in nat entry set */
3016 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3017 		struct f2fs_nat_entry *raw_ne;
3018 		nid_t nid = nat_get_nid(ne);
3019 		int offset;
3020 
3021 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3022 
3023 		if (to_journal) {
3024 			offset = f2fs_lookup_journal_in_cursum(journal,
3025 							NAT_JOURNAL, nid, 1);
3026 			f2fs_bug_on(sbi, offset < 0);
3027 			raw_ne = &nat_in_journal(journal, offset);
3028 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3029 		} else {
3030 			raw_ne = &nat_blk->entries[nid - start_nid];
3031 		}
3032 		raw_nat_from_node_info(raw_ne, &ne->ni);
3033 		nat_reset_flag(ne);
3034 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3035 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3036 			add_free_nid(sbi, nid, false, true);
3037 		} else {
3038 			spin_lock(&NM_I(sbi)->nid_list_lock);
3039 			update_free_nid_bitmap(sbi, nid, false, false);
3040 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3041 		}
3042 	}
3043 
3044 	if (to_journal) {
3045 		up_write(&curseg->journal_rwsem);
3046 	} else {
3047 		update_nat_bits(sbi, start_nid, page);
3048 		f2fs_put_page(page, 1);
3049 	}
3050 
3051 	/* Allow dirty nats by node block allocation in write_begin */
3052 	if (!set->entry_cnt) {
3053 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3054 		kmem_cache_free(nat_entry_set_slab, set);
3055 	}
3056 	return 0;
3057 }
3058 
3059 /*
3060  * This function is called during the checkpointing process.
3061  */
3062 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3063 {
3064 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3066 	struct f2fs_journal *journal = curseg->journal;
3067 	struct nat_entry_set *setvec[SETVEC_SIZE];
3068 	struct nat_entry_set *set, *tmp;
3069 	unsigned int found;
3070 	nid_t set_idx = 0;
3071 	LIST_HEAD(sets);
3072 	int err = 0;
3073 
3074 	/*
3075 	 * during unmount, let's flush nat_bits before checking
3076 	 * nat_cnt[DIRTY_NAT].
3077 	 */
3078 	if (cpc->reason & CP_UMOUNT) {
3079 		f2fs_down_write(&nm_i->nat_tree_lock);
3080 		remove_nats_in_journal(sbi);
3081 		f2fs_up_write(&nm_i->nat_tree_lock);
3082 	}
3083 
3084 	if (!nm_i->nat_cnt[DIRTY_NAT])
3085 		return 0;
3086 
3087 	f2fs_down_write(&nm_i->nat_tree_lock);
3088 
3089 	/*
3090 	 * if there are no enough space in journal to store dirty nat
3091 	 * entries, remove all entries from journal and merge them
3092 	 * into nat entry set.
3093 	 */
3094 	if (cpc->reason & CP_UMOUNT ||
3095 		!__has_cursum_space(journal,
3096 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3097 		remove_nats_in_journal(sbi);
3098 
3099 	while ((found = __gang_lookup_nat_set(nm_i,
3100 					set_idx, SETVEC_SIZE, setvec))) {
3101 		unsigned idx;
3102 
3103 		set_idx = setvec[found - 1]->set + 1;
3104 		for (idx = 0; idx < found; idx++)
3105 			__adjust_nat_entry_set(setvec[idx], &sets,
3106 						MAX_NAT_JENTRIES(journal));
3107 	}
3108 
3109 	/* flush dirty nats in nat entry set */
3110 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3111 		err = __flush_nat_entry_set(sbi, set, cpc);
3112 		if (err)
3113 			break;
3114 	}
3115 
3116 	f2fs_up_write(&nm_i->nat_tree_lock);
3117 	/* Allow dirty nats by node block allocation in write_begin */
3118 
3119 	return err;
3120 }
3121 
3122 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3123 {
3124 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3125 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3126 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3127 	unsigned int i;
3128 	__u64 cp_ver = cur_cp_version(ckpt);
3129 	block_t nat_bits_addr;
3130 
3131 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3132 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3133 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3134 	if (!nm_i->nat_bits)
3135 		return -ENOMEM;
3136 
3137 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3138 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3139 
3140 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3141 		return 0;
3142 
3143 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3144 						nm_i->nat_bits_blocks;
3145 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3146 		struct page *page;
3147 
3148 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3149 		if (IS_ERR(page))
3150 			return PTR_ERR(page);
3151 
