xref: /openbmc/linux/fs/f2fs/node.c (revision e6ecb142)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == EXTENT_CACHE) {
89 		mem_size = (atomic_read(&sbi->total_ext_tree) *
90 				sizeof(struct extent_tree) +
91 				atomic_read(&sbi->total_ext_node) *
92 				sizeof(struct extent_node)) >> PAGE_SHIFT;
93 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
94 	} else if (type == DISCARD_CACHE) {
95 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
96 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
97 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
98 	} else if (type == COMPRESS_PAGE) {
99 #ifdef CONFIG_F2FS_FS_COMPRESSION
100 		unsigned long free_ram = val.freeram;
101 
102 		/*
103 		 * free memory is lower than watermark or cached page count
104 		 * exceed threshold, deny caching compress page.
105 		 */
106 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
107 			(COMPRESS_MAPPING(sbi)->nrpages <
108 			 free_ram * sbi->compress_percent / 100);
109 #else
110 		res = false;
111 #endif
112 	} else {
113 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
114 			return true;
115 	}
116 	return res;
117 }
118 
119 static void clear_node_page_dirty(struct page *page)
120 {
121 	if (PageDirty(page)) {
122 		f2fs_clear_page_cache_dirty_tag(page);
123 		clear_page_dirty_for_io(page);
124 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
125 	}
126 	ClearPageUptodate(page);
127 }
128 
129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
130 {
131 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
132 }
133 
134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 {
136 	struct page *src_page;
137 	struct page *dst_page;
138 	pgoff_t dst_off;
139 	void *src_addr;
140 	void *dst_addr;
141 	struct f2fs_nm_info *nm_i = NM_I(sbi);
142 
143 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
144 
145 	/* get current nat block page with lock */
146 	src_page = get_current_nat_page(sbi, nid);
147 	if (IS_ERR(src_page))
148 		return src_page;
149 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
150 	f2fs_bug_on(sbi, PageDirty(src_page));
151 
152 	src_addr = page_address(src_page);
153 	dst_addr = page_address(dst_page);
154 	memcpy(dst_addr, src_addr, PAGE_SIZE);
155 	set_page_dirty(dst_page);
156 	f2fs_put_page(src_page, 1);
157 
158 	set_to_next_nat(nm_i, nid);
159 
160 	return dst_page;
161 }
162 
163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
164 						nid_t nid, bool no_fail)
165 {
166 	struct nat_entry *new;
167 
168 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
169 					GFP_F2FS_ZERO, no_fail, sbi);
170 	if (new) {
171 		nat_set_nid(new, nid);
172 		nat_reset_flag(new);
173 	}
174 	return new;
175 }
176 
177 static void __free_nat_entry(struct nat_entry *e)
178 {
179 	kmem_cache_free(nat_entry_slab, e);
180 }
181 
182 /* must be locked by nat_tree_lock */
183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
184 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
185 {
186 	if (no_fail)
187 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
188 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
189 		return NULL;
190 
191 	if (raw_ne)
192 		node_info_from_raw_nat(&ne->ni, raw_ne);
193 
194 	spin_lock(&nm_i->nat_list_lock);
195 	list_add_tail(&ne->list, &nm_i->nat_entries);
196 	spin_unlock(&nm_i->nat_list_lock);
197 
198 	nm_i->nat_cnt[TOTAL_NAT]++;
199 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
200 	return ne;
201 }
202 
203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
204 {
205 	struct nat_entry *ne;
206 
207 	ne = radix_tree_lookup(&nm_i->nat_root, n);
208 
209 	/* for recent accessed nat entry, move it to tail of lru list */
210 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
211 		spin_lock(&nm_i->nat_list_lock);
212 		if (!list_empty(&ne->list))
213 			list_move_tail(&ne->list, &nm_i->nat_entries);
214 		spin_unlock(&nm_i->nat_list_lock);
215 	}
216 
217 	return ne;
218 }
219 
220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
221 		nid_t start, unsigned int nr, struct nat_entry **ep)
222 {
223 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
224 }
225 
226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
227 {
228 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
229 	nm_i->nat_cnt[TOTAL_NAT]--;
230 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
231 	__free_nat_entry(e);
232 }
233 
234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
235 							struct nat_entry *ne)
236 {
237 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
238 	struct nat_entry_set *head;
239 
240 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
241 	if (!head) {
242 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
243 						GFP_NOFS, true, NULL);
244 
245 		INIT_LIST_HEAD(&head->entry_list);
246 		INIT_LIST_HEAD(&head->set_list);
247 		head->set = set;
248 		head->entry_cnt = 0;
249 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
250 	}
251 	return head;
252 }
253 
254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
255 						struct nat_entry *ne)
256 {
257 	struct nat_entry_set *head;
258 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
259 
260 	if (!new_ne)
261 		head = __grab_nat_entry_set(nm_i, ne);
262 
263 	/*
264 	 * update entry_cnt in below condition:
265 	 * 1. update NEW_ADDR to valid block address;
266 	 * 2. update old block address to new one;
267 	 */
268 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
269 				!get_nat_flag(ne, IS_DIRTY)))
270 		head->entry_cnt++;
271 
272 	set_nat_flag(ne, IS_PREALLOC, new_ne);
273 
274 	if (get_nat_flag(ne, IS_DIRTY))
275 		goto refresh_list;
276 
277 	nm_i->nat_cnt[DIRTY_NAT]++;
278 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
279 	set_nat_flag(ne, IS_DIRTY, true);
280 refresh_list:
281 	spin_lock(&nm_i->nat_list_lock);
282 	if (new_ne)
283 		list_del_init(&ne->list);
284 	else
285 		list_move_tail(&ne->list, &head->entry_list);
286 	spin_unlock(&nm_i->nat_list_lock);
287 }
288 
289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
290 		struct nat_entry_set *set, struct nat_entry *ne)
291 {
292 	spin_lock(&nm_i->nat_list_lock);
293 	list_move_tail(&ne->list, &nm_i->nat_entries);
294 	spin_unlock(&nm_i->nat_list_lock);
295 
296 	set_nat_flag(ne, IS_DIRTY, false);
297 	set->entry_cnt--;
298 	nm_i->nat_cnt[DIRTY_NAT]--;
299 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
300 }
301 
302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
303 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
304 {
305 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
306 							start, nr);
307 }
308 
309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
310 {
311 	return NODE_MAPPING(sbi) == page->mapping &&
312 			IS_DNODE(page) && is_cold_node(page);
313 }
314 
315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
316 {
317 	spin_lock_init(&sbi->fsync_node_lock);
318 	INIT_LIST_HEAD(&sbi->fsync_node_list);
319 	sbi->fsync_seg_id = 0;
320 	sbi->fsync_node_num = 0;
321 }
322 
323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
324 							struct page *page)
325 {
326 	struct fsync_node_entry *fn;
327 	unsigned long flags;
328 	unsigned int seq_id;
329 
330 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
331 					GFP_NOFS, true, NULL);
332 
333 	get_page(page);
334 	fn->page = page;
335 	INIT_LIST_HEAD(&fn->list);
336 
337 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
338 	list_add_tail(&fn->list, &sbi->fsync_node_list);
339 	fn->seq_id = sbi->fsync_seg_id++;
340 	seq_id = fn->seq_id;
341 	sbi->fsync_node_num++;
342 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343 
344 	return seq_id;
345 }
346 
347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
348 {
349 	struct fsync_node_entry *fn;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
353 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
354 		if (fn->page == page) {
355 			list_del(&fn->list);
356 			sbi->fsync_node_num--;
357 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
358 			kmem_cache_free(fsync_node_entry_slab, fn);
359 			put_page(page);
360 			return;
361 		}
362 	}
363 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
364 	f2fs_bug_on(sbi, 1);
365 }
366 
367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
368 {
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
372 	sbi->fsync_seg_id = 0;
373 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
374 }
375 
376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
377 {
378 	struct f2fs_nm_info *nm_i = NM_I(sbi);
379 	struct nat_entry *e;
380 	bool need = false;
381 
382 	f2fs_down_read(&nm_i->nat_tree_lock);
383 	e = __lookup_nat_cache(nm_i, nid);
384 	if (e) {
385 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
386 				!get_nat_flag(e, HAS_FSYNCED_INODE))
387 			need = true;
388 	}
389 	f2fs_up_read(&nm_i->nat_tree_lock);
390 	return need;
391 }
392 
393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
394 {
395 	struct f2fs_nm_info *nm_i = NM_I(sbi);
396 	struct nat_entry *e;
397 	bool is_cp = true;
398 
399 	f2fs_down_read(&nm_i->nat_tree_lock);
400 	e = __lookup_nat_cache(nm_i, nid);
401 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
402 		is_cp = false;
403 	f2fs_up_read(&nm_i->nat_tree_lock);
404 	return is_cp;
405 }
406 
407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
408 {
409 	struct f2fs_nm_info *nm_i = NM_I(sbi);
410 	struct nat_entry *e;
411 	bool need_update = true;
412 
413 	f2fs_down_read(&nm_i->nat_tree_lock);
414 	e = __lookup_nat_cache(nm_i, ino);
415 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
416 			(get_nat_flag(e, IS_CHECKPOINTED) ||
417 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
418 		need_update = false;
419 	f2fs_up_read(&nm_i->nat_tree_lock);
420 	return need_update;
421 }
422 
423 /* must be locked by nat_tree_lock */
424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
425 						struct f2fs_nat_entry *ne)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *new, *e;
429 
430 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
431 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
432 		return;
433 
434 	new = __alloc_nat_entry(sbi, nid, false);
435 	if (!new)
436 		return;
437 
438 	f2fs_down_write(&nm_i->nat_tree_lock);
439 	e = __lookup_nat_cache(nm_i, nid);
440 	if (!e)
441 		e = __init_nat_entry(nm_i, new, ne, false);
442 	else
443 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
444 				nat_get_blkaddr(e) !=
445 					le32_to_cpu(ne->block_addr) ||
446 				nat_get_version(e) != ne->version);
447 	f2fs_up_write(&nm_i->nat_tree_lock);
448 	if (e != new)
449 		__free_nat_entry(new);
450 }
451 
452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
453 			block_t new_blkaddr, bool fsync_done)
454 {
455 	struct f2fs_nm_info *nm_i = NM_I(sbi);
456 	struct nat_entry *e;
457 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
458 
459 	f2fs_down_write(&nm_i->nat_tree_lock);
460 	e = __lookup_nat_cache(nm_i, ni->nid);
461 	if (!e) {
462 		e = __init_nat_entry(nm_i, new, NULL, true);
463 		copy_node_info(&e->ni, ni);
464 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
465 	} else if (new_blkaddr == NEW_ADDR) {
466 		/*
467 		 * when nid is reallocated,
468 		 * previous nat entry can be remained in nat cache.
469 		 * So, reinitialize it with new information.
