xref: /openbmc/linux/fs/f2fs/node.c (revision e6dec923)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 				sizeof(struct free_nid)) >> PAGE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 		if (excess_cached_nats(sbi))
56 			res = false;
57 	} else if (type == DIRTY_DENTS) {
58 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 			return false;
60 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 	} else if (type == INO_ENTRIES) {
63 		int i;
64 
65 		for (i = 0; i <= UPDATE_INO; i++)
66 			mem_size += sbi->im[i].ino_num *
67 						sizeof(struct ino_entry);
68 		mem_size >>= PAGE_SHIFT;
69 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
70 	} else if (type == EXTENT_CACHE) {
71 		mem_size = (atomic_read(&sbi->total_ext_tree) *
72 				sizeof(struct extent_tree) +
73 				atomic_read(&sbi->total_ext_node) *
74 				sizeof(struct extent_node)) >> PAGE_SHIFT;
75 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 	} else {
77 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
78 			return true;
79 	}
80 	return res;
81 }
82 
83 static void clear_node_page_dirty(struct page *page)
84 {
85 	struct address_space *mapping = page->mapping;
86 	unsigned int long flags;
87 
88 	if (PageDirty(page)) {
89 		spin_lock_irqsave(&mapping->tree_lock, flags);
90 		radix_tree_tag_clear(&mapping->page_tree,
91 				page_index(page),
92 				PAGECACHE_TAG_DIRTY);
93 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
94 
95 		clear_page_dirty_for_io(page);
96 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 	}
98 	ClearPageUptodate(page);
99 }
100 
101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 {
103 	pgoff_t index = current_nat_addr(sbi, nid);
104 	return get_meta_page(sbi, index);
105 }
106 
107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 {
109 	struct page *src_page;
110 	struct page *dst_page;
111 	pgoff_t src_off;
112 	pgoff_t dst_off;
113 	void *src_addr;
114 	void *dst_addr;
115 	struct f2fs_nm_info *nm_i = NM_I(sbi);
116 
117 	src_off = current_nat_addr(sbi, nid);
118 	dst_off = next_nat_addr(sbi, src_off);
119 
120 	/* get current nat block page with lock */
121 	src_page = get_meta_page(sbi, src_off);
122 	dst_page = grab_meta_page(sbi, dst_off);
123 	f2fs_bug_on(sbi, PageDirty(src_page));
124 
125 	src_addr = page_address(src_page);
126 	dst_addr = page_address(dst_page);
127 	memcpy(dst_addr, src_addr, PAGE_SIZE);
128 	set_page_dirty(dst_page);
129 	f2fs_put_page(src_page, 1);
130 
131 	set_to_next_nat(nm_i, nid);
132 
133 	return dst_page;
134 }
135 
136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 {
138 	return radix_tree_lookup(&nm_i->nat_root, n);
139 }
140 
141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
142 		nid_t start, unsigned int nr, struct nat_entry **ep)
143 {
144 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
145 }
146 
147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 {
149 	list_del(&e->list);
150 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
151 	nm_i->nat_cnt--;
152 	kmem_cache_free(nat_entry_slab, e);
153 }
154 
155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
156 						struct nat_entry *ne)
157 {
158 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
159 	struct nat_entry_set *head;
160 
161 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 	if (!head) {
163 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164 
165 		INIT_LIST_HEAD(&head->entry_list);
166 		INIT_LIST_HEAD(&head->set_list);
167 		head->set = set;
168 		head->entry_cnt = 0;
169 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 	}
171 
172 	if (get_nat_flag(ne, IS_DIRTY))
173 		goto refresh_list;
174 
175 	nm_i->dirty_nat_cnt++;
176 	head->entry_cnt++;
177 	set_nat_flag(ne, IS_DIRTY, true);
178 refresh_list:
179 	if (nat_get_blkaddr(ne) == NEW_ADDR)
180 		list_del_init(&ne->list);
181 	else
182 		list_move_tail(&ne->list, &head->entry_list);
183 }
184 
185 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
186 		struct nat_entry_set *set, struct nat_entry *ne)
187 {
188 	list_move_tail(&ne->list, &nm_i->nat_entries);
189 	set_nat_flag(ne, IS_DIRTY, false);
190 	set->entry_cnt--;
191 	nm_i->dirty_nat_cnt--;
192 }
193 
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 							start, nr);
199 }
200 
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 	struct f2fs_nm_info *nm_i = NM_I(sbi);
204 	struct nat_entry *e;
205 	bool need = false;
206 
207 	down_read(&nm_i->nat_tree_lock);
208 	e = __lookup_nat_cache(nm_i, nid);
209 	if (e) {
210 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 				!get_nat_flag(e, HAS_FSYNCED_INODE))
212 			need = true;
213 	}
214 	up_read(&nm_i->nat_tree_lock);
215 	return need;
216 }
217 
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
221 	struct nat_entry *e;
222 	bool is_cp = true;
223 
224 	down_read(&nm_i->nat_tree_lock);
225 	e = __lookup_nat_cache(nm_i, nid);
226 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 		is_cp = false;
228 	up_read(&nm_i->nat_tree_lock);
229 	return is_cp;
230 }
231 
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 	struct f2fs_nm_info *nm_i = NM_I(sbi);
235 	struct nat_entry *e;
236 	bool need_update = true;
237 
238 	down_read(&nm_i->nat_tree_lock);
239 	e = __lookup_nat_cache(nm_i, ino);
240 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 			(get_nat_flag(e, IS_CHECKPOINTED) ||
242 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 		need_update = false;
244 	up_read(&nm_i->nat_tree_lock);
245 	return need_update;
246 }
247 
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 								bool no_fail)
250 {
251 	struct nat_entry *new;
252 
253 	if (no_fail) {
254 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 		f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 	} else {
257 		new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 		if (!new)
259 			return NULL;
260 		if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 			kmem_cache_free(nat_entry_slab, new);
262 			return NULL;
263 		}
264 	}
265 
266 	memset(new, 0, sizeof(struct nat_entry));
267 	nat_set_nid(new, nid);
268 	nat_reset_flag(new);
269 	list_add_tail(&new->list, &nm_i->nat_entries);
270 	nm_i->nat_cnt++;
271 	return new;
272 }
273 
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 						struct f2fs_nat_entry *ne)
276 {
277 	struct f2fs_nm_info *nm_i = NM_I(sbi);
278 	struct nat_entry *e;
279 
280 	e = __lookup_nat_cache(nm_i, nid);
281 	if (!e) {
282 		e = grab_nat_entry(nm_i, nid, false);
283 		if (e)
284 			node_info_from_raw_nat(&e->ni, ne);
285 	} else {
286 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 				nat_get_blkaddr(e) !=
288 					le32_to_cpu(ne->block_addr) ||
289 				nat_get_version(e) != ne->version);
290 	}
291 }
292 
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 			block_t new_blkaddr, bool fsync_done)
295 {
296 	struct f2fs_nm_info *nm_i = NM_I(sbi);
297 	struct nat_entry *e;
298 
299 	down_write(&nm_i->nat_tree_lock);
300 	e = __lookup_nat_cache(nm_i, ni->nid);
301 	if (!e) {
302 		e = grab_nat_entry(nm_i, ni->nid, true);
303 		copy_node_info(&e->ni, ni);
304 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 	} else if (new_blkaddr == NEW_ADDR) {
306 		/*
307 		 * when nid is reallocated,
308 		 * previous nat entry can be remained in nat cache.
309 		 * So, reinitialize it with new information.
310 		 */
311 		copy_node_info(&e->ni, ni);
312 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313 	}
314 
315 	/* sanity check */
316 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 			new_blkaddr == NULL_ADDR);
319 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 			new_blkaddr == NEW_ADDR);
321 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 			nat_get_blkaddr(e) != NULL_ADDR &&
323 			new_blkaddr == NEW_ADDR);
324 
325 	/* increment version no as node is removed */
326 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 		unsigned char version = nat_get_version(e);
328 		nat_set_version(e, inc_node_version(version));
329 
330 		/* in order to reuse the nid */
331 		if (nm_i->next_scan_nid > ni->nid)
332 			nm_i->next_scan_nid = ni->nid;
333 	}
334 
335 	/* change address */
336 	nat_set_blkaddr(e, new_blkaddr);
337 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 		set_nat_flag(e, IS_CHECKPOINTED, false);
339 	__set_nat_cache_dirty(nm_i, e);
340 
341 	/* update fsync_mark if its inode nat entry is still alive */
342 	if (ni->nid != ni->ino)
343 		e = __lookup_nat_cache(nm_i, ni->ino);
344 	if (e) {
345 		if (fsync_done && ni->nid == ni->ino)
346 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
347 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
348 	}
349 	up_write(&nm_i->nat_tree_lock);
350 }
351 
352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
353 {
354 	struct f2fs_nm_info *nm_i = NM_I(sbi);
355 	int nr = nr_shrink;
356 
357 	if (!down_write_trylock(&nm_i->nat_tree_lock))
358 		return 0;
359 
360 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
361 		struct nat_entry *ne;
362 		ne = list_first_entry(&nm_i->nat_entries,
363 					struct nat_entry, list);
364 		__del_from_nat_cache(nm_i, ne);
365 		nr_shrink--;
366 	}
367 	up_write(&nm_i->nat_tree_lock);
368 	return nr - nr_shrink;
369 }
370 
371 /*
372  * This function always returns success
373  */
374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
375 {
376 	struct f2fs_nm_info *nm_i = NM_I(sbi);
377 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
378 	struct f2fs_journal *journal = curseg->journal;
379 	nid_t start_nid = START_NID(nid);
380 	struct f2fs_nat_block *nat_blk;
381 	struct page *page = NULL;
382 	struct f2fs_nat_entry ne;
383 	struct nat_entry *e;
384 	pgoff_t index;
385 	int i;
386 
387 	ni->nid = nid;
388 
389 	/* Check nat cache */
390 	down_read(&nm_i->nat_tree_lock);
391 	e = __lookup_nat_cache(nm_i, nid);
392 	if (e) {
393 		ni->ino = nat_get_ino(e);
394 		ni->blk_addr = nat_get_blkaddr(e);
395 		ni->version = nat_get_version(e);
396 		up_read(&nm_i->nat_tree_lock);
397 		return;
398 	}
399 
400 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
401 
402 	/* Check current segment summary */
403 	down_read(&curseg->journal_rwsem);
404 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
405 	if (i >= 0) {
406 		ne = nat_in_journal(journal, i);
407 		node_info_from_raw_nat(ni, &ne);
408 	}
409 	up_read(&curseg->journal_rwsem);
410 	if (i >= 0) {
411 		up_read(&nm_i->nat_tree_lock);
412 		goto cache;
413 	}
414 
415 	/* Fill node_info from nat page */
416 	index = current_nat_addr(sbi, nid);
417 	up_read(&nm_i->nat_tree_lock);
418 
419 	page = get_meta_page(sbi, index);
420 	nat_blk = (struct f2fs_nat_block *)page_address(page);
421 	ne = nat_blk->entries[nid - start_nid];
422 	node_info_from_raw_nat(ni, &ne);
423 	f2fs_put_page(page, 1);
424 cache:
425 	/* cache nat entry */
426 	down_write(&nm_i->nat_tree_lock);
427 	cache_nat_entry(sbi, nid, &ne);
428 	up_write(&nm_i->nat_tree_lock);
429 }
430 
431 /*
432  * readahead MAX_RA_NODE number of node pages.