3152 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3153 					page_address(page), F2FS_BLKSIZE);
3154 		f2fs_put_page(page, 1);
3155 	}
3156 
3157 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3158 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3159 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3160 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3161 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3162 		return 0;
3163 	}
3164 
3165 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3166 	return 0;
3167 }
3168 
3169 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3170 {
3171 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3172 	unsigned int i = 0;
3173 	nid_t nid, last_nid;
3174 
3175 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3176 		return;
3177 
3178 	for (i = 0; i < nm_i->nat_blocks; i++) {
3179 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3180 		if (i >= nm_i->nat_blocks)
3181 			break;
3182 
3183 		__set_bit_le(i, nm_i->nat_block_bitmap);
3184 
3185 		nid = i * NAT_ENTRY_PER_BLOCK;
3186 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3187 
3188 		spin_lock(&NM_I(sbi)->nid_list_lock);
3189 		for (; nid < last_nid; nid++)
3190 			update_free_nid_bitmap(sbi, nid, true, true);
3191 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3192 	}
3193 
3194 	for (i = 0; i < nm_i->nat_blocks; i++) {
3195 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3196 		if (i >= nm_i->nat_blocks)
3197 			break;
3198 
3199 		__set_bit_le(i, nm_i->nat_block_bitmap);
3200 	}
3201 }
3202 
3203 static int init_node_manager(struct f2fs_sb_info *sbi)
3204 {
3205 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3206 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3207 	unsigned char *version_bitmap;
3208 	unsigned int nat_segs;
3209 	int err;
3210 
3211 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3212 
3213 	/* segment_count_nat includes pair segment so divide to 2. */
3214 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3215 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3216 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3217 
3218 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3219 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3220 						F2FS_RESERVED_NODE_NUM;
3221 	nm_i->nid_cnt[FREE_NID] = 0;
3222 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3223 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3224 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3225 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3226 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3227 
3228 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3229 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3230 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3231 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3232 	INIT_LIST_HEAD(&nm_i->nat_entries);
3233 	spin_lock_init(&nm_i->nat_list_lock);
3234 
3235 	mutex_init(&nm_i->build_lock);
3236 	spin_lock_init(&nm_i->nid_list_lock);
3237 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3238 
3239 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3240 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3241 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3242 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3243 					GFP_KERNEL);
3244 	if (!nm_i->nat_bitmap)
3245 		return -ENOMEM;
3246 
3247 	err = __get_nat_bitmaps(sbi);
3248 	if (err)
3249 		return err;
3250 
3251 #ifdef CONFIG_F2FS_CHECK_FS
3252 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3253 					GFP_KERNEL);
3254 	if (!nm_i->nat_bitmap_mir)
3255 		return -ENOMEM;
3256 #endif
3257 
3258 	return 0;
3259 }
3260 
3261 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3262 {
3263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3264 	int i;
3265 
3266 	nm_i->free_nid_bitmap =
3267 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3268 					      nm_i->nat_blocks),
3269 			      GFP_KERNEL);
3270 	if (!nm_i->free_nid_bitmap)
3271 		return -ENOMEM;
3272 
3273 	for (i = 0; i < nm_i->nat_blocks; i++) {
3274 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3275 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3276 		if (!nm_i->free_nid_bitmap[i])
3277 			return -ENOMEM;
3278 	}
3279 
3280 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3281 								GFP_KERNEL);
3282 	if (!nm_i->nat_block_bitmap)
3283 		return -ENOMEM;
3284 