470 		 */
471 		copy_node_info(&e->ni, ni);
472 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
473 	}
474 	/* let's free early to reduce memory consumption */
475 	if (e != new)
476 		__free_nat_entry(new);
477 
478 	/* sanity check */
479 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
480 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
481 			new_blkaddr == NULL_ADDR);
482 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
483 			new_blkaddr == NEW_ADDR);
484 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
485 			new_blkaddr == NEW_ADDR);
486 
487 	/* increment version no as node is removed */
488 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
489 		unsigned char version = nat_get_version(e);
490 
491 		nat_set_version(e, inc_node_version(version));
492 	}
493 
494 	/* change address */
495 	nat_set_blkaddr(e, new_blkaddr);
496 	if (!__is_valid_data_blkaddr(new_blkaddr))
497 		set_nat_flag(e, IS_CHECKPOINTED, false);
498 	__set_nat_cache_dirty(nm_i, e);
499 
500 	/* update fsync_mark if its inode nat entry is still alive */
501 	if (ni->nid != ni->ino)
502 		e = __lookup_nat_cache(nm_i, ni->ino);
503 	if (e) {
504 		if (fsync_done && ni->nid == ni->ino)
505 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
506 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
507 	}
508 	f2fs_up_write(&nm_i->nat_tree_lock);
509 }
510 
511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
512 {
513 	struct f2fs_nm_info *nm_i = NM_I(sbi);
514 	int nr = nr_shrink;
515 
516 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
517 		return 0;
518 
519 	spin_lock(&nm_i->nat_list_lock);
520 	while (nr_shrink) {
521 		struct nat_entry *ne;
522 
523 		if (list_empty(&nm_i->nat_entries))
524 			break;
525 
526 		ne = list_first_entry(&nm_i->nat_entries,
527 					struct nat_entry, list);
528 		list_del(&ne->list);
529 		spin_unlock(&nm_i->nat_list_lock);
530 
531 		__del_from_nat_cache(nm_i, ne);
532 		nr_shrink--;
533 
534 		spin_lock(&nm_i->nat_list_lock);
535 	}
536 	spin_unlock(&nm_i->nat_list_lock);
537 
538 	f2fs_up_write(&nm_i->nat_tree_lock);
539 	return nr - nr_shrink;
540 }
541 
542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
543 				struct node_info *ni, bool checkpoint_context)
544 {
545 	struct f2fs_nm_info *nm_i = NM_I(sbi);
546 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
547 	struct f2fs_journal *journal = curseg->journal;
548 	nid_t start_nid = START_NID(nid);
549 	struct f2fs_nat_block *nat_blk;
550 	struct page *page = NULL;
551 	struct f2fs_nat_entry ne;
552 	struct nat_entry *e;
553 	pgoff_t index;
554 	block_t blkaddr;
555 	int i;
556 
557 	ni->nid = nid;
558 retry:
559 	/* Check nat cache */
560 	f2fs_down_read(&nm_i->nat_tree_lock);
561 	e = __lookup_nat_cache(nm_i, nid);
562 	if (e) {
563 		ni->ino = nat_get_ino(e);
564 		ni->blk_addr = nat_get_blkaddr(e);
565 		ni->version = nat_get_version(e);
566 		f2fs_up_read(&nm_i->nat_tree_lock);
567 		return 0;
568 	}
569 
570 	/*
571 	 * Check current segment summary by trying to grab journal_rwsem first.
572 	 * This sem is on the critical path on the checkpoint requiring the above
573 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
574 	 * while not bothering checkpoint.
575 	 */
576 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
577 		down_read(&curseg->journal_rwsem);
578 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
579 				!down_read_trylock(&curseg->journal_rwsem)) {
580 		f2fs_up_read(&nm_i->nat_tree_lock);
581 		goto retry;
582 	}
583 
584 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
585 	if (i >= 0) {
586 		ne = nat_in_journal(journal, i);
587 		node_info_from_raw_nat(ni, &ne);
588 	}
589 	up_read(&curseg->journal_rwsem);
590 	if (i >= 0) {
591 		f2fs_up_read(&nm_i->nat_tree_lock);
592 		goto cache;
593 	}
594 
595 	/* Fill node_info from nat page */
596 	index = current_nat_addr(sbi, nid);
597 	f2fs_up_read(&nm_i->nat_tree_lock);
598 
599 	page = f2fs_get_meta_page(sbi, index);
600 	if (IS_ERR(page))
601 		return PTR_ERR(page);
602 
603 	nat_blk = (struct f2fs_nat_block *)page_address(page);
604 	ne = nat_blk->entries[nid - start_nid];
605 	node_info_from_raw_nat(ni, &ne);
606 	f2fs_put_page(page, 1);
607 cache:
608 	blkaddr = le32_to_cpu(ne.block_addr);
609 	if (__is_valid_data_blkaddr(blkaddr) &&
610 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
611 		return -EFAULT;
612 
613 	/* cache nat entry */
614 	cache_nat_entry(sbi, nid, &ne);
615 	return 0;
616 }
617 
618 /*
619  * readahead MAX_RA_NODE number of node pages.
620  */
621 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
622 {
623 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
624 	struct blk_plug plug;
625 	int i, end;
626 	nid_t nid;
627 
628 	blk_start_plug(&plug);
629 
630 	/* Then, try readahead for siblings of the desired node */
631 	end = start + n;
632 	end = min(end, NIDS_PER_BLOCK);
633 	for (i = start; i < end; i++) {
634 		nid = get_nid(parent, i, false);
635 		f2fs_ra_node_page(sbi, nid);
636 	}
637 
638 	blk_finish_plug(&plug);
639 }
640 
641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
642 {
643 	const long direct_index = ADDRS_PER_INODE(dn->inode);
644 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
645 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
646 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
647 	int cur_level = dn->cur_level;
648 	int max_level = dn->max_level;
649 	pgoff_t base = 0;
650 
651 	if (!dn->max_level)
652 		return pgofs + 1;
653 
654 	while (max_level-- > cur_level)
655 		skipped_unit *= NIDS_PER_BLOCK;
656 
657 	switch (dn->max_level) {
658 	case 3:
659 		base += 2 * indirect_blks;
660 		fallthrough;
661 	case 2:
662 		base += 2 * direct_blks;
663 		fallthrough;
664 	case 1:
665 		base += direct_index;
666 		break;
667 	default:
668 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
669 	}
670 
671 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
672 }
673 
674 /*
675  * The maximum depth is four.
676  * Offset[0] will have raw inode offset.
677  */
678 static int get_node_path(struct inode *inode, long block,
679 				int offset[4], unsigned int noffset[4])
680 {
681 	const long direct_index = ADDRS_PER_INODE(inode);
682 	const long direct_blks = ADDRS_PER_BLOCK(inode);
683 	const long dptrs_per_blk = NIDS_PER_BLOCK;
684 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
685 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
686 	int n = 0;
687 	int level = 0;
688 
689 	noffset[0] = 0;
690 
691 	if (block < direct_index) {
692 		offset[n] = block;
693 		goto got;
694 	}
695 	block -= direct_index;
696 	if (block < direct_blks) {
697 		offset[n++] = NODE_DIR1_BLOCK;
698 		noffset[n] = 1;
699 		offset[n] = block;
700 		level = 1;
701 		goto got;
702 	}
703 	block -= direct_blks;
704 	if (block < direct_blks) {
705 		offset[n++] = NODE_DIR2_BLOCK;
706 		noffset[n] = 2;
707 		offset[n] = block;
708 		level = 1;
709 		goto got;
710 	}
711 	block -= direct_blks;
712 	if (block < indirect_blks) {
713 		offset[n++] = NODE_IND1_BLOCK;
714 		noffset[n] = 3;
715 		offset[n++] = block / direct_blks;
716 		noffset[n] = 4 + offset[n - 1];
717 		offset[n] = block % direct_blks;
718 		level = 2;
719 		goto got;
720 	}
721 	block -= indirect_blks;
722 	if (block < indirect_blks) {
723 		offset[n++] = NODE_IND2_BLOCK;
724 		noffset[n] = 4 + dptrs_per_blk;
725 		offset[n++] = block / direct_blks;
726 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
727 		offset[n] = block % direct_blks;
728 		level = 2;
729 		goto got;
730 	}
731 	block -= indirect_blks;
732 	if (block < dindirect_blks) {
733 		offset[n++] = NODE_DIND_BLOCK;
734 		noffset[n] = 5 + (dptrs_per_blk * 2);
735 		offset[n++] = block / indirect_blks;
736 		noffset[n] = 6 + (dptrs_per_blk * 2) +
737 			      offset[n - 1] * (dptrs_per_blk + 1);
738 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
739 		noffset[n] = 7 + (dptrs_per_blk * 2) +
740 			      offset[n - 2] * (dptrs_per_blk + 1) +
741 			      offset[n - 1];
742 		offset[n] = block % direct_blks;
743 		level = 3;
744 		goto got;
745 	} else {
746 		return -E2BIG;
747 	}
748 got:
749 	return level;
750 }
751 
752 /*
753  * Caller should call f2fs_put_dnode(dn).
754  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
755  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
756  */
757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
758 {
759 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
760 	struct page *npage[4];
761 	struct page *parent = NULL;
762 	int offset[4];
763 	unsigned int noffset[4];
764 	nid_t nids[4];
765 	int level, i = 0;
766 	int err = 0;
767 
768 	level = get_node_path(dn->inode, index, offset, noffset);
769 	if (level < 0)
770 		return level;
771 
772 	nids[0] = dn->inode->i_ino;
773 	npage[0] = dn->inode_page;
774 
775 	if (!npage[0]) {
776 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
777 		if (IS_ERR(npage[0]))
778 			return PTR_ERR(npage[0]);
779 	}
780 
781 	/* if inline_data is set, should not report any block indices */
782 	if (f2fs_has_inline_data(dn->inode) && index) {
783 		err = -ENOENT;
784 		f2fs_put_page(npage[0], 1);
785 		goto release_out;
786 	}
787 
788 	parent = npage[0];
789 	if (level != 0)
790 		nids[1] = get_nid(parent, offset[0], true);
791 	dn->inode_page = npage[0];
792 	dn->inode_page_locked = true;
793 
794 	/* get indirect or direct nodes */
795 	for (i = 1; i <= level; i++) {
796 		bool done = false;
797 
798 		if (!nids[i] && mode == ALLOC_NODE) {
799 			/* alloc new node */
800 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
801 				err = -ENOSPC;
802 				goto release_pages;
803 			}
804 
805 			dn->nid = nids[i];
806 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
807 			if (IS_ERR(npage[i])) {
808 				f2fs_alloc_nid_failed(sbi, nids[i]);
809 				err = PTR_ERR(npage[i]);
810 				goto release_pages;
811 			}
812 
813 			set_nid(parent, offset[i - 1], nids[i], i == 1);
814 			f2fs_alloc_nid_done(sbi, nids[i]);
815 			done = true;
816 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
817 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
818 			if (IS_ERR(npage[i])) {
819 				err = PTR_ERR(npage[i]);
820 				goto release_pages;
821 			}
822 			done = true;
823 		}
824 		if (i == 1) {
825 			dn->inode_page_locked = false;
826 			unlock_page(parent);
827 		} else {
828 			f2fs_put_page(parent, 1);
829 		}
830 
831 		if (!done) {
832 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
833 			if (IS_ERR(npage[i])) {
834 				err = PTR_ERR(npage[i]);
835 				f2fs_put_page(npage[0], 0);
836 				goto release_out;
837 			}
838 		}
839 		if (i < level) {
840 			parent = npage[i];
841 			nids[i + 1] = get_nid(parent, offset[i], false);
842 		}
843 	}
844 	dn->nid = nids[level];
845 	dn->ofs_in_node = offset[level];
846 	dn->node_page = npage[level];
847 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
848 
849 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
850 					f2fs_sb_has_readonly(sbi)) {
851 		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
852 		block_t blkaddr;
853 
854 		if (!c_len)
855 			goto out;
856 
857 		blkaddr = f2fs_data_blkaddr(dn);
858 		if (blkaddr == COMPRESS_ADDR)
859 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
860 						dn->ofs_in_node + 1);
861 
862 		f2fs_update_extent_tree_range_compressed(dn->inode,
863 					index, blkaddr,
864 					F2FS_I(dn->inode)->i_cluster_size,
865 					c_len);
866 	}
867 out:
868 	return 0;
869 
870 release_pages:
871 	f2fs_put_page(parent, 1);
872 	if (i > 1)
873 		f2fs_put_page(npage[0], 0);
874 release_out:
875 	dn->inode_page = NULL;
876 	dn->node_page = NULL;
877 	if (err == -ENOENT) {
878 		dn->cur_level = i;
879 		dn->max_level = level;
880 		dn->ofs_in_node = offset[level];
881 	}
882 	return err;
883 }
884 
885 static int truncate_node(struct dnode_of_data *dn)
886 {
887 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
888 	struct node_info ni;