433  */
434 static void ra_node_pages(struct page *parent, int start, int n)
435 {
436 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
437 	struct blk_plug plug;
438 	int i, end;
439 	nid_t nid;
440 
441 	blk_start_plug(&plug);
442 
443 	/* Then, try readahead for siblings of the desired node */
444 	end = start + n;
445 	end = min(end, NIDS_PER_BLOCK);
446 	for (i = start; i < end; i++) {
447 		nid = get_nid(parent, i, false);
448 		ra_node_page(sbi, nid);
449 	}
450 
451 	blk_finish_plug(&plug);
452 }
453 
454 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
455 {
456 	const long direct_index = ADDRS_PER_INODE(dn->inode);
457 	const long direct_blks = ADDRS_PER_BLOCK;
458 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
459 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
460 	int cur_level = dn->cur_level;
461 	int max_level = dn->max_level;
462 	pgoff_t base = 0;
463 
464 	if (!dn->max_level)
465 		return pgofs + 1;
466 
467 	while (max_level-- > cur_level)
468 		skipped_unit *= NIDS_PER_BLOCK;
469 
470 	switch (dn->max_level) {
471 	case 3:
472 		base += 2 * indirect_blks;
473 	case 2:
474 		base += 2 * direct_blks;
475 	case 1:
476 		base += direct_index;
477 		break;
478 	default:
479 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
480 	}
481 
482 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
483 }
484 
485 /*
486  * The maximum depth is four.
487  * Offset[0] will have raw inode offset.
488  */
489 static int get_node_path(struct inode *inode, long block,
490 				int offset[4], unsigned int noffset[4])
491 {
492 	const long direct_index = ADDRS_PER_INODE(inode);
493 	const long direct_blks = ADDRS_PER_BLOCK;
494 	const long dptrs_per_blk = NIDS_PER_BLOCK;
495 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
496 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
497 	int n = 0;
498 	int level = 0;
499 
500 	noffset[0] = 0;
501 
502 	if (block < direct_index) {
503 		offset[n] = block;
504 		goto got;
505 	}
506 	block -= direct_index;
507 	if (block < direct_blks) {
508 		offset[n++] = NODE_DIR1_BLOCK;
509 		noffset[n] = 1;
510 		offset[n] = block;
511 		level = 1;
512 		goto got;
513 	}
514 	block -= direct_blks;
515 	if (block < direct_blks) {
516 		offset[n++] = NODE_DIR2_BLOCK;
517 		noffset[n] = 2;
518 		offset[n] = block;
519 		level = 1;
520 		goto got;
521 	}
522 	block -= direct_blks;
523 	if (block < indirect_blks) {
524 		offset[n++] = NODE_IND1_BLOCK;
525 		noffset[n] = 3;
526 		offset[n++] = block / direct_blks;
527 		noffset[n] = 4 + offset[n - 1];
528 		offset[n] = block % direct_blks;
529 		level = 2;
530 		goto got;
531 	}
532 	block -= indirect_blks;
533 	if (block < indirect_blks) {
534 		offset[n++] = NODE_IND2_BLOCK;
535 		noffset[n] = 4 + dptrs_per_blk;
536 		offset[n++] = block / direct_blks;
537 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
538 		offset[n] = block % direct_blks;
539 		level = 2;
540 		goto got;
541 	}
542 	block -= indirect_blks;
543 	if (block < dindirect_blks) {
544 		offset[n++] = NODE_DIND_BLOCK;
545 		noffset[n] = 5 + (dptrs_per_blk * 2);
546 		offset[n++] = block / indirect_blks;
547 		noffset[n] = 6 + (dptrs_per_blk * 2) +
548 			      offset[n - 1] * (dptrs_per_blk + 1);
549 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
550 		noffset[n] = 7 + (dptrs_per_blk * 2) +
551 			      offset[n - 2] * (dptrs_per_blk + 1) +
552 			      offset[n - 1];
553 		offset[n] = block % direct_blks;
554 		level = 3;
555 		goto got;
556 	} else {
557 		BUG();
558 	}
559 got:
560 	return level;
561 }
562 
563 /*
564  * Caller should call f2fs_put_dnode(dn).
565  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
566  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
567  * In the case of RDONLY_NODE, we don't need to care about mutex.
568  */
569 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
570 {
571 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
572 	struct page *npage[4];
573 	struct page *parent = NULL;
574 	int offset[4];
575 	unsigned int noffset[4];
576 	nid_t nids[4];
577 	int level, i = 0;
578 	int err = 0;
579 
580 	level = get_node_path(dn->inode, index, offset, noffset);
581 
582 	nids[0] = dn->inode->i_ino;
583 	npage[0] = dn->inode_page;
584 
585 	if (!npage[0]) {
586 		npage[0] = get_node_page(sbi, nids[0]);
587 		if (IS_ERR(npage[0]))
588 			return PTR_ERR(npage[0]);
589 	}
590 
591 	/* if inline_data is set, should not report any block indices */
592 	if (f2fs_has_inline_data(dn->inode) && index) {
593 		err = -ENOENT;
594 		f2fs_put_page(npage[0], 1);
595 		goto release_out;
596 	}
597 
598 	parent = npage[0];
599 	if (level != 0)
600 		nids[1] = get_nid(parent, offset[0], true);
601 	dn->inode_page = npage[0];
602 	dn->inode_page_locked = true;
603 
604 	/* get indirect or direct nodes */
605 	for (i = 1; i <= level; i++) {
606 		bool done = false;
607 
608 		if (!nids[i] && mode == ALLOC_NODE) {
609 			/* alloc new node */
610 			if (!alloc_nid(sbi, &(nids[i]))) {
611 				err = -ENOSPC;
612 				goto release_pages;
613 			}
614 
615 			dn->nid = nids[i];
616 			npage[i] = new_node_page(dn, noffset[i], NULL);
617 			if (IS_ERR(npage[i])) {
618 				alloc_nid_failed(sbi, nids[i]);
619 				err = PTR_ERR(npage[i]);
620 				goto release_pages;
621 			}
622 
623 			set_nid(parent, offset[i - 1], nids[i], i == 1);
624 			alloc_nid_done(sbi, nids[i]);
625 			done = true;
626 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
627 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
628 			if (IS_ERR(npage[i])) {
629 				err = PTR_ERR(npage[i]);
630 				goto release_pages;
631 			}
632 			done = true;
633 		}
634 		if (i == 1) {
635 			dn->inode_page_locked = false;
636 			unlock_page(parent);
637 		} else {
638 			f2fs_put_page(parent, 1);
639 		}
640 
641 		if (!done) {
642 			npage[i] = get_node_page(sbi, nids[i]);
643 			if (IS_ERR(npage[i])) {
644 				err = PTR_ERR(npage[i]);
645 				f2fs_put_page(npage[0], 0);
646 				goto release_out;
647 			}
648 		}
649 		if (i < level) {
650 			parent = npage[i];
651 			nids[i + 1] = get_nid(parent, offset[i], false);
652 		}
653 	}
654 	dn->nid = nids[level];
655 	dn->ofs_in_node = offset[level];
656 	dn->node_page = npage[level];
657 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
658 	return 0;
659 
660 release_pages:
661 	f2fs_put_page(parent, 1);
662 	if (i > 1)
663 		f2fs_put_page(npage[0], 0);
664 release_out:
665 	dn->inode_page = NULL;
666 	dn->node_page = NULL;
667 	if (err == -ENOENT) {
668 		dn->cur_level = i;
669 		dn->max_level = level;
670 		dn->ofs_in_node = offset[level];
671 	}
672 	return err;
673 }
674 
675 static void truncate_node(struct dnode_of_data *dn)
676 {
677 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
678 	struct node_info ni;
679 
680 	get_node_info(sbi, dn->nid, &ni);
681 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
682 
683 	/* Deallocate node address */
684 	invalidate_blocks(sbi, ni.blk_addr);
685 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
686 	set_node_addr(sbi, &ni, NULL_ADDR, false);
687 
688 	if (dn->nid == dn->inode->i_ino) {
689 		remove_orphan_inode(sbi, dn->nid);
690 		dec_valid_inode_count(sbi);
691 		f2fs_inode_synced(dn->inode);
692 	}
693 
694 	clear_node_page_dirty(dn->node_page);
695 	set_sbi_flag(sbi, SBI_IS_DIRTY);
696 
697 	f2fs_put_page(dn->node_page, 1);
698 
699 	invalidate_mapping_pages(NODE_MAPPING(sbi),
700 			dn->node_page->index, dn->node_page->index);
701 
702 	dn->node_page = NULL;
703 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
704 }
705 
706 static int truncate_dnode(struct dnode_of_data *dn)
707 {
708 	struct page *page;
709 
710 	if (dn->nid == 0)
711 		return 1;
712 
713 	/* get direct node */
714 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
715 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
716 		return 1;
717 	else if (IS_ERR(page))
718 		return PTR_ERR(page);
719 
720 	/* Make dnode_of_data for parameter */
721 	dn->node_page = page;
722 	dn->ofs_in_node = 0;
723 	truncate_data_blocks(dn);
724 	truncate_node(dn);
725 	return 1;
726 }
727 
728 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
729 						int ofs, int depth)
730 {
731 	struct dnode_of_data rdn = *dn;
732 	struct page *page;
733 	struct f2fs_node *rn;
734 	nid_t child_nid;
735 	unsigned int child_nofs;
736 	int freed = 0;
737 	int i, ret;
738 
739 	if (dn->nid == 0)
740 		return NIDS_PER_BLOCK + 1;
741 
742 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
743 
744 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
745 	if (IS_ERR(page)) {
746 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
747 		return PTR_ERR(page);
748 	}
749 
750 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
751 
752 	rn = F2FS_NODE(page);