3285 	nm_i->free_nid_count =
3286 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3287 					      nm_i->nat_blocks),
3288 			      GFP_KERNEL);
3289 	if (!nm_i->free_nid_count)
3290 		return -ENOMEM;
3291 	return 0;
3292 }
3293 
3294 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3295 {
3296 	int err;
3297 
3298 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3299 							GFP_KERNEL);
3300 	if (!sbi->nm_info)
3301 		return -ENOMEM;
3302 
3303 	err = init_node_manager(sbi);
3304 	if (err)
3305 		return err;
3306 
3307 	err = init_free_nid_cache(sbi);
3308 	if (err)
3309 		return err;
3310 
3311 	/* load free nid status from nat_bits table */
3312 	load_free_nid_bitmap(sbi);
3313 
3314 	return f2fs_build_free_nids(sbi, true, true);
3315 }
3316 
3317 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3318 {
3319 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3320 	struct free_nid *i, *next_i;
3321 	struct nat_entry *natvec[NATVEC_SIZE];
3322 	struct nat_entry_set *setvec[SETVEC_SIZE];
3323 	nid_t nid = 0;
3324 	unsigned int found;
3325 
3326 	if (!nm_i)
3327 		return;
3328 
3329 	/* destroy free nid list */
3330 	spin_lock(&nm_i->nid_list_lock);
3331 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3332 		__remove_free_nid(sbi, i, FREE_NID);
3333 		spin_unlock(&nm_i->nid_list_lock);
3334 		kmem_cache_free(free_nid_slab, i);
3335 		spin_lock(&nm_i->nid_list_lock);
3336 	}
3337 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3338 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3339 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3340 	spin_unlock(&nm_i->nid_list_lock);
3341 
3342 	/* destroy nat cache */
3343 	f2fs_down_write(&nm_i->nat_tree_lock);
3344 	while ((found = __gang_lookup_nat_cache(nm_i,
3345 					nid, NATVEC_SIZE, natvec))) {
3346 		unsigned idx;
3347 
3348 		nid = nat_get_nid(natvec[found - 1]) + 1;
3349 		for (idx = 0; idx < found; idx++) {
3350 			spin_lock(&nm_i->nat_list_lock);
3351 			list_del(&natvec[idx]->list);
3352 			spin_unlock(&nm_i->nat_list_lock);
3353 
3354 			__del_from_nat_cache(nm_i, natvec[idx]);
3355 		}
3356 	}
3357 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3358 
3359 	/* destroy nat set cache */
3360 	nid = 0;
3361 	while ((found = __gang_lookup_nat_set(nm_i,
3362 					nid, SETVEC_SIZE, setvec))) {
3363 		unsigned idx;
3364 
3365 		nid = setvec[found - 1]->set + 1;
3366 		for (idx = 0; idx < found; idx++) {
3367 			/* entry_cnt is not zero, when cp_error was occurred */
3368 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3369 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3370 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3371 		}
3372 	}
3373 	f2fs_up_write(&nm_i->nat_tree_lock);
3374 
3375 	kvfree(nm_i->nat_block_bitmap);
3376 	if (nm_i->free_nid_bitmap) {
3377 		int i;
3378 
3379 		for (i = 0; i < nm_i->nat_blocks; i++)
3380 			kvfree(nm_i->free_nid_bitmap[i]);
3381 		kvfree(nm_i->free_nid_bitmap);
3382 	}
3383 	kvfree(nm_i->free_nid_count);
3384 
3385 	kvfree(nm_i->nat_bitmap);
3386 	kvfree(nm_i->nat_bits);
3387 #ifdef CONFIG_F2FS_CHECK_FS
3388 	kvfree(nm_i->nat_bitmap_mir);
3389 #endif
3390 	sbi->nm_info = NULL;
3391 	kfree(nm_i);
3392 }
3393 
3394 int __init f2fs_create_node_manager_caches(void)
3395 {
3396 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3397 			sizeof(struct nat_entry));
3398 	if (!nat_entry_slab)
3399 		goto fail;
3400 
3401 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3402 			sizeof(struct free_nid));
3403 	if (!free_nid_slab)
3404 		goto destroy_nat_entry;
3405 
3406 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3407 			sizeof(struct nat_entry_set));
3408 	if (!nat_entry_set_slab)
3409 		goto destroy_free_nid;
3410 
3411 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3412 			sizeof(struct fsync_node_entry));
3413 	if (!fsync_node_entry_slab)
3414 		goto destroy_nat_entry_set;
3415 	return 0;
3416 
3417 destroy_nat_entry_set:
3418 	kmem_cache_destroy(nat_entry_set_slab);
3419 destroy_free_nid:
3420 	kmem_cache_destroy(free_nid_slab);
3421 destroy_nat_entry:
3422 	kmem_cache_destroy(nat_entry_slab);
3423 fail:
3424 	return -ENOMEM;
3425 }
3426 
3427 void f2fs_destroy_node_manager_caches(void)
3428 {
3429 	kmem_cache_destroy(fsync_node_entry_slab);
3430 	kmem_cache_destroy(nat_entry_set_slab);
3431 	kmem_cache_destroy(free_nid_slab);
3432 	kmem_cache_destroy(nat_entry_slab);
3433 }
3434