889 	int err;
890 	pgoff_t index;
891 
892 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
893 	if (err)
894 		return err;
895 
896 	/* Deallocate node address */
897 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
898 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
899 	set_node_addr(sbi, &ni, NULL_ADDR, false);
900 
901 	if (dn->nid == dn->inode->i_ino) {
902 		f2fs_remove_orphan_inode(sbi, dn->nid);
903 		dec_valid_inode_count(sbi);
904 		f2fs_inode_synced(dn->inode);
905 	}
906 
907 	clear_node_page_dirty(dn->node_page);
908 	set_sbi_flag(sbi, SBI_IS_DIRTY);
909 
910 	index = dn->node_page->index;
911 	f2fs_put_page(dn->node_page, 1);
912 
913 	invalidate_mapping_pages(NODE_MAPPING(sbi),
914 			index, index);
915 
916 	dn->node_page = NULL;
917 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
918 
919 	return 0;
920 }
921 
922 static int truncate_dnode(struct dnode_of_data *dn)
923 {
924 	struct page *page;
925 	int err;
926 
927 	if (dn->nid == 0)
928 		return 1;
929 
930 	/* get direct node */
931 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 	if (PTR_ERR(page) == -ENOENT)
933 		return 1;
934 	else if (IS_ERR(page))
935 		return PTR_ERR(page);
936 
937 	/* Make dnode_of_data for parameter */
938 	dn->node_page = page;
939 	dn->ofs_in_node = 0;
940 	f2fs_truncate_data_blocks(dn);
941 	err = truncate_node(dn);
942 	if (err)
943 		return err;
944 
945 	return 1;
946 }
947 
948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
949 						int ofs, int depth)
950 {
951 	struct dnode_of_data rdn = *dn;
952 	struct page *page;
953 	struct f2fs_node *rn;
954 	nid_t child_nid;
955 	unsigned int child_nofs;
956 	int freed = 0;
957 	int i, ret;
958 
959 	if (dn->nid == 0)
960 		return NIDS_PER_BLOCK + 1;
961 
962 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
963 
964 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
965 	if (IS_ERR(page)) {
966 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
967 		return PTR_ERR(page);
968 	}
969 
970 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
971 
972 	rn = F2FS_NODE(page);
973 	if (depth < 3) {
974 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
975 			child_nid = le32_to_cpu(rn->in.nid[i]);
976 			if (child_nid == 0)
977 				continue;
978 			rdn.nid = child_nid;
979 			ret = truncate_dnode(&rdn);
980 			if (ret < 0)
981 				goto out_err;
982 			if (set_nid(page, i, 0, false))
983 				dn->node_changed = true;
984 		}
985 	} else {
986 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
987 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
988 			child_nid = le32_to_cpu(rn->in.nid[i]);
989 			if (child_nid == 0) {
990 				child_nofs += NIDS_PER_BLOCK + 1;
991 				continue;
992 			}
993 			rdn.nid = child_nid;
994 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
995 			if (ret == (NIDS_PER_BLOCK + 1)) {
996 				if (set_nid(page, i, 0, false))
997 					dn->node_changed = true;
998 				child_nofs += ret;
999 			} else if (ret < 0 && ret != -ENOENT) {
1000 				goto out_err;
1001 			}
1002 		}
1003 		freed = child_nofs;
1004 	}
1005 
1006 	if (!ofs) {
1007 		/* remove current indirect node */
1008 		dn->node_page = page;
1009 		ret = truncate_node(dn);
1010 		if (ret)
1011 			goto out_err;
1012 		freed++;
1013 	} else {
1014 		f2fs_put_page(page, 1);
1015 	}
1016 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1017 	return freed;
1018 
1019 out_err:
1020 	f2fs_put_page(page, 1);
1021 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1022 	return ret;
1023 }
1024 
1025 static int truncate_partial_nodes(struct dnode_of_data *dn,
1026 			struct f2fs_inode *ri, int *offset, int depth)
1027 {
1028 	struct page *pages[2];
1029 	nid_t nid[3];
1030 	nid_t child_nid;
1031 	int err = 0;
1032 	int i;
1033 	int idx = depth - 2;
1034 
1035 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1036 	if (!nid[0])
1037 		return 0;
1038 
1039 	/* get indirect nodes in the path */
1040 	for (i = 0; i < idx + 1; i++) {
1041 		/* reference count'll be increased */
1042 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1043 		if (IS_ERR(pages[i])) {
1044 			err = PTR_ERR(pages[i]);
1045 			idx = i - 1;
1046 			goto fail;
1047 		}
1048 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1049 	}
1050 
1051 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1052 
1053 	/* free direct nodes linked to a partial indirect node */
1054 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1055 		child_nid = get_nid(pages[idx], i, false);
1056 		if (!child_nid)
1057 			continue;
1058 		dn->nid = child_nid;
1059 		err = truncate_dnode(dn);
1060 		if (err < 0)
1061 			goto fail;
1062 		if (set_nid(pages[idx], i, 0, false))
1063 			dn->node_changed = true;
1064 	}
1065 
1066 	if (offset[idx + 1] == 0) {
1067 		dn->node_page = pages[idx];
1068 		dn->nid = nid[idx];
1069 		err = truncate_node(dn);
1070 		if (err)
1071 			goto fail;
1072 	} else {
1073 		f2fs_put_page(pages[idx], 1);
1074 	}
1075 	offset[idx]++;
1076 	offset[idx + 1] = 0;
1077 	idx--;
1078 fail:
1079 	for (i = idx; i >= 0; i--)
1080 		f2fs_put_page(pages[i], 1);
1081 
1082 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1083 
1084 	return err;
1085 }
1086 
1087 /*
1088  * All the block addresses of data and nodes should be nullified.
1089  */
1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1091 {
1092 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 	int err = 0, cont = 1;
1094 	int level, offset[4], noffset[4];
1095 	unsigned int nofs = 0;
1096 	struct f2fs_inode *ri;
1097 	struct dnode_of_data dn;
1098 	struct page *page;
1099 
1100 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1101 
1102 	level = get_node_path(inode, from, offset, noffset);
1103 	if (level < 0) {
1104 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1105 		return level;
1106 	}
1107 
1108 	page = f2fs_get_node_page(sbi, inode->i_ino);
1109 	if (IS_ERR(page)) {
1110 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1111 		return PTR_ERR(page);
1112 	}
1113 
1114 	set_new_dnode(&dn, inode, page, NULL, 0);
1115 	unlock_page(page);
1116 
1117 	ri = F2FS_INODE(page);
1118 	switch (level) {
1119 	case 0:
1120 	case 1:
1121 		nofs = noffset[1];
1122 		break;
1123 	case 2:
1124 		nofs = noffset[1];
1125 		if (!offset[level - 1])
1126 			goto skip_partial;
1127 		err = truncate_partial_nodes(&dn, ri, offset, level);
1128 		if (err < 0 && err != -ENOENT)
1129 			goto fail;
1130 		nofs += 1 + NIDS_PER_BLOCK;
1131 		break;
1132 	case 3:
1133 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1134 		if (!offset[level - 1])
1135 			goto skip_partial;
1136 		err = truncate_partial_nodes(&dn, ri, offset, level);
1137 		if (err < 0 && err != -ENOENT)
1138 			goto fail;
1139 		break;
1140 	default:
1141 		BUG();
1142 	}
1143 
1144 skip_partial:
1145 	while (cont) {
1146 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1147 		switch (offset[0]) {
1148 		case NODE_DIR1_BLOCK:
1149 		case NODE_DIR2_BLOCK:
1150 			err = truncate_dnode(&dn);
1151 			break;
1152 
1153 		case NODE_IND1_BLOCK:
1154 		case NODE_IND2_BLOCK:
1155 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1156 			break;
1157 
1158 		case NODE_DIND_BLOCK:
1159 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1160 			cont = 0;
1161 			break;
1162 
1163 		default:
1164 			BUG();
1165 		}
1166 		if (err < 0 && err != -ENOENT)
1167 			goto fail;
1168 		if (offset[1] == 0 &&
1169 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1170 			lock_page(page);
1171 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1172 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1173 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1174 			set_page_dirty(page);
1175 			unlock_page(page);
1176 		}
1177 		offset[1] = 0;
1178 		offset[0]++;
1179 		nofs += err;
1180 	}
1181 fail:
1182 	f2fs_put_page(page, 0);
1183 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1184 	return err > 0 ? 0 : err;
1185 }
1186 
1187 /* caller must lock inode page */
1188 int f2fs_truncate_xattr_node(struct inode *inode)
1189 {
1190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1192 	struct dnode_of_data dn;
1193 	struct page *npage;
1194 	int err;
1195 
1196 	if (!nid)
1197 		return 0;
1198 
1199 	npage = f2fs_get_node_page(sbi, nid);
1200 	if (IS_ERR(npage))
1201 		return PTR_ERR(npage);
1202 
1203 	set_new_dnode(&dn, inode, NULL, npage, nid);
1204 	err = truncate_node(&dn);
1205 	if (err) {
1206 		f2fs_put_page(npage, 1);
1207 		return err;
1208 	}
1209 
1210 	f2fs_i_xnid_write(inode, 0);
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1217  * f2fs_unlock_op().
1218  */
1219 int f2fs_remove_inode_page(struct inode *inode)
1220 {
1221 	struct dnode_of_data dn;
1222 	int err;
1223 
1224 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1225 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1226 	if (err)
1227 		return err;
1228 
1229 	err = f2fs_truncate_xattr_node(inode);
1230 	if (err) {
1231 		f2fs_put_dnode(&dn);
1232 		return err;
1233 	}
1234 
1235 	/* remove potential inline_data blocks */
1236 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1237 				S_ISLNK(inode->i_mode))
1238 		f2fs_truncate_data_blocks_range(&dn, 1);
1239 
1240 	/* 0 is possible, after f2fs_new_inode() has failed */
1241 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1242 		f2fs_put_dnode(&dn);
1243 		return -EIO;
1244 	}
1245 
1246 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1247 		f2fs_warn(F2FS_I_SB(inode),
1248 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1249 			inode->i_ino, (unsigned long long)inode->i_blocks);
1250 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1251 	}
1252 
1253 	/* will put inode & node pages */
1254 	err = truncate_node(&dn);
1255 	if (err) {
1256 		f2fs_put_dnode(&dn);
1257 		return err;
1258 	}
1259 	return 0;
1260 }
1261 
1262 struct page *f2fs_new_inode_page(struct inode *inode)
1263 {
1264 	struct dnode_of_data dn;
1265 
1266 	/* allocate inode page for new inode */
1267 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1268 
1269 	/* caller should f2fs_put_page(page, 1); */
1270 	return f2fs_new_node_page(&dn, 0);
1271 }
1272 
1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1274 {
1275 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1276 	struct node_info new_ni;
1277 	struct page *page;
1278 	int err;
1279 
1280 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1281 		return ERR_PTR(-EPERM);
1282 
1283 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1284 	if (!page)
1285 		return ERR_PTR(-ENOMEM);
1286 
1287 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1288 		goto fail;
1289 
1290 #ifdef CONFIG_F2FS_CHECK_FS
1291 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1292 	if (err) {
1293 		dec_valid_node_count(sbi, dn->inode, !ofs);
1294 		goto fail;
1295 	}
1296 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1297 		err = -EFSCORRUPTED;
1298 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1299 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1300 		goto fail;
1301 	}
1302 #endif
1303 	new_ni.nid = dn->nid;
1304 	new_ni.ino = dn->inode->i_ino;
1305 	new_ni.blk_addr = NULL_ADDR;
1306 	new_ni.flag = 0;
1307 	new_ni.version = 0;
1308 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1309 
1310 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1311 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1312 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1313 	if (!PageUptodate(page))
1314 		SetPageUptodate(page);
1315 	if (set_page_dirty(page))
1316 		dn->node_changed = true;
1317 
1318 	if (f2fs_has_xattr_block(ofs))
1319 		f2fs_i_xnid_write(dn->inode, dn->nid);
1320 
1321 	if (ofs == 0)
1322 		inc_valid_inode_count(sbi);
1323 	return page;
1324 
1325 fail:
1326 	clear_node_page_dirty(page);
1327 	f2fs_put_page(page, 1);
1328 	return ERR_PTR(err);
1329 }
1330 
1331 /*
1332  * Caller should do after getting the following values.