753 	if (depth < 3) {
754 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
755 			child_nid = le32_to_cpu(rn->in.nid[i]);
756 			if (child_nid == 0)
757 				continue;
758 			rdn.nid = child_nid;
759 			ret = truncate_dnode(&rdn);
760 			if (ret < 0)
761 				goto out_err;
762 			if (set_nid(page, i, 0, false))
763 				dn->node_changed = true;
764 		}
765 	} else {
766 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
767 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
768 			child_nid = le32_to_cpu(rn->in.nid[i]);
769 			if (child_nid == 0) {
770 				child_nofs += NIDS_PER_BLOCK + 1;
771 				continue;
772 			}
773 			rdn.nid = child_nid;
774 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
775 			if (ret == (NIDS_PER_BLOCK + 1)) {
776 				if (set_nid(page, i, 0, false))
777 					dn->node_changed = true;
778 				child_nofs += ret;
779 			} else if (ret < 0 && ret != -ENOENT) {
780 				goto out_err;
781 			}
782 		}
783 		freed = child_nofs;
784 	}
785 
786 	if (!ofs) {
787 		/* remove current indirect node */
788 		dn->node_page = page;
789 		truncate_node(dn);
790 		freed++;
791 	} else {
792 		f2fs_put_page(page, 1);
793 	}
794 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
795 	return freed;
796 
797 out_err:
798 	f2fs_put_page(page, 1);
799 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
800 	return ret;
801 }
802 
803 static int truncate_partial_nodes(struct dnode_of_data *dn,
804 			struct f2fs_inode *ri, int *offset, int depth)
805 {
806 	struct page *pages[2];
807 	nid_t nid[3];
808 	nid_t child_nid;
809 	int err = 0;
810 	int i;
811 	int idx = depth - 2;
812 
813 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
814 	if (!nid[0])
815 		return 0;
816 
817 	/* get indirect nodes in the path */
818 	for (i = 0; i < idx + 1; i++) {
819 		/* reference count'll be increased */
820 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
821 		if (IS_ERR(pages[i])) {
822 			err = PTR_ERR(pages[i]);
823 			idx = i - 1;
824 			goto fail;
825 		}
826 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
827 	}
828 
829 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
830 
831 	/* free direct nodes linked to a partial indirect node */
832 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
833 		child_nid = get_nid(pages[idx], i, false);
834 		if (!child_nid)
835 			continue;
836 		dn->nid = child_nid;
837 		err = truncate_dnode(dn);
838 		if (err < 0)
839 			goto fail;
840 		if (set_nid(pages[idx], i, 0, false))
841 			dn->node_changed = true;
842 	}
843 
844 	if (offset[idx + 1] == 0) {
845 		dn->node_page = pages[idx];
846 		dn->nid = nid[idx];
847 		truncate_node(dn);
848 	} else {
849 		f2fs_put_page(pages[idx], 1);
850 	}
851 	offset[idx]++;
852 	offset[idx + 1] = 0;
853 	idx--;
854 fail:
855 	for (i = idx; i >= 0; i--)
856 		f2fs_put_page(pages[i], 1);
857 
858 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
859 
860 	return err;
861 }
862 
863 /*
864  * All the block addresses of data and nodes should be nullified.
865  */
866 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
867 {
868 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
869 	int err = 0, cont = 1;
870 	int level, offset[4], noffset[4];
871 	unsigned int nofs = 0;
872 	struct f2fs_inode *ri;
873 	struct dnode_of_data dn;
874 	struct page *page;
875 
876 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
877 
878 	level = get_node_path(inode, from, offset, noffset);
879 
880 	page = get_node_page(sbi, inode->i_ino);
881 	if (IS_ERR(page)) {
882 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
883 		return PTR_ERR(page);
884 	}
885 
886 	set_new_dnode(&dn, inode, page, NULL, 0);
887 	unlock_page(page);
888 
889 	ri = F2FS_INODE(page);
890 	switch (level) {
891 	case 0:
892 	case 1:
893 		nofs = noffset[1];
894 		break;
895 	case 2:
896 		nofs = noffset[1];
897 		if (!offset[level - 1])
898 			goto skip_partial;
899 		err = truncate_partial_nodes(&dn, ri, offset, level);
900 		if (err < 0 && err != -ENOENT)
901 			goto fail;
902 		nofs += 1 + NIDS_PER_BLOCK;
903 		break;
904 	case 3:
905 		nofs = 5 + 2 * NIDS_PER_BLOCK;
906 		if (!offset[level - 1])
907 			goto skip_partial;
908 		err = truncate_partial_nodes(&dn, ri, offset, level);
909 		if (err < 0 && err != -ENOENT)
910 			goto fail;
911 		break;
912 	default:
913 		BUG();
914 	}
915 
916 skip_partial:
917 	while (cont) {
918 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
919 		switch (offset[0]) {
920 		case NODE_DIR1_BLOCK:
921 		case NODE_DIR2_BLOCK:
922 			err = truncate_dnode(&dn);
923 			break;
924 
925 		case NODE_IND1_BLOCK:
926 		case NODE_IND2_BLOCK:
927 			err = truncate_nodes(&dn, nofs, offset[1], 2);
928 			break;
929 
930 		case NODE_DIND_BLOCK:
931 			err = truncate_nodes(&dn, nofs, offset[1], 3);
932 			cont = 0;
933 			break;
934 
935 		default:
936 			BUG();
937 		}
938 		if (err < 0 && err != -ENOENT)
939 			goto fail;
940 		if (offset[1] == 0 &&
941 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
942 			lock_page(page);
943 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
944 			f2fs_wait_on_page_writeback(page, NODE, true);
945 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
946 			set_page_dirty(page);
947 			unlock_page(page);
948 		}
949 		offset[1] = 0;
950 		offset[0]++;
951 		nofs += err;
952 	}
953 fail:
954 	f2fs_put_page(page, 0);
955 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
956 	return err > 0 ? 0 : err;
957 }
958 
959 int truncate_xattr_node(struct inode *inode, struct page *page)
960 {
961 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
962 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
963 	struct dnode_of_data dn;
964 	struct page *npage;
965 
966 	if (!nid)
967 		return 0;
968 
969 	npage = get_node_page(sbi, nid);
970 	if (IS_ERR(npage))
971 		return PTR_ERR(npage);
972 
973 	f2fs_i_xnid_write(inode, 0);
974 
975 	set_new_dnode(&dn, inode, page, npage, nid);
976 
977 	if (page)
978 		dn.inode_page_locked = true;
979 	truncate_node(&dn);
980 	return 0;
981 }
982 
983 /*
984  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
985  * f2fs_unlock_op().
986  */
987 int remove_inode_page(struct inode *inode)
988 {
989 	struct dnode_of_data dn;
990 	int err;
991 
992 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
993 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
994 	if (err)
995 		return err;
996 
997 	err = truncate_xattr_node(inode, dn.inode_page);
998 	if (err) {
999 		f2fs_put_dnode(&dn);
1000 		return err;
1001 	}
1002 
1003 	/* remove potential inline_data blocks */
1004 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1005 				S_ISLNK(inode->i_mode))
1006 		truncate_data_blocks_range(&dn, 1);
1007 
1008 	/* 0 is possible, after f2fs_new_inode() has failed */
1009 	f2fs_bug_on(F2FS_I_SB(inode),
1010 			inode->i_blocks != 0 && inode->i_blocks != 8);
1011 
1012 	/* will put inode & node pages */
1013 	truncate_node(&dn);
1014 	return 0;
1015 }
1016 
1017 struct page *new_inode_page(struct inode *inode)
1018 {
1019 	struct dnode_of_data dn;
1020 
1021 	/* allocate inode page for new inode */
1022 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1023 
1024 	/* caller should f2fs_put_page(page, 1); */
1025 	return new_node_page(&dn, 0, NULL);
1026 }
1027 
1028 struct page *new_node_page(struct dnode_of_data *dn,
1029 				unsigned int ofs, struct page *ipage)
1030 {
1031 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1032 	struct node_info new_ni;
1033 	struct page *page;
1034 	int err;
1035 
1036 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1037 		return ERR_PTR(-EPERM);
1038 
1039 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1040 	if (!page)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1044 		goto fail;
1045 
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 	get_node_info(sbi, dn->nid, &new_ni);
1048 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1049 #endif
1050 	new_ni.nid = dn->nid;
1051 	new_ni.ino = dn->inode->i_ino;
1052 	new_ni.blk_addr = NULL_ADDR;
1053 	new_ni.flag = 0;
1054 	new_ni.version = 0;
1055 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1056 
1057 	f2fs_wait_on_page_writeback(page, NODE, true);
1058 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1059 	set_cold_node(dn->inode, page);
1060 	if (!PageUptodate(page))
1061 		SetPageUptodate(page);
1062 	if (set_page_dirty(page))
1063 		dn->node_changed = true;
1064 
1065 	if (f2fs_has_xattr_block(ofs))
1066 		f2fs_i_xnid_write(dn->inode, dn->nid);
1067 
1068 	if (ofs == 0)
1069 		inc_valid_inode_count(sbi);
1070 	return page;
1071 
1072 fail:
1073 	clear_node_page_dirty(page);
1074 	f2fs_put_page(page, 1);
1075 	return ERR_PTR(err);
1076 }
1077 
1078 /*
1079  * Caller should do after getting the following values.