1333  * 0: f2fs_put_page(page, 0)
1334  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1335  */
1336 static int read_node_page(struct page *page, blk_opf_t op_flags)
1337 {
1338 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1339 	struct node_info ni;
1340 	struct f2fs_io_info fio = {
1341 		.sbi = sbi,
1342 		.type = NODE,
1343 		.op = REQ_OP_READ,
1344 		.op_flags = op_flags,
1345 		.page = page,
1346 		.encrypted_page = NULL,
1347 	};
1348 	int err;
1349 
1350 	if (PageUptodate(page)) {
1351 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1352 			ClearPageUptodate(page);
1353 			return -EFSBADCRC;
1354 		}
1355 		return LOCKED_PAGE;
1356 	}
1357 
1358 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1359 	if (err)
1360 		return err;
1361 
1362 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1363 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1364 		ClearPageUptodate(page);
1365 		return -ENOENT;
1366 	}
1367 
1368 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1369 
1370 	err = f2fs_submit_page_bio(&fio);
1371 
1372 	if (!err)
1373 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1374 
1375 	return err;
1376 }
1377 
1378 /*
1379  * Readahead a node page
1380  */
1381 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1382 {
1383 	struct page *apage;
1384 	int err;
1385 
1386 	if (!nid)
1387 		return;
1388 	if (f2fs_check_nid_range(sbi, nid))
1389 		return;
1390 
1391 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1392 	if (apage)
1393 		return;
1394 
1395 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1396 	if (!apage)
1397 		return;
1398 
1399 	err = read_node_page(apage, REQ_RAHEAD);
1400 	f2fs_put_page(apage, err ? 1 : 0);
1401 }
1402 
1403 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1404 					struct page *parent, int start)
1405 {
1406 	struct page *page;
1407 	int err;
1408 
1409 	if (!nid)
1410 		return ERR_PTR(-ENOENT);
1411 	if (f2fs_check_nid_range(sbi, nid))
1412 		return ERR_PTR(-EINVAL);
1413 repeat:
1414 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1415 	if (!page)
1416 		return ERR_PTR(-ENOMEM);
1417 
1418 	err = read_node_page(page, 0);
1419 	if (err < 0) {
1420 		goto out_put_err;
1421 	} else if (err == LOCKED_PAGE) {
1422 		err = 0;
1423 		goto page_hit;
1424 	}
1425 
1426 	if (parent)
1427 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1428 
1429 	lock_page(page);
1430 
1431 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1432 		f2fs_put_page(page, 1);
1433 		goto repeat;
1434 	}
1435 
1436 	if (unlikely(!PageUptodate(page))) {
1437 		err = -EIO;
1438 		goto out_err;
1439 	}
1440 
1441 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1442 		err = -EFSBADCRC;
1443 		goto out_err;
1444 	}
1445 page_hit:
1446 	if (likely(nid == nid_of_node(page)))
1447 		return page;
1448 
1449 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1450 			  nid, nid_of_node(page), ino_of_node(page),
1451 			  ofs_of_node(page), cpver_of_node(page),
1452 			  next_blkaddr_of_node(page));
1453 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1454 	err = -EINVAL;
1455 out_err:
1456 	ClearPageUptodate(page);
1457 out_put_err:
1458 	/* ENOENT comes from read_node_page which is not an error. */
1459 	if (err != -ENOENT)
1460 		f2fs_handle_page_eio(sbi, page->index, NODE);
1461 	f2fs_put_page(page, 1);
1462 	return ERR_PTR(err);
1463 }
1464 
1465 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1466 {
1467 	return __get_node_page(sbi, nid, NULL, 0);
1468 }
1469 
1470 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1471 {
1472 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1473 	nid_t nid = get_nid(parent, start, false);
1474 
1475 	return __get_node_page(sbi, nid, parent, start);
1476 }
1477 
1478 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1479 {
1480 	struct inode *inode;
1481 	struct page *page;
1482 	int ret;
1483 
1484 	/* should flush inline_data before evict_inode */
1485 	inode = ilookup(sbi->sb, ino);
1486 	if (!inode)
1487 		return;
1488 
1489 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1490 					FGP_LOCK|FGP_NOWAIT, 0);
1491 	if (!page)
1492 		goto iput_out;
1493 
1494 	if (!PageUptodate(page))
1495 		goto page_out;
1496 
1497 	if (!PageDirty(page))
1498 		goto page_out;
1499 
1500 	if (!clear_page_dirty_for_io(page))
1501 		goto page_out;
1502 
1503 	ret = f2fs_write_inline_data(inode, page);
1504 	inode_dec_dirty_pages(inode);
1505 	f2fs_remove_dirty_inode(inode);
1506 	if (ret)
1507 		set_page_dirty(page);
1508 page_out:
1509 	f2fs_put_page(page, 1);
1510 iput_out:
1511 	iput(inode);
1512 }
1513 
1514 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1515 {
1516 	pgoff_t index;
1517 	struct pagevec pvec;
1518 	struct page *last_page = NULL;
1519 	int nr_pages;
1520 
1521 	pagevec_init(&pvec);
1522 	index = 0;
1523 
1524 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1525 				PAGECACHE_TAG_DIRTY))) {
1526 		int i;
1527 
1528 		for (i = 0; i < nr_pages; i++) {
1529 			struct page *page = pvec.pages[i];
1530 
1531 			if (unlikely(f2fs_cp_error(sbi))) {
1532 				f2fs_put_page(last_page, 0);
1533 				pagevec_release(&pvec);
1534 				return ERR_PTR(-EIO);
1535 			}
1536 
1537 			if (!IS_DNODE(page) || !is_cold_node(page))
1538 				continue;
1539 			if (ino_of_node(page) != ino)
1540 				continue;
1541 
1542 			lock_page(page);
1543 
1544 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1545 continue_unlock:
1546 				unlock_page(page);
1547 				continue;
1548 			}
1549 			if (ino_of_node(page) != ino)
1550 				goto continue_unlock;
1551 
1552 			if (!PageDirty(page)) {
1553 				/* someone wrote it for us */
1554 				goto continue_unlock;
1555 			}
1556 
1557 			if (last_page)
1558 				f2fs_put_page(last_page, 0);
1559 
1560 			get_page(page);
1561 			last_page = page;
1562 			unlock_page(page);
1563 		}
1564 		pagevec_release(&pvec);
1565 		cond_resched();
1566 	}
1567 	return last_page;
1568 }
1569 
1570 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1571 				struct writeback_control *wbc, bool do_balance,
1572 				enum iostat_type io_type, unsigned int *seq_id)
1573 {
1574 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1575 	nid_t nid;
1576 	struct node_info ni;
1577 	struct f2fs_io_info fio = {
1578 		.sbi = sbi,
1579 		.ino = ino_of_node(page),
1580 		.type = NODE,
1581 		.op = REQ_OP_WRITE,
1582 		.op_flags = wbc_to_write_flags(wbc),
1583 		.page = page,
1584 		.encrypted_page = NULL,
1585 		.submitted = false,
1586 		.io_type = io_type,
1587 		.io_wbc = wbc,
1588 	};
1589 	unsigned int seq;
1590 
1591 	trace_f2fs_writepage(page, NODE);
1592 
1593 	if (unlikely(f2fs_cp_error(sbi))) {
1594 		ClearPageUptodate(page);
1595 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1596 		unlock_page(page);
1597 		return 0;
1598 	}
1599 
1600 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1601 		goto redirty_out;
1602 
1603 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1604 			wbc->sync_mode == WB_SYNC_NONE &&
1605 			IS_DNODE(page) && is_cold_node(page))
1606 		goto redirty_out;
1607 
1608 	/* get old block addr of this node page */
1609 	nid = nid_of_node(page);
1610 	f2fs_bug_on(sbi, page->index != nid);
1611 
1612 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1613 		goto redirty_out;
1614 
1615 	if (wbc->for_reclaim) {
1616 		if (!f2fs_down_read_trylock(&sbi->node_write))
1617 			goto redirty_out;
1618 	} else {
1619 		f2fs_down_read(&sbi->node_write);
1620 	}
1621 
1622 	/* This page is already truncated */
1623 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1624 		ClearPageUptodate(page);
1625 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1626 		f2fs_up_read(&sbi->node_write);
1627 		unlock_page(page);
1628 		return 0;
1629 	}
1630 
1631 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1632 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1633 					DATA_GENERIC_ENHANCE)) {
1634 		f2fs_up_read(&sbi->node_write);
1635 		goto redirty_out;
1636 	}
1637 
1638 	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1639 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1640 
1641 	/* should add to global list before clearing PAGECACHE status */
1642 	if (f2fs_in_warm_node_list(sbi, page)) {
1643 		seq = f2fs_add_fsync_node_entry(sbi, page);
1644 		if (seq_id)
1645 			*seq_id = seq;
1646 	}
1647 
1648 	set_page_writeback(page);
1649 	ClearPageError(page);
1650 
1651 	fio.old_blkaddr = ni.blk_addr;
1652 	f2fs_do_write_node_page(nid, &fio);
1653 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1654 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1655 	f2fs_up_read(&sbi->node_write);
1656 
1657 	if (wbc->for_reclaim) {
1658 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1659 		submitted = NULL;
1660 	}
1661 
1662 	unlock_page(page);
1663 
1664 	if (unlikely(f2fs_cp_error(sbi))) {
1665 		f2fs_submit_merged_write(sbi, NODE);
1666 		submitted = NULL;
1667 	}
1668 	if (submitted)
1669 		*submitted = fio.submitted;
1670 
1671 	if (do_balance)
1672 		f2fs_balance_fs(sbi, false);
1673 	return 0;
1674 
1675 redirty_out:
1676 	redirty_page_for_writepage(wbc, page);
1677 	return AOP_WRITEPAGE_ACTIVATE;
1678 }
1679 
1680 int f2fs_move_node_page(struct page *node_page, int gc_type)
1681 {
1682 	int err = 0;
1683 
1684 	if (gc_type == FG_GC) {
1685 		struct writeback_control wbc = {
1686 			.sync_mode = WB_SYNC_ALL,
1687 			.nr_to_write = 1,
1688 			.for_reclaim = 0,
1689 		};
1690 
1691 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1692 
1693 		set_page_dirty(node_page);
1694 
1695 		if (!clear_page_dirty_for_io(node_page)) {
1696 			err = -EAGAIN;
1697 			goto out_page;
1698 		}
1699 
1700 		if (__write_node_page(node_page, false, NULL,
1701 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1702 			err = -EAGAIN;
1703 			unlock_page(node_page);
1704 		}
1705 		goto release_page;
1706 	} else {
1707 		/* set page dirty and write it */
1708 		if (!PageWriteback(node_page))
1709 			set_page_dirty(node_page);
1710 	}
1711 out_page:
1712 	unlock_page(node_page);
1713 release_page:
1714 	f2fs_put_page(node_page, 0);
1715 	return err;
1716 }
1717 
1718 static int f2fs_write_node_page(struct page *page,
1719 				struct writeback_control *wbc)
1720 {
1721 	return __write_node_page(page, false, NULL, wbc, false,
1722 						FS_NODE_IO, NULL);
1723 }
1724 
1725 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1726 			struct writeback_control *wbc, bool atomic,
1727 			unsigned int *seq_id)
1728 {
1729 	pgoff_t index;
1730 	struct pagevec pvec;
1731 	int ret = 0;
1732 	struct page *last_page = NULL;
1733 	bool marked = false;
1734 	nid_t ino = inode->i_ino;
1735 	int nr_pages;
1736 	int nwritten = 0;
1737 
1738 	if (atomic) {
1739 		last_page = last_fsync_dnode(sbi, ino);
1740 		if (IS_ERR_OR_NULL(last_page))
1741 			return PTR_ERR_OR_ZERO(last_page);
1742 	}
1743 retry:
1744 	pagevec_init(&pvec);
1745 	index = 0;
1746 
1747 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1748 				PAGECACHE_TAG_DIRTY))) {
1749 		int i;
1750 
1751 		for (i = 0; i < nr_pages; i++) {
1752 			struct page *page = pvec.pages[i];
1753 			bool submitted = false;
1754 
1755 			if (unlikely(f2fs_cp_error(sbi))) {
1756 				f2fs_put_page(last_page, 0);
1757 				pagevec_release(&pvec);
1758 				ret = -EIO;
1759 				goto out;
1760 			}
1761 
1762 			if (!IS_DNODE(page) || !is_cold_node(page))
1763 				continue;
1764 			if (ino_of_node(page) != ino)
1765 				continue;
1766 
1767 			lock_page(page);
1768 
1769 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1770 continue_unlock:
1771 				unlock_page(page);
1772 				continue;
1773 			}
1774 			if (ino_of_node(page) != ino)
1775 				goto continue_unlock;
1776 
1777 			if (!PageDirty(page) && page != last_page) {
1778 				/* someone wrote it for us */
1779 				goto continue_unlock;
1780 			}
1781 
1782 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1783 
1784 			set_fsync_mark(page, 0);
1785 			set_dentry_mark(page, 0);
1786 
1787 			if (!atomic || page == last_page) {
1788 				set_fsync_mark(page, 1);
1789 				percpu_counter_inc(&sbi->rf_node_block_count);
1790 				if (IS_INODE(page)) {
1791 					if (is_inode_flag_set(inode,
1792 								FI_DIRTY_INODE))
1793 						f2fs_update_inode(inode, page);
1794 					set_dentry_mark(page,
1795 						f2fs_need_dentry_mark(sbi, ino));
1796 				}
1797 				/* may be written by other thread */
1798 				if (!PageDirty(page))
1799 					set_page_dirty(page);
1800 			}
1801 
1802 			if (!clear_page_dirty_for_io(page))
1803 				goto continue_unlock;
1804 
1805 			ret = __write_node_page(page, atomic &&
1806 						page == last_page,
1807 						&submitted, wbc, true,
1808 						FS_NODE_IO, seq_id);
1809 			if (ret) {
1810 				unlock_page(page);
1811 				f2fs_put_page(last_page, 0);
1812 				break;
1813 			} else if (submitted) {
1814 				nwritten++;
1815 			}
1816 
1817 			if (page == last_page) {
1818 				f2fs_put_page(page, 0);
1819 				marked = true;
1820 				break;
1821 			}
1822 		}
1823 		pagevec_release(&pvec);
1824 		cond_resched();
1825 
1826 		if (ret || marked)
1827 			break;
1828 	}
1829 	if (!ret && atomic && !marked) {
1830 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1831 			   ino, last_page->index);
1832 		lock_page(last_page);
1833 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1834 		set_page_dirty(last_page);
1835 		unlock_page(last_page);
1836 		goto retry;
1837 	}
1838 out:
1839 	if (nwritten)
1840 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1841 	return ret ? -EIO : 0;
1842 }
1843 
1844 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1845 {
1846 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1847 	bool clean;
1848 
1849 	if (inode->i_ino != ino)
1850 		return 0;
1851 
1852 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1853 		return 0;
1854 
1855 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1856 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1857 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1858 
1859 	if (clean)
1860 		return 0;
1861 
1862 	inode = igrab(inode);
1863 	if (!inode)
1864 		return 0;
1865 	return 1;
1866 }
1867 
1868 static bool flush_dirty_inode(struct page *page)
1869 {
1870 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1871 	struct inode *inode;
1872 	nid_t ino = ino_of_node(page);
1873 
1874 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1875 	if (!inode)
1876 		return false;
1877 
1878 	f2fs_update_inode(inode, page);
1879 	unlock_page(page);
1880 
1881 	iput(inode);
1882 	return true;
1883 }
1884 
1885 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1886 {
1887 	pgoff_t index = 0;
1888 	struct pagevec pvec;
1889 	int nr_pages;
1890 
1891 	pagevec_init(&pvec);
1892 
1893 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1894 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1895 		int i;
1896 
1897 		for (i = 0; i < nr_pages; i++) {
1898 			struct page *page = pvec.pages[i];
1899 
1900 			if (!IS_DNODE(page))
1901 				continue;
1902 
1903 			lock_page(page);
1904 
1905 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1906 continue_unlock:
1907 				unlock_page(page);
1908 				continue;
1909 			}
1910 
1911 			if (!PageDirty(page)) {
1912 				/* someone wrote it for us */
1913 				goto continue_unlock;
1914 			}
1915 
1916 			/* flush inline_data, if it's async context. */
1917 			if (page_private_inline(page)) {
1918 				clear_page_private_inline(page);
1919 				unlock_page(page);
1920 				flush_inline_data(sbi, ino_of_node(page));
1921 				continue;
1922 			}
1923 			unlock_page(page);
1924 		}
1925 		pagevec_release(&pvec);
1926 		cond_resched();
1927 	}
1928 }
1929 
1930 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1931 				struct writeback_control *wbc,
1932 				bool do_balance, enum iostat_type io_type)
1933 {
1934 	pgoff_t index;
1935 	struct pagevec pvec;
1936 	int step = 0;
1937 	int nwritten = 0;
1938 	int ret = 0;
1939 	int nr_pages, done = 0;
1940 
1941 	pagevec_init(&pvec);
1942 
1943 next_step:
1944 	index = 0;
1945 
1946 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1947 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1948 		int i;
1949 
1950 		for (i = 0; i < nr_pages; i++) {
1951 			struct page *page = pvec.pages[i];
1952 			bool submitted = false;
1953 
1954 			/* give a priority to WB_SYNC threads */
1955 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1956 					wbc->sync_mode == WB_SYNC_NONE) {
1957 				done = 1;
1958 				break;
1959 			}
1960 
1961 			/*
1962 			 * flushing sequence with step:
1963 			 * 0. indirect nodes
1964 			 * 1. dentry dnodes
1965 			 * 2. file dnodes
1966 			 */
1967 			if (step == 0 && IS_DNODE(page))
1968 				continue;
1969 			if (step == 1 && (!IS_DNODE(page) ||
1970 						is_cold_node(page)))
1971 				continue;
1972 			if (step == 2 && (!IS_DNODE(page) ||
1973 						!is_cold_node(page)))
1974 				continue;
1975 lock_node:
1976 			if (wbc->sync_mode == WB_SYNC_ALL)
1977 				lock_page(page);
1978 			else if (!trylock_page(page))
1979 				continue;
1980 
1981 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1982 continue_unlock:
1983 				unlock_page(page);
1984 				continue;
1985 			}
1986 
1987 			if (!PageDirty(page)) {
1988 				/* someone wrote it for us */
1989 				goto continue_unlock;
1990 			}
1991 
1992 			/* flush inline_data/inode, if it's async context. */
1993 			if (!do_balance)
1994 				goto write_node;
1995 
1996 			/* flush inline_data */
1997 			if (page_private_inline(page)) {
1998 				clear_page_private_inline(page);
1999 				unlock_page(page);
2000 				flush_inline_data(sbi, ino_of_node(page));
2001 				goto lock_node;
2002 			}
2003 
2004 			/* flush dirty inode */
2005 			if (IS_INODE(page) && flush_dirty_inode(page))
2006 				goto lock_node;
2007 write_node:
2008 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2009 
2010 			if (!clear_page_dirty_for_io(page))
2011 				goto continue_unlock;
2012 
2013 			set_fsync_mark(page, 0);
2014 			set_dentry_mark(page, 0);
2015 
2016 			ret = __write_node_page(page, false, &submitted,
2017 						wbc, do_balance, io_type, NULL);
2018 			if (ret)
2019 				unlock_page(page);
2020 			else if (submitted)
2021 				nwritten++;
2022 
2023 			if (--wbc->nr_to_write == 0)
2024 				break;
2025 		}
2026 		pagevec_release(&pvec);
2027 		cond_resched();
2028 
2029 		if (wbc->nr_to_write == 0) {
2030 			step = 2;
2031 			break;
2032 		}
2033 	}
2034 
2035 	if (step < 2) {
2036 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2037 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2038 			goto out;
2039 		step++;
2040 		goto next_step;
2041 	}
2042 out:
2043 	if (nwritten)
2044 		f2fs_submit_merged_write(sbi, NODE);
2045 
2046 	if (unlikely(f2fs_cp_error(sbi)))
2047 		return -EIO;
2048 	return ret;
2049 }
2050 
2051 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2052 						unsigned int seq_id)
2053 {
2054 	struct fsync_node_entry *fn;
2055 	struct page *page;
2056 	struct list_head *head = &sbi->fsync_node_list;
2057 	unsigned long flags;
2058 	unsigned int cur_seq_id = 0;
2059 	int ret2, ret = 0;
2060 
2061 	while (seq_id && cur_seq_id < seq_id) {
2062 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2063 		if (list_empty(head)) {
2064 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2065 			break;
2066 		}
2067 		fn = list_first_entry(head, struct fsync_node_entry, list);
2068 		if (fn->seq_id > seq_id) {
2069 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2070 			break;
2071 		}
2072 		cur_seq_id = fn->seq_id;
2073 		page = fn->page;
2074 		get_page(page);
2075 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2076 
2077 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2078 		if (TestClearPageError(page))
2079 			ret = -EIO;
2080 
2081 		put_page(page);
2082 
2083 		if (ret)
2084 			break;
2085 	}
2086 
2087 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2088 	if (!ret)
2089 		ret = ret2;
2090 
2091 	return ret;
2092 }
2093 
2094 static int f2fs_write_node_pages(struct address_space *mapping,
2095 			    struct writeback_control *wbc)
2096 {
2097 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2098 	struct blk_plug plug;
2099 	long diff;
2100 
2101 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2102 		goto skip_write;
2103 
2104 	/* balancing f2fs's metadata in background */
2105 	f2fs_balance_fs_bg(sbi, true);
2106 
2107 	/* collect a number of dirty node pages and write together */
2108 	if (wbc->sync_mode != WB_SYNC_ALL &&
2109 			get_pages(sbi, F2FS_DIRTY_NODES) <
2110 					nr_pages_to_skip(sbi, NODE))
2111 		goto skip_write;
2112 
2113 	if (wbc->sync_mode == WB_SYNC_ALL)
2114 		atomic_inc(&sbi->wb_sync_req[NODE]);
2115 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2116 		/* to avoid potential deadlock */
2117 		if (current->plug)
2118 			blk_finish_plug(current->plug);
2119 		goto skip_write;
2120 	}
2121 
2122 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2123 
2124 	diff = nr_pages_to_write(sbi, NODE, wbc);
2125 	blk_start_plug(&plug);
2126 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2127 	blk_finish_plug(&plug);
2128 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2129 
2130 	if (wbc->sync_mode == WB_SYNC_ALL)
2131 		atomic_dec(&sbi->wb_sync_req[NODE]);
2132 	return 0;
2133 
2134 skip_write:
2135 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2136 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2137 	return 0;
2138 }
2139 
2140 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2141 		struct folio *folio)
2142 {
2143 	trace_f2fs_set_page_dirty(&folio->page, NODE);
2144 
2145 	if (!folio_test_uptodate(folio))
2146 		folio_mark_uptodate(folio);
2147 #ifdef CONFIG_F2FS_CHECK_FS
2148 	if (IS_INODE(&folio->page))
2149 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2150 #endif
2151 	if (filemap_dirty_folio(mapping, folio)) {
2152 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2153 		set_page_private_reference(&folio->page);
2154 		return true;
2155 	}
2156 	return false;
2157 }
2158 
2159 /*
2160  * Structure of the f2fs node operations
2161  */
2162 const struct address_space_operations f2fs_node_aops = {
2163 	.writepage	= f2fs_write_node_page,
2164 	.writepages	= f2fs_write_node_pages,
2165 	.dirty_folio	= f2fs_dirty_node_folio,
2166 	.invalidate_folio = f2fs_invalidate_folio,
2167 	.release_folio	= f2fs_release_folio,
2168 	.migrate_folio	= filemap_migrate_folio,
2169 };
2170 
2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2172 						nid_t n)
2173 {
2174 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2175 }
2176 
2177 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2178 				struct free_nid *i)
2179 {
2180 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2182 
2183 	if (err)
2184 		return err;
2185 
2186 	nm_i->nid_cnt[FREE_NID]++;
2187 	list_add_tail(&i->list, &nm_i->free_nid_list);
2188 	return 0;
2189 }
2190 
2191 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2192 			struct free_nid *i, enum nid_state state)
2193 {
2194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195 
2196 	f2fs_bug_on(sbi, state != i->state);
2197 	nm_i->nid_cnt[state]--;