1080  * 0: f2fs_put_page(page, 0)
1081  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1082  */
1083 static int read_node_page(struct page *page, int op_flags)
1084 {
1085 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1086 	struct node_info ni;
1087 	struct f2fs_io_info fio = {
1088 		.sbi = sbi,
1089 		.type = NODE,
1090 		.op = REQ_OP_READ,
1091 		.op_flags = op_flags,
1092 		.page = page,
1093 		.encrypted_page = NULL,
1094 	};
1095 
1096 	if (PageUptodate(page))
1097 		return LOCKED_PAGE;
1098 
1099 	get_node_info(sbi, page->index, &ni);
1100 
1101 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1102 		ClearPageUptodate(page);
1103 		return -ENOENT;
1104 	}
1105 
1106 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1107 	return f2fs_submit_page_bio(&fio);
1108 }
1109 
1110 /*
1111  * Readahead a node page
1112  */
1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1114 {
1115 	struct page *apage;
1116 	int err;
1117 
1118 	if (!nid)
1119 		return;
1120 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1121 
1122 	rcu_read_lock();
1123 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1124 	rcu_read_unlock();
1125 	if (apage)
1126 		return;
1127 
1128 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1129 	if (!apage)
1130 		return;
1131 
1132 	err = read_node_page(apage, REQ_RAHEAD);
1133 	f2fs_put_page(apage, err ? 1 : 0);
1134 }
1135 
1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1137 					struct page *parent, int start)
1138 {
1139 	struct page *page;
1140 	int err;
1141 
1142 	if (!nid)
1143 		return ERR_PTR(-ENOENT);
1144 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1145 repeat:
1146 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1147 	if (!page)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	err = read_node_page(page, 0);
1151 	if (err < 0) {
1152 		f2fs_put_page(page, 1);
1153 		return ERR_PTR(err);
1154 	} else if (err == LOCKED_PAGE) {
1155 		err = 0;
1156 		goto page_hit;
1157 	}
1158 
1159 	if (parent)
1160 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1161 
1162 	lock_page(page);
1163 
1164 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1165 		f2fs_put_page(page, 1);
1166 		goto repeat;
1167 	}
1168 
1169 	if (unlikely(!PageUptodate(page))) {
1170 		err = -EIO;
1171 		goto out_err;
1172 	}
1173 page_hit:
1174 	if(unlikely(nid != nid_of_node(page))) {
1175 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1176 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1177 			nid, nid_of_node(page), ino_of_node(page),
1178 			ofs_of_node(page), cpver_of_node(page),
1179 			next_blkaddr_of_node(page));
1180 		ClearPageUptodate(page);
1181 		err = -EINVAL;
1182 out_err:
1183 		f2fs_put_page(page, 1);
1184 		return ERR_PTR(err);
1185 	}
1186 	return page;
1187 }
1188 
1189 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1190 {
1191 	return __get_node_page(sbi, nid, NULL, 0);
1192 }
1193 
1194 struct page *get_node_page_ra(struct page *parent, int start)
1195 {
1196 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1197 	nid_t nid = get_nid(parent, start, false);
1198 
1199 	return __get_node_page(sbi, nid, parent, start);
1200 }
1201 
1202 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1203 {
1204 	struct inode *inode;
1205 	struct page *page;
1206 	int ret;
1207 
1208 	/* should flush inline_data before evict_inode */
1209 	inode = ilookup(sbi->sb, ino);
1210 	if (!inode)
1211 		return;
1212 
1213 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1214 	if (!page)
1215 		goto iput_out;
1216 
1217 	if (!PageUptodate(page))
1218 		goto page_out;
1219 
1220 	if (!PageDirty(page))
1221 		goto page_out;
1222 
1223 	if (!clear_page_dirty_for_io(page))
1224 		goto page_out;
1225 
1226 	ret = f2fs_write_inline_data(inode, page);
1227 	inode_dec_dirty_pages(inode);
1228 	remove_dirty_inode(inode);
1229 	if (ret)
1230 		set_page_dirty(page);
1231 page_out:
1232 	f2fs_put_page(page, 1);
1233 iput_out:
1234 	iput(inode);
1235 }
1236 
1237 void move_node_page(struct page *node_page, int gc_type)
1238 {
1239 	if (gc_type == FG_GC) {
1240 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1241 		struct writeback_control wbc = {
1242 			.sync_mode = WB_SYNC_ALL,
1243 			.nr_to_write = 1,
1244 			.for_reclaim = 0,
1245 		};
1246 
1247 		set_page_dirty(node_page);
1248 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1249 
1250 		f2fs_bug_on(sbi, PageWriteback(node_page));
1251 		if (!clear_page_dirty_for_io(node_page))
1252 			goto out_page;
1253 
1254 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1255 			unlock_page(node_page);
1256 		goto release_page;
1257 	} else {
1258 		/* set page dirty and write it */
1259 		if (!PageWriteback(node_page))
1260 			set_page_dirty(node_page);
1261 	}
1262 out_page:
1263 	unlock_page(node_page);
1264 release_page:
1265 	f2fs_put_page(node_page, 0);
1266 }
1267 
1268 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1269 {
1270 	pgoff_t index, end;
1271 	struct pagevec pvec;
1272 	struct page *last_page = NULL;
1273 
1274 	pagevec_init(&pvec, 0);
1275 	index = 0;
1276 	end = ULONG_MAX;
1277 
1278 	while (index <= end) {
1279 		int i, nr_pages;
1280 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1281 				PAGECACHE_TAG_DIRTY,
1282 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1283 		if (nr_pages == 0)
1284 			break;
1285 
1286 		for (i = 0; i < nr_pages; i++) {
1287 			struct page *page = pvec.pages[i];
1288 
1289 			if (unlikely(f2fs_cp_error(sbi))) {
1290 				f2fs_put_page(last_page, 0);
1291 				pagevec_release(&pvec);
1292 				return ERR_PTR(-EIO);
1293 			}
1294 
1295 			if (!IS_DNODE(page) || !is_cold_node(page))
1296 				continue;
1297 			if (ino_of_node(page) != ino)
1298 				continue;
1299 
1300 			lock_page(page);
1301 
1302 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1303 continue_unlock:
1304 				unlock_page(page);
1305 				continue;
1306 			}
1307 			if (ino_of_node(page) != ino)
1308 				goto continue_unlock;
1309 
1310 			if (!PageDirty(page)) {
1311 				/* someone wrote it for us */
1312 				goto continue_unlock;
1313 			}
1314 
1315 			if (last_page)
1316 				f2fs_put_page(last_page, 0);
1317 
1318 			get_page(page);
1319 			last_page = page;
1320 			unlock_page(page);
1321 		}
1322 		pagevec_release(&pvec);
1323 		cond_resched();
1324 	}
1325 	return last_page;
1326 }
1327 
1328 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1329 				struct writeback_control *wbc)
1330 {
1331 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1332 	nid_t nid;
1333 	struct node_info ni;
1334 	struct f2fs_io_info fio = {
1335 		.sbi = sbi,
1336 		.type = NODE,
1337 		.op = REQ_OP_WRITE,
1338 		.op_flags = wbc_to_write_flags(wbc),
1339 		.page = page,
1340 		.encrypted_page = NULL,
1341 		.submitted = false,
1342 	};
1343 
1344 	trace_f2fs_writepage(page, NODE);
1345 
1346 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1347 		goto redirty_out;
1348 	if (unlikely(f2fs_cp_error(sbi)))
1349 		goto redirty_out;
1350 
1351 	/* get old block addr of this node page */
1352 	nid = nid_of_node(page);
1353 	f2fs_bug_on(sbi, page->index != nid);
1354 
1355 	if (wbc->for_reclaim) {
1356 		if (!down_read_trylock(&sbi->node_write))
1357 			goto redirty_out;
1358 	} else {
1359 		down_read(&sbi->node_write);
1360 	}
1361 
1362 	get_node_info(sbi, nid, &ni);
1363 
1364 	/* This page is already truncated */
1365 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1366 		ClearPageUptodate(page);
1367 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1368 		up_read(&sbi->node_write);
1369 		unlock_page(page);
1370 		return 0;
1371 	}
1372 
1373 	if (atomic && !test_opt(sbi, NOBARRIER))
1374 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1375 
1376 	set_page_writeback(page);
1377 	fio.old_blkaddr = ni.blk_addr;
1378 	write_node_page(nid, &fio);
1379 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1380 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1381 	up_read(&sbi->node_write);
1382 
1383 	if (wbc->for_reclaim) {
1384 		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1385 						page->index, NODE);
1386 		submitted = NULL;
1387 	}
1388 
1389 	unlock_page(page);
1390 
1391 	if (unlikely(f2fs_cp_error(sbi))) {
1392 		f2fs_submit_merged_write(sbi, NODE);
1393 		submitted = NULL;
1394 	}
1395 	if (submitted)
1396 		*submitted = fio.submitted;
1397 
1398 	return 0;
1399 
1400 redirty_out:
1401 	redirty_page_for_writepage(wbc, page);
1402 	return AOP_WRITEPAGE_ACTIVATE;
1403 }
1404 
1405 static int f2fs_write_node_page(struct page *page,
1406 				struct writeback_control *wbc)
1407 {
1408 	return __write_node_page(page, false, NULL, wbc);
1409 }
1410 
1411 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1412 			struct writeback_control *wbc, bool atomic)
1413 {
1414 	pgoff_t index, end;
1415 	pgoff_t last_idx = ULONG_MAX;
1416 	struct pagevec pvec;
1417 	int ret = 0;
1418 	struct page *last_page = NULL;
1419 	bool marked = false;
1420 	nid_t ino = inode->i_ino;
1421 
1422 	if (atomic) {
1423 		last_page = last_fsync_dnode(sbi, ino);
1424 		if (IS_ERR_OR_NULL(last_page))
1425 			return PTR_ERR_OR_ZERO(last_page);
1426 	}
1427 retry:
1428 	pagevec_init(&pvec, 0);
1429 	index = 0;
1430 	end = ULONG_MAX;
1431 
1432 	while (index <= end) {
1433 		int i, nr_pages;
1434 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1435 				PAGECACHE_TAG_DIRTY,
1436 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1437 		if (nr_pages == 0)
1438 			break;
1439 
1440 		for (i = 0; i < nr_pages; i++) {
1441 			struct page *page = pvec.pages[i];
1442 			bool submitted = false;
1443 
1444 			if (unlikely(f2fs_cp_error(sbi))) {
1445 				f2fs_put_page(last_page, 0);
1446 				pagevec_release(&pvec);
1447 				ret = -EIO;
1448 				goto out;
1449 			}
1450 
1451 			if (!IS_DNODE(page) || !is_cold_node(page))
1452 				continue;
1453 			if (ino_of_node(page) != ino)
1454 				continue;
1455 
1456 			lock_page(page);
1457 
1458 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1459 continue_unlock:
1460 				unlock_page(page);
1461 				continue;
1462 			}
1463 			if (ino_of_node(page) != ino)
1464 				goto continue_unlock;
1465 
1466 			if (!PageDirty(page) && page != last_page) {
1467 				/* someone wrote it for us */
1468 				goto continue_unlock;
1469 			}
1470 
1471 			f2fs_wait_on_page_writeback(page, NODE, true);
1472 			BUG_ON(PageWriteback(page));
1473 
1474 			set_fsync_mark(page, 0);
1475 			set_dentry_mark(page, 0);
1476 
1477 			if (!atomic || page == last_page) {
1478 				set_fsync_mark(page, 1);
1479 				if (IS_INODE(page)) {
1480 					if (is_inode_flag_set(inode,
1481 								FI_DIRTY_INODE))
1482 						update_inode(inode, page);
1483 					set_dentry_mark(page,
1484 						need_dentry_mark(sbi, ino));
1485 				}
1486 				/*  may be written by other thread */
1487 				if (!PageDirty(page))
1488 					set_page_dirty(page);
1489 			}
1490 
1491 			if (!clear_page_dirty_for_io(page))
1492 				goto continue_unlock;
1493 
1494 			ret = __write_node_page(page, atomic &&
1495 						page == last_page,
1496 						&submitted, wbc);
1497 			if (ret) {
1498 				unlock_page(page);
1499 				f2fs_put_page(last_page, 0);
1500 				break;
1501 			} else if (submitted) {
1502 				last_idx = page->index;
1503 			}
1504 
1505 			if (page == last_page) {
1506 				f2fs_put_page(page, 0);
1507 				marked = true;
1508 				break;
1509 			}
1510 		}
1511 		pagevec_release(&pvec);
1512 		cond_resched();
1513 
1514 		if (ret || marked)
1515 			break;
1516 	}
1517 	if (!ret && atomic && !marked) {
1518 		f2fs_msg(sbi->sb, KERN_DEBUG,
1519 			"Retry to write fsync mark: ino=%u, idx=%lx",
1520 					ino, last_page->index);
1521 		lock_page(last_page);
1522 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1523 		set_page_dirty(last_page);
1524 		unlock_page(last_page);
1525 		goto retry;
1526 	}
1527 out:
1528 	if (last_idx != ULONG_MAX)
1529 		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1530 	return ret ? -EIO: 0;
1531 }
1532 
1533 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1534 {
1535 	pgoff_t index, end;
1536 	struct pagevec pvec;
1537 	int step = 0;
1538 	int nwritten = 0;
1539 	int ret = 0;
1540 
1541 	pagevec_init(&pvec, 0);
1542 
1543 next_step:
1544 	index = 0;
1545 	end = ULONG_MAX;
1546 
1547 	while (index <= end) {
1548 		int i, nr_pages;
1549 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1550 				PAGECACHE_TAG_DIRTY,
1551 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1552 		if (nr_pages == 0)
1553 			break;
1554 
1555 		for (i = 0; i < nr_pages; i++) {
1556 			struct page *page = pvec.pages[i];
1557 			bool submitted = false;
1558 
1559 			if (unlikely(f2fs_cp_error(sbi))) {
1560 				pagevec_release(&pvec);
1561 				ret = -EIO;
1562 				goto out;
1563 			}
1564 
1565 			/*
1566 			 * flushing sequence with step:
1567 			 * 0. indirect nodes
1568 			 * 1. dentry dnodes
1569 			 * 2. file dnodes
1570 			 */
1571 			if (step == 0 && IS_DNODE(page))
1572 				continue;
1573 			if (step == 1 && (!IS_DNODE(page) ||
1574 						is_cold_node(page)))
1575 				continue;
1576 			if (step == 2 && (!IS_DNODE(page) ||
1577 						!is_cold_node(page)))
1578 				continue;
1579 lock_node:
1580 			if (!trylock_page(page))
1581 				continue;
1582 
1583 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1584 continue_unlock:
1585 				unlock_page(page);
1586 				continue;
1587 			}
1588 
1589 			if (!PageDirty(page)) {
1590 				/* someone wrote it for us */
1591 				goto continue_unlock;
1592 			}
1593 
1594 			/* flush inline_data */
1595 			if (is_inline_node(page)) {
1596 				clear_inline_node(page);
1597 				unlock_page(page);
1598 				flush_inline_data(sbi, ino_of_node(page));
1599 				goto lock_node;
1600 			}
1601 
1602 			f2fs_wait_on_page_writeback(page, NODE, true);
1603 
1604 			BUG_ON(PageWriteback(page));
1605 			if (!clear_page_dirty_for_io(page))
1606 				goto continue_unlock;
1607 
1608 			set_fsync_mark(page, 0);
1609 			set_dentry_mark(page, 0);
1610 
1611 			ret = __write_node_page(page, false, &submitted, wbc);
1612 			if (ret)
1613 				unlock_page(page);
1614 			else if (submitted)
1615 				nwritten++;
1616 
1617 			if (--wbc->nr_to_write == 0)
1618 				break;
1619 		}
1620 		pagevec_release(&pvec);
1621 		cond_resched();
1622 
1623 		if (wbc->nr_to_write == 0) {
1624 			step = 2;
1625 			break;
1626 		}
1627 	}
1628 
1629 	if (step < 2) {
1630 		step++;
1631 		goto next_step;
1632 	}
1633 out:
1634 	if (nwritten)
1635 		f2fs_submit_merged_write(sbi, NODE);
1636 	return ret;
1637 }
1638 
1639 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1640 {
1641 	pgoff_t index = 0, end = ULONG_MAX;
1642 	struct pagevec pvec;
1643 	int ret2, ret = 0;
1644 
1645 	pagevec_init(&pvec, 0);
1646 
1647 	while (index <= end) {
1648 		int i, nr_pages;
1649 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1650 				PAGECACHE_TAG_WRITEBACK,
1651 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1652 		if (nr_pages == 0)
1653 			break;
1654 
1655 		for (i = 0; i < nr_pages; i++) {
1656 			struct page *page = pvec.pages[i];
1657 
1658 			/* until radix tree lookup accepts end_index */
1659 			if (unlikely(page->index > end))
1660 				continue;
1661 
1662 			if (ino && ino_of_node(page) == ino) {
1663 				f2fs_wait_on_page_writeback(page, NODE, true);
1664 				if (TestClearPageError(page))
1665 					ret = -EIO;
1666 			}
1667 		}
1668 		pagevec_release(&pvec);
1669 		cond_resched();
1670 	}
1671 
1672 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1673 	if (!ret)
1674 		ret = ret2;
1675 	return ret;
1676 }
1677 
1678 static int f2fs_write_node_pages(struct address_space *mapping,
1679 			    struct writeback_control *wbc)
1680 {
1681 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1682 	struct blk_plug plug;
1683 	long diff;
1684 
1685 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1686 		goto skip_write;
1687 
1688 	/* balancing f2fs's metadata in background */
1689 	f2fs_balance_fs_bg(sbi);
1690 
1691 	/* collect a number of dirty node pages and write together */
1692 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1693 		goto skip_write;
1694 
1695 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1696 
1697 	diff = nr_pages_to_write(sbi, NODE, wbc);
1698 	wbc->sync_mode = WB_SYNC_NONE;
1699 	blk_start_plug(&plug);
1700 	sync_node_pages(sbi, wbc);
1701 	blk_finish_plug(&plug);
1702 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1703 	return 0;
1704 
1705 skip_write:
1706 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1707 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1708 	return 0;
1709 }
1710 
1711 static int f2fs_set_node_page_dirty(struct page *page)
1712 {
1713 	trace_f2fs_set_page_dirty(page, NODE);
1714 
1715 	if (!PageUptodate(page))
1716 		SetPageUptodate(page);
1717 	if (!PageDirty(page)) {
1718 		f2fs_set_page_dirty_nobuffers(page);
1719 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1720 		SetPagePrivate(page);
1721 		f2fs_trace_pid(page);
1722 		return 1;
1723 	}
1724 	return 0;
1725 }
1726 
1727 /*
1728  * Structure of the f2fs node operations
1729  */
1730 const struct address_space_operations f2fs_node_aops = {
1731 	.writepage	= f2fs_write_node_page,
1732 	.writepages	= f2fs_write_node_pages,
1733 	.set_page_dirty	= f2fs_set_node_page_dirty,
1734 	.invalidatepage	= f2fs_invalidate_page,
1735 	.releasepage	= f2fs_release_page,
1736 #ifdef CONFIG_MIGRATION
1737 	.migratepage    = f2fs_migrate_page,
1738 #endif
1739 };
1740 
1741 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1742 						nid_t n)
1743 {
1744 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1745 }
1746 
1747 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1748 			struct free_nid *i, enum nid_list list, bool new)
1749 {
1750 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751 
1752 	if (new) {
1753 		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1754 		if (err)
1755 			return err;
1756 	}
1757 
1758 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1759 						i->state != NID_ALLOC);
1760 	nm_i->nid_cnt[list]++;
1761 	list_add_tail(&i->list, &nm_i->nid_list[list]);
1762 	return 0;
1763 }
1764 
1765 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1766 			struct free_nid *i, enum nid_list list, bool reuse)
1767 {
1768 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1769 
1770 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1771 						i->state != NID_ALLOC);
1772 	nm_i->nid_cnt[list]--;
1773 	list_del(&i->list);
1774 	if (!reuse)
1775 		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1776 }
1777 
1778 /* return if the nid is recognized as free */