2198 	if (state == FREE_NID)
2199 		list_del(&i->list);
2200 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2201 }
2202 
2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2204 			enum nid_state org_state, enum nid_state dst_state)
2205 {
2206 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2207 
2208 	f2fs_bug_on(sbi, org_state != i->state);
2209 	i->state = dst_state;
2210 	nm_i->nid_cnt[org_state]--;
2211 	nm_i->nid_cnt[dst_state]++;
2212 
2213 	switch (dst_state) {
2214 	case PREALLOC_NID:
2215 		list_del(&i->list);
2216 		break;
2217 	case FREE_NID:
2218 		list_add_tail(&i->list, &nm_i->free_nid_list);
2219 		break;
2220 	default:
2221 		BUG_ON(1);
2222 	}
2223 }
2224 
2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2226 {
2227 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2228 	unsigned int i;
2229 	bool ret = true;
2230 
2231 	f2fs_down_read(&nm_i->nat_tree_lock);
2232 	for (i = 0; i < nm_i->nat_blocks; i++) {
2233 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2234 			ret = false;
2235 			break;
2236 		}
2237 	}
2238 	f2fs_up_read(&nm_i->nat_tree_lock);
2239 
2240 	return ret;
2241 }
2242 
2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2244 							bool set, bool build)
2245 {
2246 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2247 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2248 	unsigned int nid_ofs = nid - START_NID(nid);
2249 
2250 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2251 		return;
2252 
2253 	if (set) {
2254 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2255 			return;
2256 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2257 		nm_i->free_nid_count[nat_ofs]++;
2258 	} else {
2259 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2260 			return;
2261 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2262 		if (!build)
2263 			nm_i->free_nid_count[nat_ofs]--;
2264 	}
2265 }
2266 
2267 /* return if the nid is recognized as free */
2268 static bool add_free_nid(struct f2fs_sb_info *sbi,
2269 				nid_t nid, bool build, bool update)
2270 {
2271 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2272 	struct free_nid *i, *e;
2273 	struct nat_entry *ne;
2274 	int err = -EINVAL;
2275 	bool ret = false;
2276 
2277 	/* 0 nid should not be used */
2278 	if (unlikely(nid == 0))
2279 		return false;
2280 
2281 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2282 		return false;
2283 
2284 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2285 	i->nid = nid;
2286 	i->state = FREE_NID;
2287 
2288 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2289 
2290 	spin_lock(&nm_i->nid_list_lock);
2291 
2292 	if (build) {
2293 		/*
2294 		 *   Thread A             Thread B
2295 		 *  - f2fs_create
2296 		 *   - f2fs_new_inode
2297 		 *    - f2fs_alloc_nid
2298 		 *     - __insert_nid_to_list(PREALLOC_NID)
2299 		 *                     - f2fs_balance_fs_bg
2300 		 *                      - f2fs_build_free_nids
2301 		 *                       - __f2fs_build_free_nids
2302 		 *                        - scan_nat_page
2303 		 *                         - add_free_nid
2304 		 *                          - __lookup_nat_cache
2305 		 *  - f2fs_add_link
2306 		 *   - f2fs_init_inode_metadata
2307 		 *    - f2fs_new_inode_page
2308 		 *     - f2fs_new_node_page
2309 		 *      - set_node_addr
2310 		 *  - f2fs_alloc_nid_done
2311 		 *   - __remove_nid_from_list(PREALLOC_NID)
2312 		 *                         - __insert_nid_to_list(FREE_NID)
2313 		 */
2314 		ne = __lookup_nat_cache(nm_i, nid);
2315 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2316 				nat_get_blkaddr(ne) != NULL_ADDR))
2317 			goto err_out;
2318 
2319 		e = __lookup_free_nid_list(nm_i, nid);
2320 		if (e) {
2321 			if (e->state == FREE_NID)
2322 				ret = true;
2323 			goto err_out;
2324 		}
2325 	}
2326 	ret = true;
2327 	err = __insert_free_nid(sbi, i);
2328 err_out:
2329 	if (update) {
2330 		update_free_nid_bitmap(sbi, nid, ret, build);
2331 		if (!build)
2332 			nm_i->available_nids++;
2333 	}
2334 	spin_unlock(&nm_i->nid_list_lock);
2335 	radix_tree_preload_end();
2336 
2337 	if (err)
2338 		kmem_cache_free(free_nid_slab, i);
2339 	return ret;
2340 }
2341 
2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2343 {
2344 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2345 	struct free_nid *i;
2346 	bool need_free = false;
2347 
2348 	spin_lock(&nm_i->nid_list_lock);
2349 	i = __lookup_free_nid_list(nm_i, nid);
2350 	if (i && i->state == FREE_NID) {
2351 		__remove_free_nid(sbi, i, FREE_NID);
2352 		need_free = true;
2353 	}
2354 	spin_unlock(&nm_i->nid_list_lock);
2355 
2356 	if (need_free)
2357 		kmem_cache_free(free_nid_slab, i);
2358 }
2359 
2360 static int scan_nat_page(struct f2fs_sb_info *sbi,
2361 			struct page *nat_page, nid_t start_nid)
2362 {
2363 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2364 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2365 	block_t blk_addr;
2366 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2367 	int i;
2368 
2369 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2370 
2371 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2372 
2373 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2374 		if (unlikely(start_nid >= nm_i->max_nid))
2375 			break;
2376 
2377 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2378 
2379 		if (blk_addr == NEW_ADDR)
2380 			return -EINVAL;
2381 
2382 		if (blk_addr == NULL_ADDR) {
2383 			add_free_nid(sbi, start_nid, true, true);
2384 		} else {
2385 			spin_lock(&NM_I(sbi)->nid_list_lock);
2386 			update_free_nid_bitmap(sbi, start_nid, false, true);
2387 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2388 		}
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2395 {
2396 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2397 	struct f2fs_journal *journal = curseg->journal;
2398 	int i;
2399 
2400 	down_read(&curseg->journal_rwsem);
2401 	for (i = 0; i < nats_in_cursum(journal); i++) {
2402 		block_t addr;
2403 		nid_t nid;
2404 
2405 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2406 		nid = le32_to_cpu(nid_in_journal(journal, i));
2407 		if (addr == NULL_ADDR)
2408 			add_free_nid(sbi, nid, true, false);
2409 		else
2410 			remove_free_nid(sbi, nid);
2411 	}
2412 	up_read(&curseg->journal_rwsem);
2413 }
2414 
2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2416 {
2417 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2418 	unsigned int i, idx;
2419 	nid_t nid;
2420 
2421 	f2fs_down_read(&nm_i->nat_tree_lock);
2422 
2423 	for (i = 0; i < nm_i->nat_blocks; i++) {
2424 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2425 			continue;
2426 		if (!nm_i->free_nid_count[i])
2427 			continue;
2428 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2429 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2430 						NAT_ENTRY_PER_BLOCK, idx);
2431 			if (idx >= NAT_ENTRY_PER_BLOCK)
2432 				break;
2433 
2434 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2435 			add_free_nid(sbi, nid, true, false);
2436 
2437 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2438 				goto out;
2439 		}
2440 	}
2441 out:
2442 	scan_curseg_cache(sbi);
2443 
2444 	f2fs_up_read(&nm_i->nat_tree_lock);
2445 }
2446 
2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2448 						bool sync, bool mount)
2449 {
2450 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2451 	int i = 0, ret;
2452 	nid_t nid = nm_i->next_scan_nid;
2453 
2454 	if (unlikely(nid >= nm_i->max_nid))
2455 		nid = 0;
2456 
2457 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2458 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2459 
2460 	/* Enough entries */
2461 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2462 		return 0;
2463 
2464 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2465 		return 0;
2466 
2467 	if (!mount) {
2468 		/* try to find free nids in free_nid_bitmap */
2469 		scan_free_nid_bits(sbi);
2470 
2471 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2472 			return 0;
2473 	}
2474 
2475 	/* readahead nat pages to be scanned */
2476 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2477 							META_NAT, true);
2478 
2479 	f2fs_down_read(&nm_i->nat_tree_lock);
2480 
2481 	while (1) {
2482 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2483 						nm_i->nat_block_bitmap)) {
2484 			struct page *page = get_current_nat_page(sbi, nid);
2485 
2486 			if (IS_ERR(page)) {
2487 				ret = PTR_ERR(page);
2488 			} else {
2489 				ret = scan_nat_page(sbi, page, nid);
2490 				f2fs_put_page(page, 1);
2491 			}
2492 
2493 			if (ret) {
2494 				f2fs_up_read(&nm_i->nat_tree_lock);
2495 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2496 				return ret;
2497 			}
2498 		}
2499 
2500 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2501 		if (unlikely(nid >= nm_i->max_nid))
2502 			nid = 0;
2503 
2504 		if (++i >= FREE_NID_PAGES)
2505 			break;
2506 	}
2507 
2508 	/* go to the next free nat pages to find free nids abundantly */
2509 	nm_i->next_scan_nid = nid;
2510 
2511 	/* find free nids from current sum_pages */
2512 	scan_curseg_cache(sbi);
2513 
2514 	f2fs_up_read(&nm_i->nat_tree_lock);
2515 
2516 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2517 					nm_i->ra_nid_pages, META_NAT, false);
2518 
2519 	return 0;
2520 }
2521 
2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2523 {
2524 	int ret;
2525 
2526 	mutex_lock(&NM_I(sbi)->build_lock);
2527 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2528 	mutex_unlock(&NM_I(sbi)->build_lock);
2529 
2530 	return ret;
2531 }
2532 
2533 /*
2534  * If this function returns success, caller can obtain a new nid
2535  * from second parameter of this function.
2536  * The returned nid could be used ino as well as nid when inode is created.
2537  */
2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2539 {
2540 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2541 	struct free_nid *i = NULL;
2542 retry:
2543 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2544 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2545 		return false;
2546 	}
2547 
2548 	spin_lock(&nm_i->nid_list_lock);
2549 
2550 	if (unlikely(nm_i->available_nids == 0)) {
2551 		spin_unlock(&nm_i->nid_list_lock);
2552 		return false;
2553 	}
2554 
2555 	/* We should not use stale free nids created by f2fs_build_free_nids */
2556 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2557 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2558 		i = list_first_entry(&nm_i->free_nid_list,
2559 					struct free_nid, list);
2560 		*nid = i->nid;
2561 
2562 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2563 		nm_i->available_nids--;
2564 
2565 		update_free_nid_bitmap(sbi, *nid, false, false);
2566 
2567 		spin_unlock(&nm_i->nid_list_lock);
2568 		return true;
2569 	}
2570 	spin_unlock(&nm_i->nid_list_lock);
2571 
2572 	/* Let's scan nat pages and its caches to get free nids */
2573 	if (!f2fs_build_free_nids(sbi, true, false))
2574 		goto retry;
2575 	return false;
2576 }
2577 
2578 /*
2579  * f2fs_alloc_nid() should be called prior to this function.
2580  */
2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2582 {
2583 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 	struct free_nid *i;
2585 
2586 	spin_lock(&nm_i->nid_list_lock);
2587 	i = __lookup_free_nid_list(nm_i, nid);
2588 	f2fs_bug_on(sbi, !i);
2589 	__remove_free_nid(sbi, i, PREALLOC_NID);
2590 	spin_unlock(&nm_i->nid_list_lock);
2591 
2592 	kmem_cache_free(free_nid_slab, i);
2593 }
2594 
2595 /*
2596  * f2fs_alloc_nid() should be called prior to this function.