1779 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1780 {
1781 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1782 	struct free_nid *i, *e;
1783 	struct nat_entry *ne;
1784 	int err = -EINVAL;
1785 	bool ret = false;
1786 
1787 	/* 0 nid should not be used */
1788 	if (unlikely(nid == 0))
1789 		return false;
1790 
1791 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1792 	i->nid = nid;
1793 	i->state = NID_NEW;
1794 
1795 	if (radix_tree_preload(GFP_NOFS))
1796 		goto err;
1797 
1798 	spin_lock(&nm_i->nid_list_lock);
1799 
1800 	if (build) {
1801 		/*
1802 		 *   Thread A             Thread B
1803 		 *  - f2fs_create
1804 		 *   - f2fs_new_inode
1805 		 *    - alloc_nid
1806 		 *     - __insert_nid_to_list(ALLOC_NID_LIST)
1807 		 *                     - f2fs_balance_fs_bg
1808 		 *                      - build_free_nids
1809 		 *                       - __build_free_nids
1810 		 *                        - scan_nat_page
1811 		 *                         - add_free_nid
1812 		 *                          - __lookup_nat_cache
1813 		 *  - f2fs_add_link
1814 		 *   - init_inode_metadata
1815 		 *    - new_inode_page
1816 		 *     - new_node_page
1817 		 *      - set_node_addr
1818 		 *  - alloc_nid_done
1819 		 *   - __remove_nid_from_list(ALLOC_NID_LIST)
1820 		 *                         - __insert_nid_to_list(FREE_NID_LIST)
1821 		 */
1822 		ne = __lookup_nat_cache(nm_i, nid);
1823 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1824 				nat_get_blkaddr(ne) != NULL_ADDR))
1825 			goto err_out;
1826 
1827 		e = __lookup_free_nid_list(nm_i, nid);
1828 		if (e) {
1829 			if (e->state == NID_NEW)
1830 				ret = true;
1831 			goto err_out;
1832 		}
1833 	}
1834 	ret = true;
1835 	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1836 err_out:
1837 	spin_unlock(&nm_i->nid_list_lock);
1838 	radix_tree_preload_end();
1839 err:
1840 	if (err)
1841 		kmem_cache_free(free_nid_slab, i);
1842 	return ret;
1843 }
1844 
1845 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1846 {
1847 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1848 	struct free_nid *i;
1849 	bool need_free = false;
1850 
1851 	spin_lock(&nm_i->nid_list_lock);
1852 	i = __lookup_free_nid_list(nm_i, nid);
1853 	if (i && i->state == NID_NEW) {
1854 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1855 		need_free = true;
1856 	}
1857 	spin_unlock(&nm_i->nid_list_lock);
1858 
1859 	if (need_free)
1860 		kmem_cache_free(free_nid_slab, i);
1861 }
1862 
1863 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1864 							bool set, bool build)
1865 {
1866 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1867 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1868 	unsigned int nid_ofs = nid - START_NID(nid);
1869 
1870 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1871 		return;
1872 
1873 	if (set)
1874 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1875 	else
1876 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1877 
1878 	if (set)
1879 		nm_i->free_nid_count[nat_ofs]++;
1880 	else if (!build)
1881 		nm_i->free_nid_count[nat_ofs]--;
1882 }
1883 
1884 static void scan_nat_page(struct f2fs_sb_info *sbi,
1885 			struct page *nat_page, nid_t start_nid)
1886 {
1887 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1888 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1889 	block_t blk_addr;
1890 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1891 	int i;
1892 
1893 	if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1894 		return;
1895 
1896 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1897 
1898 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1899 
1900 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1901 		bool freed = false;
1902 
1903 		if (unlikely(start_nid >= nm_i->max_nid))
1904 			break;
1905 
1906 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1907 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1908 		if (blk_addr == NULL_ADDR)
1909 			freed = add_free_nid(sbi, start_nid, true);
1910 		spin_lock(&NM_I(sbi)->nid_list_lock);
1911 		update_free_nid_bitmap(sbi, start_nid, freed, true);
1912 		spin_unlock(&NM_I(sbi)->nid_list_lock);
1913 	}
1914 }
1915 
1916 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1917 {
1918 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1919 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1920 	struct f2fs_journal *journal = curseg->journal;
1921 	unsigned int i, idx;
1922 
1923 	down_read(&nm_i->nat_tree_lock);
1924 
1925 	for (i = 0; i < nm_i->nat_blocks; i++) {
1926 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
1927 			continue;
1928 		if (!nm_i->free_nid_count[i])
1929 			continue;
1930 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1931 			nid_t nid;
1932 
1933 			if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1934 				continue;
1935 
1936 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
1937 			add_free_nid(sbi, nid, true);
1938 
1939 			if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1940 				goto out;
1941 		}
1942 	}
1943 out:
1944 	down_read(&curseg->journal_rwsem);
1945 	for (i = 0; i < nats_in_cursum(journal); i++) {
1946 		block_t addr;
1947 		nid_t nid;
1948 
1949 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1950 		nid = le32_to_cpu(nid_in_journal(journal, i));
1951 		if (addr == NULL_ADDR)
1952 			add_free_nid(sbi, nid, true);
1953 		else
1954 			remove_free_nid(sbi, nid);
1955 	}
1956 	up_read(&curseg->journal_rwsem);
1957 	up_read(&nm_i->nat_tree_lock);
1958 }
1959 
1960 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1961 {
1962 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1963 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1964 	struct f2fs_journal *journal = curseg->journal;
1965 	int i = 0;
1966 	nid_t nid = nm_i->next_scan_nid;
1967 
1968 	if (unlikely(nid >= nm_i->max_nid))
1969 		nid = 0;
1970 
1971 	/* Enough entries */
1972 	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1973 		return;
1974 
1975 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1976 		return;
1977 
1978 	if (!mount) {
1979 		/* try to find free nids in free_nid_bitmap */
1980 		scan_free_nid_bits(sbi);
1981 
1982 		if (nm_i->nid_cnt[FREE_NID_LIST])
1983 			return;
1984 	}
1985 
1986 	/* readahead nat pages to be scanned */
1987 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1988 							META_NAT, true);
1989 
1990 	down_read(&nm_i->nat_tree_lock);
1991 
1992 	while (1) {
1993 		struct page *page = get_current_nat_page(sbi, nid);
1994 
1995 		scan_nat_page(sbi, page, nid);
1996 		f2fs_put_page(page, 1);
1997 
1998 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1999 		if (unlikely(nid >= nm_i->max_nid))
2000 			nid = 0;
2001 
2002 		if (++i >= FREE_NID_PAGES)
2003 			break;
2004 	}
2005 
2006 	/* go to the next free nat pages to find free nids abundantly */
2007 	nm_i->next_scan_nid = nid;
2008 
2009 	/* find free nids from current sum_pages */
2010 	down_read(&curseg->journal_rwsem);
2011 	for (i = 0; i < nats_in_cursum(journal); i++) {
2012 		block_t addr;
2013 
2014 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2015 		nid = le32_to_cpu(nid_in_journal(journal, i));
2016 		if (addr == NULL_ADDR)
2017 			add_free_nid(sbi, nid, true);
2018 		else
2019 			remove_free_nid(sbi, nid);
2020 	}
2021 	up_read(&curseg->journal_rwsem);
2022 	up_read(&nm_i->nat_tree_lock);
2023 
2024 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2025 					nm_i->ra_nid_pages, META_NAT, false);
2026 }
2027 
2028 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2029 {
2030 	mutex_lock(&NM_I(sbi)->build_lock);
2031 	__build_free_nids(sbi, sync, mount);
2032 	mutex_unlock(&NM_I(sbi)->build_lock);
2033 }
2034 
2035 /*
2036  * If this function returns success, caller can obtain a new nid
2037  * from second parameter of this function.
2038  * The returned nid could be used ino as well as nid when inode is created.
2039  */
2040 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2041 {
2042 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2043 	struct free_nid *i = NULL;
2044 retry:
2045 #ifdef CONFIG_F2FS_FAULT_INJECTION
2046 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2047 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2048 		return false;
2049 	}
2050 #endif
2051 	spin_lock(&nm_i->nid_list_lock);
2052 
2053 	if (unlikely(nm_i->available_nids == 0)) {
2054 		spin_unlock(&nm_i->nid_list_lock);
2055 		return false;
2056 	}
2057 
2058 	/* We should not use stale free nids created by build_free_nids */
2059 	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2060 		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2061 		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2062 					struct free_nid, list);
2063 		*nid = i->nid;
2064 
2065 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2066 		i->state = NID_ALLOC;
2067 		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2068 		nm_i->available_nids--;
2069 
2070 		update_free_nid_bitmap(sbi, *nid, false, false);
2071 
2072 		spin_unlock(&nm_i->nid_list_lock);
2073 		return true;
2074 	}
2075 	spin_unlock(&nm_i->nid_list_lock);
2076 
2077 	/* Let's scan nat pages and its caches to get free nids */
2078 	build_free_nids(sbi, true, false);
2079 	goto retry;
2080 }
2081 
2082 /*
2083  * alloc_nid() should be called prior to this function.
2084  */
2085 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2086 {
2087 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2088 	struct free_nid *i;
2089 
2090 	spin_lock(&nm_i->nid_list_lock);
2091 	i = __lookup_free_nid_list(nm_i, nid);
2092 	f2fs_bug_on(sbi, !i);
2093 	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2094 	spin_unlock(&nm_i->nid_list_lock);
2095 
2096 	kmem_cache_free(free_nid_slab, i);
2097 }
2098 
2099 /*
2100  * alloc_nid() should be called prior to this function.
2101  */
2102 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2103 {
2104 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105 	struct free_nid *i;
2106 	bool need_free = false;
2107 
2108 	if (!nid)
2109 		return;
2110 
2111 	spin_lock(&nm_i->nid_list_lock);
2112 	i = __lookup_free_nid_list(nm_i, nid);
2113 	f2fs_bug_on(sbi, !i);
2114 
2115 	if (!available_free_memory(sbi, FREE_NIDS)) {
2116 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2117 		need_free = true;
2118 	} else {
2119 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2120 		i->state = NID_NEW;
2121 		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2122 	}
2123 
2124 	nm_i->available_nids++;
2125 
2126 	update_free_nid_bitmap(sbi, nid, true, false);
2127 
2128 	spin_unlock(&nm_i->nid_list_lock);
2129 
2130 	if (need_free)
2131 		kmem_cache_free(free_nid_slab, i);
2132 }
2133 
2134 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2135 {
2136 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2137 	struct free_nid *i, *next;
2138 	int nr = nr_shrink;
2139 
2140 	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2141 		return 0;
2142 
2143 	if (!mutex_trylock(&nm_i->build_lock))
2144 		return 0;
2145 
2146 	spin_lock(&nm_i->nid_list_lock);
2147 	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2148 									list) {
2149 		if (nr_shrink <= 0 ||
2150 				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2151 			break;
2152 
2153 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2154 		kmem_cache_free(free_nid_slab, i);
2155 		nr_shrink--;
2156 	}
2157 	spin_unlock(&nm_i->nid_list_lock);
2158 	mutex_unlock(&nm_i->build_lock);
2159 
2160 	return nr - nr_shrink;
2161 }
2162 
2163 void recover_inline_xattr(struct inode *inode, struct page *page)
2164 {
2165 	void *src_addr, *dst_addr;
2166 	size_t inline_size;
2167 	struct page *ipage;
2168 	struct f2fs_inode *ri;
2169 
2170 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2171 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2172 
2173 	ri = F2FS_INODE(page);
2174 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2175 		clear_inode_flag(inode, FI_INLINE_XATTR);
2176 		goto update_inode;
2177 	}
2178 
2179 	dst_addr = inline_xattr_addr(ipage);
2180 	src_addr = inline_xattr_addr(page);
2181 	inline_size = inline_xattr_size(inode);
2182 
2183 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2184 	memcpy(dst_addr, src_addr, inline_size);
2185 update_inode:
2186 	update_inode(inode, ipage);
2187 	f2fs_put_page(ipage, 1);
2188 }
2189 
2190 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2191 {
2192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2194 	nid_t new_xnid = nid_of_node(page);
2195 	struct node_info ni;
2196 	struct page *xpage;
2197 
2198 	if (!prev_xnid)
2199 		goto recover_xnid;
2200 
2201 	/* 1: invalidate the previous xattr nid */
2202 	get_node_info(sbi, prev_xnid, &ni);
2203 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2204 	invalidate_blocks(sbi, ni.blk_addr);
2205 	dec_valid_node_count(sbi, inode, false);
2206 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2207 
2208 recover_xnid:
2209 	/* 2: update xattr nid in inode */
2210 	remove_free_nid(sbi, new_xnid);
2211 	f2fs_i_xnid_write(inode, new_xnid);
2212 	if (unlikely(inc_valid_node_count(sbi, inode, false)))
2213 		f2fs_bug_on(sbi, 1);
2214 	update_inode_page(inode);
2215 
2216 	/* 3: update and set xattr node page dirty */
2217 	xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2218 	if (!xpage)
2219 		return -ENOMEM;
2220 
2221 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2222 
2223 	get_node_info(sbi, new_xnid, &ni);
2224 	ni.ino = inode->i_ino;
2225 	set_node_addr(sbi, &ni, NEW_ADDR, false);
2226 	set_page_dirty(xpage);
2227 	f2fs_put_page(xpage, 1);
2228 
2229 	return 0;
2230 }
2231 
2232 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2233 {
2234 	struct f2fs_inode *src, *dst;
2235 	nid_t ino = ino_of_node(page);
2236 	struct node_info old_ni, new_ni;
2237 	struct page *ipage;
2238 
2239 	get_node_info(sbi, ino, &old_ni);
2240 
2241 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2242 		return -EINVAL;
2243 retry:
2244 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2245 	if (!ipage) {
2246 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2247 		goto retry;
2248 	}
2249 
2250 	/* Should not use this inode from free nid list */
2251 	remove_free_nid(sbi, ino);
2252 
2253 	if (!PageUptodate(ipage))
2254 		SetPageUptodate(ipage);
2255 	fill_node_footer(ipage, ino, ino, 0, true);
2256 
2257 	src = F2FS_INODE(page);
2258 	dst = F2FS_INODE(ipage);
2259 
2260 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2261 	dst->i_size = 0;
2262 	dst->i_blocks = cpu_to_le64(1);
2263 	dst->i_links = cpu_to_le32(1);
2264 	dst->i_xattr_nid = 0;
2265 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2266 
2267 	new_ni = old_ni;
2268 	new_ni.ino = ino;
2269 
2270 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2271 		WARN_ON(1);
2272 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2273 	inc_valid_inode_count(sbi);
2274 	set_page_dirty(ipage);
2275 	f2fs_put_page(ipage, 1);
2276 	return 0;
2277 }
2278 
2279 int restore_node_summary(struct f2fs_sb_info *sbi,
2280 			unsigned int segno, struct f2fs_summary_block *sum)
2281 {
2282 	struct f2fs_node *rn;
2283 	struct f2fs_summary *sum_entry;
2284 	block_t addr;
2285 	int i, idx, last_offset, nrpages;
2286 
2287 	/* scan the node segment */
2288 	last_offset = sbi->blocks_per_seg;
2289 	addr = START_BLOCK(sbi, segno);
2290 	sum_entry = &sum->entries[0];
2291 
2292 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2293 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2294 
2295 		/* readahead node pages */
2296 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2297 
2298 		for (idx = addr; idx < addr + nrpages; idx++) {
2299 			struct page *page = get_tmp_page(sbi, idx);
2300 
2301 			rn = F2FS_NODE(page);
2302 			sum_entry->nid = rn->footer.nid;
2303 			sum_entry->version = 0;
2304 			sum_entry->ofs_in_node = 0;
2305 			sum_entry++;
2306 			f2fs_put_page(page, 1);
2307 		}
2308 
2309 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2310 							addr + nrpages);
2311 	}
2312 	return 0;
2313 }
2314 
2315 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2316 {
2317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2318 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2319 	struct f2fs_journal *journal = curseg->journal;
2320 	int i;
2321 
2322 	down_write(&curseg->journal_rwsem);
2323 	for (i = 0; i < nats_in_cursum(journal); i++) {
2324 		struct nat_entry *ne;
2325 		struct f2fs_nat_entry raw_ne;
2326 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2327 
2328 		raw_ne = nat_in_journal(journal, i);
2329 
2330 		ne = __lookup_nat_cache(nm_i, nid);
2331 		if (!ne) {
2332 			ne = grab_nat_entry(nm_i, nid, true);
2333 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2334 		}
2335 
2336 		/*
2337 		 * if a free nat in journal has not been used after last
2338 		 * checkpoint, we should remove it from available nids,
2339 		 * since later we will add it again.
2340 		 */
2341 		if (!get_nat_flag(ne, IS_DIRTY) &&
2342 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2343 			spin_lock(&nm_i->nid_list_lock);
2344 			nm_i->available_nids--;
2345 			spin_unlock(&nm_i->nid_list_lock);
2346 		}
2347 
2348 		__set_nat_cache_dirty(nm_i, ne);
2349 	}
2350 	update_nats_in_cursum(journal, -i);
2351 	up_write(&curseg->journal_rwsem);
2352 }
2353 
2354 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2355 						struct list_head *head, int max)
2356 {
2357 	struct nat_entry_set *cur;
2358 
2359 	if (nes->entry_cnt >= max)
2360 		goto add_out;
2361 
2362 	list_for_each_entry(cur, head, set_list) {
2363 		if (cur->entry_cnt >= nes->entry_cnt) {
2364 			list_add(&nes->set_list, cur->set_list.prev);
2365 			return;
2366 		}
2367 	}
2368 add_out:
2369 	list_add_tail(&nes->set_list, head);
2370 }
2371 
2372 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2373 						struct page *page)
2374 {
2375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2376 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2377 	struct f2fs_nat_block *nat_blk = page_address(page);
2378 	int valid = 0;
2379 	int i;
2380 
2381 	if (!enabled_nat_bits(sbi, NULL))
2382 		return;
2383 
2384 	for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2385 		if (start_nid == 0 && i == 0)
2386 			valid++;
2387 		if (nat_blk->entries[i].block_addr)
2388 			valid++;
2389 	}
2390 	if (valid == 0) {
2391 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2392 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2393 		return;
2394 	}
2395 
2396 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2397 	if (valid == NAT_ENTRY_PER_BLOCK)
2398 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2399 	else
2400 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2401 }
2402 
2403 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2404 		struct nat_entry_set *set, struct cp_control *cpc)
2405 {
2406 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2407 	struct f2fs_journal *journal = curseg->journal;
2408 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2409 	bool to_journal = true;
2410 	struct f2fs_nat_block *nat_blk;
2411 	struct nat_entry *ne, *cur;
2412 	struct page *page = NULL;
2413 
2414 	/*
2415 	 * there are two steps to flush nat entries:
2416 	 * #1, flush nat entries to journal in current hot data summary block.