2597  */
2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2599 {
2600 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2601 	struct free_nid *i;
2602 	bool need_free = false;
2603 
2604 	if (!nid)
2605 		return;
2606 
2607 	spin_lock(&nm_i->nid_list_lock);
2608 	i = __lookup_free_nid_list(nm_i, nid);
2609 	f2fs_bug_on(sbi, !i);
2610 
2611 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2612 		__remove_free_nid(sbi, i, PREALLOC_NID);
2613 		need_free = true;
2614 	} else {
2615 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2616 	}
2617 
2618 	nm_i->available_nids++;
2619 
2620 	update_free_nid_bitmap(sbi, nid, true, false);
2621 
2622 	spin_unlock(&nm_i->nid_list_lock);
2623 
2624 	if (need_free)
2625 		kmem_cache_free(free_nid_slab, i);
2626 }
2627 
2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2629 {
2630 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2631 	int nr = nr_shrink;
2632 
2633 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2634 		return 0;
2635 
2636 	if (!mutex_trylock(&nm_i->build_lock))
2637 		return 0;
2638 
2639 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2640 		struct free_nid *i, *next;
2641 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2642 
2643 		spin_lock(&nm_i->nid_list_lock);
2644 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2645 			if (!nr_shrink || !batch ||
2646 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2647 				break;
2648 			__remove_free_nid(sbi, i, FREE_NID);
2649 			kmem_cache_free(free_nid_slab, i);
2650 			nr_shrink--;
2651 			batch--;
2652 		}
2653 		spin_unlock(&nm_i->nid_list_lock);
2654 	}
2655 
2656 	mutex_unlock(&nm_i->build_lock);
2657 
2658 	return nr - nr_shrink;
2659 }
2660 
2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2662 {
2663 	void *src_addr, *dst_addr;
2664 	size_t inline_size;
2665 	struct page *ipage;
2666 	struct f2fs_inode *ri;
2667 
2668 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2669 	if (IS_ERR(ipage))
2670 		return PTR_ERR(ipage);
2671 
2672 	ri = F2FS_INODE(page);
2673 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2674 		if (!f2fs_has_inline_xattr(inode)) {
2675 			set_inode_flag(inode, FI_INLINE_XATTR);
2676 			stat_inc_inline_xattr(inode);
2677 		}
2678 	} else {
2679 		if (f2fs_has_inline_xattr(inode)) {
2680 			stat_dec_inline_xattr(inode);
2681 			clear_inode_flag(inode, FI_INLINE_XATTR);
2682 		}
2683 		goto update_inode;
2684 	}
2685 
2686 	dst_addr = inline_xattr_addr(inode, ipage);
2687 	src_addr = inline_xattr_addr(inode, page);
2688 	inline_size = inline_xattr_size(inode);
2689 
2690 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2691 	memcpy(dst_addr, src_addr, inline_size);
2692 update_inode:
2693 	f2fs_update_inode(inode, ipage);
2694 	f2fs_put_page(ipage, 1);
2695 	return 0;
2696 }
2697 
2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2699 {
2700 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2702 	nid_t new_xnid;
2703 	struct dnode_of_data dn;
2704 	struct node_info ni;
2705 	struct page *xpage;
2706 	int err;
2707 
2708 	if (!prev_xnid)
2709 		goto recover_xnid;
2710 
2711 	/* 1: invalidate the previous xattr nid */
2712 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2713 	if (err)
2714 		return err;
2715 
2716 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2717 	dec_valid_node_count(sbi, inode, false);
2718 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2719 
2720 recover_xnid:
2721 	/* 2: update xattr nid in inode */
2722 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2723 		return -ENOSPC;
2724 
2725 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2726 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2727 	if (IS_ERR(xpage)) {
2728 		f2fs_alloc_nid_failed(sbi, new_xnid);
2729 		return PTR_ERR(xpage);
2730 	}
2731 
2732 	f2fs_alloc_nid_done(sbi, new_xnid);
2733 	f2fs_update_inode_page(inode);
2734 
2735 	/* 3: update and set xattr node page dirty */
2736 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2737 
2738 	set_page_dirty(xpage);
2739 	f2fs_put_page(xpage, 1);
2740 
2741 	return 0;
2742 }
2743 
2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2745 {
2746 	struct f2fs_inode *src, *dst;
2747 	nid_t ino = ino_of_node(page);
2748 	struct node_info old_ni, new_ni;
2749 	struct page *ipage;
2750 	int err;
2751 
2752 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2753 	if (err)
2754 		return err;
2755 
2756 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2757 		return -EINVAL;
2758 retry:
2759 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2760 	if (!ipage) {
2761 		memalloc_retry_wait(GFP_NOFS);
2762 		goto retry;
2763 	}
2764 
2765 	/* Should not use this inode from free nid list */
2766 	remove_free_nid(sbi, ino);
2767 
2768 	if (!PageUptodate(ipage))
2769 		SetPageUptodate(ipage);
2770 	fill_node_footer(ipage, ino, ino, 0, true);
2771 	set_cold_node(ipage, false);
2772 
2773 	src = F2FS_INODE(page);
2774 	dst = F2FS_INODE(ipage);
2775 
2776 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2777 	dst->i_size = 0;
2778 	dst->i_blocks = cpu_to_le64(1);
2779 	dst->i_links = cpu_to_le32(1);
2780 	dst->i_xattr_nid = 0;
2781 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2782 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2783 		dst->i_extra_isize = src->i_extra_isize;
2784 
2785 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2786 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2787 							i_inline_xattr_size))
2788 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2789 
2790 		if (f2fs_sb_has_project_quota(sbi) &&
2791 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2792 								i_projid))
2793 			dst->i_projid = src->i_projid;
2794 
2795 		if (f2fs_sb_has_inode_crtime(sbi) &&
2796 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2797 							i_crtime_nsec)) {
2798 			dst->i_crtime = src->i_crtime;
2799 			dst->i_crtime_nsec = src->i_crtime_nsec;
2800 		}
2801 	}
2802 
2803 	new_ni = old_ni;
2804 	new_ni.ino = ino;
2805 
2806 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2807 		WARN_ON(1);
2808 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2809 	inc_valid_inode_count(sbi);
2810 	set_page_dirty(ipage);
2811 	f2fs_put_page(ipage, 1);
2812 	return 0;
2813 }
2814 
2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2816 			unsigned int segno, struct f2fs_summary_block *sum)
2817 {
2818 	struct f2fs_node *rn;
2819 	struct f2fs_summary *sum_entry;
2820 	block_t addr;
2821 	int i, idx, last_offset, nrpages;
2822 
2823 	/* scan the node segment */
2824 	last_offset = sbi->blocks_per_seg;
2825 	addr = START_BLOCK(sbi, segno);
2826 	sum_entry = &sum->entries[0];
2827 
2828 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2829 		nrpages = bio_max_segs(last_offset - i);
2830 
2831 		/* readahead node pages */
2832 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2833 
2834 		for (idx = addr; idx < addr + nrpages; idx++) {
2835 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2836 
2837 			if (IS_ERR(page))
2838 				return PTR_ERR(page);
2839 
2840 			rn = F2FS_NODE(page);
2841 			sum_entry->nid = rn->footer.nid;
2842 			sum_entry->version = 0;
2843 			sum_entry->ofs_in_node = 0;
2844 			sum_entry++;
2845 			f2fs_put_page(page, 1);
2846 		}
2847 
2848 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2849 							addr + nrpages);
2850 	}
2851 	return 0;
2852 }
2853 
2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2855 {
2856 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2857 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858 	struct f2fs_journal *journal = curseg->journal;
2859 	int i;
2860 
2861 	down_write(&curseg->journal_rwsem);
2862 	for (i = 0; i < nats_in_cursum(journal); i++) {
2863 		struct nat_entry *ne;
2864 		struct f2fs_nat_entry raw_ne;
2865 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2866 
2867 		if (f2fs_check_nid_range(sbi, nid))
2868 			continue;
2869 
2870 		raw_ne = nat_in_journal(journal, i);
2871 
2872 		ne = __lookup_nat_cache(nm_i, nid);
2873 		if (!ne) {
2874 			ne = __alloc_nat_entry(sbi, nid, true);
2875 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2876 		}
2877 
2878 		/*
2879 		 * if a free nat in journal has not been used after last
2880 		 * checkpoint, we should remove it from available nids,
2881 		 * since later we will add it again.
2882 		 */
2883 		if (!get_nat_flag(ne, IS_DIRTY) &&
2884 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2885 			spin_lock(&nm_i->nid_list_lock);
2886 			nm_i->available_nids--;
2887 			spin_unlock(&nm_i->nid_list_lock);
2888 		}
2889 
2890 		__set_nat_cache_dirty(nm_i, ne);
2891 	}
2892 	update_nats_in_cursum(journal, -i);
2893 	up_write(&curseg->journal_rwsem);
2894 }
2895 
2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2897 						struct list_head *head, int max)
2898 {
2899 	struct nat_entry_set *cur;
2900 
2901 	if (nes->entry_cnt >= max)
2902 		goto add_out;
2903 
2904 	list_for_each_entry(cur, head, set_list) {
2905 		if (cur->entry_cnt >= nes->entry_cnt) {
2906 			list_add(&nes->set_list, cur->set_list.prev);
2907 			return;
2908 		}
2909 	}
2910 add_out:
2911 	list_add_tail(&nes->set_list, head);
2912 }
2913 
2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2915 							unsigned int valid)
2916 {
2917 	if (valid == 0) {
2918 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2919 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2920 		return;
2921 	}
2922 
2923 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2924 	if (valid == NAT_ENTRY_PER_BLOCK)
2925 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2926 	else
2927 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2928 }
2929 
2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2931 						struct page *page)
2932 {
2933 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2934 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2935 	struct f2fs_nat_block *nat_blk = page_address(page);
2936 	int valid = 0;
2937 	int i = 0;
2938 
2939 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2940 		return;
2941 
2942 	if (nat_index == 0) {
2943 		valid = 1;
2944 		i = 1;
2945 	}
2946 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2947 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2948 			valid++;
2949 	}
2950 
2951 	__update_nat_bits(nm_i, nat_index, valid);
2952 }
2953 
2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2955 {
2956 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2957 	unsigned int nat_ofs;
2958 
2959 	f2fs_down_read(&nm_i->nat_tree_lock);
2960 
2961 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2962 		unsigned int valid = 0, nid_ofs = 0;
2963 
2964 		/* handle nid zero due to it should never be used */
2965 		if (unlikely(nat_ofs == 0)) {
2966 			valid = 1;
2967 			nid_ofs = 1;
2968 		}
2969 
2970 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2971 			if (!test_bit_le(nid_ofs,
2972 					nm_i->free_nid_bitmap[nat_ofs]))
2973 				valid++;
2974 		}
2975 
2976 		__update_nat_bits(nm_i, nat_ofs, valid);
2977 	}
2978 
2979 	f2fs_up_read(&nm_i->nat_tree_lock);
2980 }
2981 
2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2983 		struct nat_entry_set *set, struct cp_control *cpc)
2984 {
2985 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2986 	struct f2fs_journal *journal = curseg->journal;
2987 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2988 	bool to_journal = true;
2989 	struct f2fs_nat_block *nat_blk;
2990 	struct nat_entry *ne, *cur;
2991 	struct page *page = NULL;
2992 
2993 	/*
2994 	 * there are two steps to flush nat entries:
2995 	 * #1, flush nat entries to journal in current hot data summary block.
2996 	 * #2, flush nat entries to nat page.
2997 	 */
2998 	if ((cpc->reason & CP_UMOUNT) ||
2999 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3000 		to_journal = false;
3001 
3002 	if (to_journal) {
3003 		down_write(&curseg->journal_rwsem);
3004 	} else {
3005 		page = get_next_nat_page(sbi, start_nid);
3006 		if (IS_ERR(page))
3007 			return PTR_ERR(page);
3008 
3009 		nat_blk = page_address(page);
3010 		f2fs_bug_on(sbi, !nat_blk);
3011 	}
3012 
3013 	/* flush dirty nats in nat entry set */
3014 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3015 		struct f2fs_nat_entry *raw_ne;
3016 		nid_t nid = nat_get_nid(ne);
3017 		int offset;
3018 
3019 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3020 
3021 		if (to_journal) {
3022 			offset = f2fs_lookup_journal_in_cursum(journal,
3023 							NAT_JOURNAL, nid, 1);
3024 			f2fs_bug_on(sbi, offset < 0);
3025 			raw_ne = &nat_in_journal(journal, offset);
3026 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3027 		} else {
3028 			raw_ne = &nat_blk->entries[nid - start_nid];
3029 		}
3030 		raw_nat_from_node_info(raw_ne, &ne->ni);
3031 		nat_reset_flag(ne);
3032 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3033 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3034 			add_free_nid(sbi, nid, false, true);
3035 		} else {
3036 			spin_lock(&NM_I(sbi)->nid_list_lock);
3037 			update_free_nid_bitmap(sbi, nid, false, false);
3038 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3039 		}
3040 	}
3041 
3042 	if (to_journal) {
3043 		up_write(&curseg->journal_rwsem);
3044 	} else {
3045 		update_nat_bits(sbi, start_nid, page);
3046 		f2fs_put_page(page, 1);
3047 	}
3048 
3049 	/* Allow dirty nats by node block allocation in write_begin */
3050 	if (!set->entry_cnt) {
3051 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3052 		kmem_cache_free(nat_entry_set_slab, set);
3053 	}
3054 	return 0;
3055 }
3056 
3057 /*
3058  * This function is called during the checkpointing process.
3059  */
3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3061 {
3062 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3064 	struct f2fs_journal *journal = curseg->journal;
3065 	struct nat_entry_set *setvec[SETVEC_SIZE];
3066 	struct nat_entry_set *set, *tmp;
3067 	unsigned int found;
3068 	nid_t set_idx = 0;
3069 	LIST_HEAD(sets);
3070 	int err = 0;
3071 
3072 	/*
3073 	 * during unmount, let's flush nat_bits before checking
3074 	 * nat_cnt[DIRTY_NAT].
3075 	 */
3076 	if (cpc->reason & CP_UMOUNT) {
3077 		f2fs_down_write(&nm_i->nat_tree_lock);
3078 		remove_nats_in_journal(sbi);
3079 		f2fs_up_write(&nm_i->nat_tree_lock);
3080 	}
3081 
3082 	if (!nm_i->nat_cnt[DIRTY_NAT])
3083 		return 0;
3084 
3085 	f2fs_down_write(&nm_i->nat_tree_lock);
3086 
3087 	/*
3088 	 * if there are no enough space in journal to store dirty nat
3089 	 * entries, remove all entries from journal and merge them
3090 	 * into nat entry set.
3091 	 */
3092 	if (cpc->reason & CP_UMOUNT ||
3093 		!__has_cursum_space(journal,
3094 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3095 		remove_nats_in_journal(sbi);
3096 
3097 	while ((found = __gang_lookup_nat_set(nm_i,
3098 					set_idx, SETVEC_SIZE, setvec))) {
3099 		unsigned idx;
3100 
3101 		set_idx = setvec[found - 1]->set + 1;
3102 		for (idx = 0; idx < found; idx++)
3103 			__adjust_nat_entry_set(setvec[idx], &sets,
3104 						MAX_NAT_JENTRIES(journal));
3105 	}
3106 
3107 	/* flush dirty nats in nat entry set */
3108 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3109 		err = __flush_nat_entry_set(sbi, set, cpc);
3110 		if (err)
3111 			break;
3112 	}
3113 
3114 	f2fs_up_write(&nm_i->nat_tree_lock);
3115 	/* Allow dirty nats by node block allocation in write_begin */
3116 
3117 	return err;
3118 }
3119 
3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3121 {
3122 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3123 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3124 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3125 	unsigned int i;
3126 	__u64 cp_ver = cur_cp_version(ckpt);
3127 	block_t nat_bits_addr;
3128 
3129 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3130 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3131 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3132 	if (!nm_i->nat_bits)
3133 		return -ENOMEM;
3134 
3135 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3136 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3137 
3138 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3139 		return 0;
3140 
3141 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3142 						nm_i->nat_bits_blocks;
3143 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3144 		struct page *page;
3145 
3146 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3147 		if (IS_ERR(page))
3148 			return PTR_ERR(page);
3149 
3150 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3151 					page_address(page), F2FS_BLKSIZE);
3152 		f2fs_put_page(page, 1);
3153 	}
3154 
3155 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3156 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3157 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3158 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3159 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3160 		return 0;
3161 	}
3162 
3163 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3164 	return 0;
3165 }
3166 
3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3168 {
3169 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3170 	unsigned int i = 0;
3171 	nid_t nid, last_nid;
3172 
3173 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3174 		return;
3175 
3176 	for (i = 0; i < nm_i->nat_blocks; i++) {
3177 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3178 		if (i >= nm_i->nat_blocks)
3179 			break;
3180 
3181 		__set_bit_le(i, nm_i->nat_block_bitmap);
3182 
3183 		nid = i * NAT_ENTRY_PER_BLOCK;
3184 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3185 
3186 		spin_lock(&NM_I(sbi)->nid_list_lock);
3187 		for (; nid < last_nid; nid++)
3188 			update_free_nid_bitmap(sbi, nid, true, true);
3189 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3190 	}
3191 
3192 	for (i = 0; i < nm_i->nat_blocks; i++) {
3193 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3194 		if (i >= nm_i->nat_blocks)
3195 			break;
3196 
3197 		__set_bit_le(i, nm_i->nat_block_bitmap);
3198 	}
3199 }
3200 
3201 static int init_node_manager(struct f2fs_sb_info *sbi)
3202 {
3203 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3204 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3205 	unsigned char *version_bitmap;
3206 	unsigned int nat_segs;
3207 	int err;
3208 
3209 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3210 
3211 	/* segment_count_nat includes pair segment so divide to 2. */
3212 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3213 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3214 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3215 
3216 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3217 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3218 						F2FS_RESERVED_NODE_NUM;
3219 	nm_i->nid_cnt[FREE_NID] = 0;
3220 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3221 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3222 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3223 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3224 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3225 
3226 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3227 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3228 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3229 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3230 	INIT_LIST_HEAD(&nm_i->nat_entries);
3231 	spin_lock_init(&nm_i->nat_list_lock);
3232 
3233 	mutex_init(&nm_i->build_lock);
3234 	spin_lock_init(&nm_i->nid_list_lock);
3235 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3236 
3237 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3238 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3239 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3240 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3241 					GFP_KERNEL);
3242 	if (!nm_i->nat_bitmap)
3243 		return -ENOMEM;
3244 
3245 	err = __get_nat_bitmaps(sbi);
3246 	if (err)
3247 		return err;
3248 
3249 #ifdef CONFIG_F2FS_CHECK_FS
3250 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3251 					GFP_KERNEL);
3252 	if (!nm_i->nat_bitmap_mir)
3253 		return -ENOMEM;
3254 #endif
3255 
3256 	return 0;
3257 }
3258 
3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3260 {
3261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3262 	int i;
3263 
3264 	nm_i->free_nid_bitmap =
3265 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3266 					      nm_i->nat_blocks),
3267 			      GFP_KERNEL);
3268 	if (!nm_i->free_nid_bitmap)
3269 		return -ENOMEM;
3270 
3271 	for (i = 0; i < nm_i->nat_blocks; i++) {
3272 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3273 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3274 		if (!nm_i->free_nid_bitmap[i])
3275 			return -ENOMEM;
3276 	}
3277 
3278 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3279 								GFP_KERNEL);
3280 	if (!nm_i->nat_block_bitmap)
3281 		return -ENOMEM;
3282 
3283 	nm_i->free_nid_count =
3284 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3285 					      nm_i->nat_blocks),
3286 			      GFP_KERNEL);
3287 	if (!nm_i->free_nid_count)
3288 		return -ENOMEM;
3289 	return 0;
3290 }
3291 
3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3293 {
3294 	int err;
3295 
3296 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3297 							GFP_KERNEL);
3298 	if (!sbi->nm_info)
3299 		return -ENOMEM;
3300 
3301 	err = init_node_manager(sbi);
3302 	if (err)
3303 		return err;
3304 
3305 	err = init_free_nid_cache(sbi);
3306 	if (err)
3307 		return err;
3308 
3309 	/* load free nid status from nat_bits table */
3310 	load_free_nid_bitmap(sbi);
3311 
3312 	return f2fs_build_free_nids(sbi, true, true);
3313 }
3314 
3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3316 {
3317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3318 	struct free_nid *i, *next_i;
3319 	struct nat_entry *natvec[NATVEC_SIZE];
3320 	struct nat_entry_set *setvec[SETVEC_SIZE];
3321 	nid_t nid = 0;
3322 	unsigned int found;
3323 
3324 	if (!nm_i)
3325 		return;
3326 
3327 	/* destroy free nid list */
3328 	spin_lock(&nm_i->nid_list_lock);
3329 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3330 		__remove_free_nid(sbi, i, FREE_NID);
3331 		spin_unlock(&nm_i->nid_list_lock);
3332 		kmem_cache_free(free_nid_slab, i);
3333 		spin_lock(&nm_i->nid_list_lock);
3334 	}
3335 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3336 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3337 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3338 	spin_unlock(&nm_i->nid_list_lock);
3339 
3340 	/* destroy nat cache */
3341 	f2fs_down_write(&nm_i->nat_tree_lock);
3342 	while ((found = __gang_lookup_nat_cache(nm_i,
3343 					nid, NATVEC_SIZE, natvec))) {
3344 		unsigned idx;
3345 
3346 		nid = nat_get_nid(natvec[found - 1]) + 1;
3347 		for (idx = 0; idx < found; idx++) {
3348 			spin_lock(&nm_i->nat_list_lock);
3349 			list_del(&natvec[idx]->list);
3350 			spin_unlock(&nm_i->nat_list_lock);
3351 
3352 			__del_from_nat_cache(nm_i, natvec[idx]);
3353 		}
3354 	}
3355 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3356 
3357 	/* destroy nat set cache */
3358 	nid = 0;
3359 	while ((found = __gang_lookup_nat_set(nm_i,
3360 					nid, SETVEC_SIZE, setvec))) {
3361 		unsigned idx;
3362 
3363 		nid = setvec[found - 1]->set + 1;
3364 		for (idx = 0; idx < found; idx++) {
3365 			/* entry_cnt is not zero, when cp_error was occurred */
3366 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3367 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3368 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3369 		}
3370 	}
3371 	f2fs_up_write(&nm_i->nat_tree_lock);
3372 
3373 	kvfree(nm_i->nat_block_bitmap);
3374 	if (nm_i->free_nid_bitmap) {
3375 		int i;
3376 
3377 		for (i = 0; i < nm_i->nat_blocks; i++)
3378 			kvfree(nm_i->free_nid_bitmap[i]);
3379 		kvfree(nm_i->free_nid_bitmap);
3380 	}
3381 	kvfree(nm_i->free_nid_count);
3382 
3383 	kvfree(nm_i->nat_bitmap);
3384 	kvfree(nm_i->nat_bits);
3385 #ifdef CONFIG_F2FS_CHECK_FS
3386 	kvfree(nm_i->nat_bitmap_mir);
3387 #endif
3388 	sbi->nm_info = NULL;
3389 	kfree(nm_i);
3390 }
3391 
3392 int __init f2fs_create_node_manager_caches(void)
3393 {
3394 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3395 			sizeof(struct nat_entry));
3396 	if (!nat_entry_slab)
3397 		goto fail;
3398 
3399 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3400 			sizeof(struct free_nid));
3401 	if (!free_nid_slab)
3402 		goto destroy_nat_entry;
3403 
3404 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3405 			sizeof(struct nat_entry_set));
3406 	if (!nat_entry_set_slab)
3407 		goto destroy_free_nid;
3408 
3409 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3410 			sizeof(struct fsync_node_entry));
3411 	if (!fsync_node_entry_slab)
3412 		goto destroy_nat_entry_set;
3413 	return 0;
3414 
3415 destroy_nat_entry_set:
3416 	kmem_cache_destroy(nat_entry_set_slab);
3417 destroy_free_nid:
3418 	kmem_cache_destroy(free_nid_slab);
3419 destroy_nat_entry:
3420 	kmem_cache_destroy(nat_entry_slab);
3421 fail:
3422 	return -ENOMEM;
3423 }
3424 
3425 void f2fs_destroy_node_manager_caches(void)
3426 {
3427 	kmem_cache_destroy(fsync_node_entry_slab);
3428 	kmem_cache_destroy(nat_entry_set_slab);
3429 	kmem_cache_destroy(free_nid_slab);
3430 	kmem_cache_destroy(nat_entry_slab);
3431 }
3432