2417 	 * #2, flush nat entries to nat page.
2418 	 */
2419 	if (enabled_nat_bits(sbi, cpc) ||
2420 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2421 		to_journal = false;
2422 
2423 	if (to_journal) {
2424 		down_write(&curseg->journal_rwsem);
2425 	} else {
2426 		page = get_next_nat_page(sbi, start_nid);
2427 		nat_blk = page_address(page);
2428 		f2fs_bug_on(sbi, !nat_blk);
2429 	}
2430 
2431 	/* flush dirty nats in nat entry set */
2432 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2433 		struct f2fs_nat_entry *raw_ne;
2434 		nid_t nid = nat_get_nid(ne);
2435 		int offset;
2436 
2437 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2438 
2439 		if (to_journal) {
2440 			offset = lookup_journal_in_cursum(journal,
2441 							NAT_JOURNAL, nid, 1);
2442 			f2fs_bug_on(sbi, offset < 0);
2443 			raw_ne = &nat_in_journal(journal, offset);
2444 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2445 		} else {
2446 			raw_ne = &nat_blk->entries[nid - start_nid];
2447 		}
2448 		raw_nat_from_node_info(raw_ne, &ne->ni);
2449 		nat_reset_flag(ne);
2450 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2451 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2452 			add_free_nid(sbi, nid, false);
2453 			spin_lock(&NM_I(sbi)->nid_list_lock);
2454 			NM_I(sbi)->available_nids++;
2455 			update_free_nid_bitmap(sbi, nid, true, false);
2456 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2457 		} else {
2458 			spin_lock(&NM_I(sbi)->nid_list_lock);
2459 			update_free_nid_bitmap(sbi, nid, false, false);
2460 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2461 		}
2462 	}
2463 
2464 	if (to_journal) {
2465 		up_write(&curseg->journal_rwsem);
2466 	} else {
2467 		__update_nat_bits(sbi, start_nid, page);
2468 		f2fs_put_page(page, 1);
2469 	}
2470 
2471 	/* Allow dirty nats by node block allocation in write_begin */
2472 	if (!set->entry_cnt) {
2473 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2474 		kmem_cache_free(nat_entry_set_slab, set);
2475 	}
2476 }
2477 
2478 /*
2479  * This function is called during the checkpointing process.
2480  */
2481 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2482 {
2483 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2484 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2485 	struct f2fs_journal *journal = curseg->journal;
2486 	struct nat_entry_set *setvec[SETVEC_SIZE];
2487 	struct nat_entry_set *set, *tmp;
2488 	unsigned int found;
2489 	nid_t set_idx = 0;
2490 	LIST_HEAD(sets);
2491 
2492 	if (!nm_i->dirty_nat_cnt)
2493 		return;
2494 
2495 	down_write(&nm_i->nat_tree_lock);
2496 
2497 	/*
2498 	 * if there are no enough space in journal to store dirty nat
2499 	 * entries, remove all entries from journal and merge them
2500 	 * into nat entry set.
2501 	 */
2502 	if (enabled_nat_bits(sbi, cpc) ||
2503 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2504 		remove_nats_in_journal(sbi);
2505 
2506 	while ((found = __gang_lookup_nat_set(nm_i,
2507 					set_idx, SETVEC_SIZE, setvec))) {
2508 		unsigned idx;
2509 		set_idx = setvec[found - 1]->set + 1;
2510 		for (idx = 0; idx < found; idx++)
2511 			__adjust_nat_entry_set(setvec[idx], &sets,
2512 						MAX_NAT_JENTRIES(journal));
2513 	}
2514 
2515 	/* flush dirty nats in nat entry set */
2516 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2517 		__flush_nat_entry_set(sbi, set, cpc);
2518 
2519 	up_write(&nm_i->nat_tree_lock);
2520 	/* Allow dirty nats by node block allocation in write_begin */
2521 }
2522 
2523 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2524 {
2525 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2526 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2527 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2528 	unsigned int i;
2529 	__u64 cp_ver = cur_cp_version(ckpt);
2530 	block_t nat_bits_addr;
2531 
2532 	if (!enabled_nat_bits(sbi, NULL))
2533 		return 0;
2534 
2535 	nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2536 						F2FS_BLKSIZE - 1);
2537 	nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2538 						GFP_KERNEL);
2539 	if (!nm_i->nat_bits)
2540 		return -ENOMEM;
2541 
2542 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2543 						nm_i->nat_bits_blocks;
2544 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2545 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2546 
2547 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2548 					page_address(page), F2FS_BLKSIZE);
2549 		f2fs_put_page(page, 1);
2550 	}
2551 
2552 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2553 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2554 		disable_nat_bits(sbi, true);
2555 		return 0;
2556 	}
2557 
2558 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2559 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2560 
2561 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2562 	return 0;
2563 }
2564 
2565 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2566 {
2567 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2568 	unsigned int i = 0;
2569 	nid_t nid, last_nid;
2570 
2571 	if (!enabled_nat_bits(sbi, NULL))
2572 		return;
2573 
2574 	for (i = 0; i < nm_i->nat_blocks; i++) {
2575 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2576 		if (i >= nm_i->nat_blocks)
2577 			break;
2578 
2579 		__set_bit_le(i, nm_i->nat_block_bitmap);
2580 
2581 		nid = i * NAT_ENTRY_PER_BLOCK;
2582 		last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2583 
2584 		spin_lock(&NM_I(sbi)->nid_list_lock);
2585 		for (; nid < last_nid; nid++)
2586 			update_free_nid_bitmap(sbi, nid, true, true);
2587 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2588 	}
2589 
2590 	for (i = 0; i < nm_i->nat_blocks; i++) {
2591 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2592 		if (i >= nm_i->nat_blocks)
2593 			break;
2594 
2595 		__set_bit_le(i, nm_i->nat_block_bitmap);
2596 	}
2597 }
2598 
2599 static int init_node_manager(struct f2fs_sb_info *sbi)
2600 {
2601 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2602 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2603 	unsigned char *version_bitmap;
2604 	unsigned int nat_segs;
2605 	int err;
2606 
2607 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2608 
2609 	/* segment_count_nat includes pair segment so divide to 2. */
2610 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2611 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2612 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2613 
2614 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2615 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2616 							F2FS_RESERVED_NODE_NUM;
2617 	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2618 	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2619 	nm_i->nat_cnt = 0;
2620 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2621 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2622 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2623 
2624 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2625 	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2626 	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2627 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2628 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2629 	INIT_LIST_HEAD(&nm_i->nat_entries);
2630 
2631 	mutex_init(&nm_i->build_lock);
2632 	spin_lock_init(&nm_i->nid_list_lock);
2633 	init_rwsem(&nm_i->nat_tree_lock);
2634 
2635 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2636 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2637 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2638 	if (!version_bitmap)
2639 		return -EFAULT;
2640 
2641 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2642 					GFP_KERNEL);
2643 	if (!nm_i->nat_bitmap)
2644 		return -ENOMEM;
2645 
2646 	err = __get_nat_bitmaps(sbi);
2647 	if (err)
2648 		return err;
2649 
2650 #ifdef CONFIG_F2FS_CHECK_FS
2651 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2652 					GFP_KERNEL);
2653 	if (!nm_i->nat_bitmap_mir)
2654 		return -ENOMEM;
2655 #endif
2656 
2657 	return 0;
2658 }
2659 
2660 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2661 {
2662 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2663 
2664 	nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2665 					NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2666 	if (!nm_i->free_nid_bitmap)
2667 		return -ENOMEM;
2668 
2669 	nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2670 								GFP_KERNEL);
2671 	if (!nm_i->nat_block_bitmap)
2672 		return -ENOMEM;
2673 
2674 	nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2675 					sizeof(unsigned short), GFP_KERNEL);
2676 	if (!nm_i->free_nid_count)
2677 		return -ENOMEM;
2678 	return 0;
2679 }
2680 
2681 int build_node_manager(struct f2fs_sb_info *sbi)
2682 {
2683 	int err;
2684 
2685 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2686 	if (!sbi->nm_info)
2687 		return -ENOMEM;
2688 
2689 	err = init_node_manager(sbi);
2690 	if (err)
2691 		return err;
2692 
2693 	err = init_free_nid_cache(sbi);
2694 	if (err)
2695 		return err;
2696 
2697 	/* load free nid status from nat_bits table */
2698 	load_free_nid_bitmap(sbi);
2699 
2700 	build_free_nids(sbi, true, true);
2701 	return 0;
2702 }
2703 
2704 void destroy_node_manager(struct f2fs_sb_info *sbi)
2705 {
2706 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2707 	struct free_nid *i, *next_i;
2708 	struct nat_entry *natvec[NATVEC_SIZE];
2709 	struct nat_entry_set *setvec[SETVEC_SIZE];
2710 	nid_t nid = 0;
2711 	unsigned int found;
2712 
2713 	if (!nm_i)
2714 		return;
2715 
2716 	/* destroy free nid list */
2717 	spin_lock(&nm_i->nid_list_lock);
2718 	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2719 									list) {
2720 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2721 		spin_unlock(&nm_i->nid_list_lock);
2722 		kmem_cache_free(free_nid_slab, i);
2723 		spin_lock(&nm_i->nid_list_lock);
2724 	}
2725 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2726 	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2727 	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2728 	spin_unlock(&nm_i->nid_list_lock);
2729 
2730 	/* destroy nat cache */
2731 	down_write(&nm_i->nat_tree_lock);
2732 	while ((found = __gang_lookup_nat_cache(nm_i,
2733 					nid, NATVEC_SIZE, natvec))) {
2734 		unsigned idx;
2735 
2736 		nid = nat_get_nid(natvec[found - 1]) + 1;
2737 		for (idx = 0; idx < found; idx++)
2738 			__del_from_nat_cache(nm_i, natvec[idx]);
2739 	}
2740 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2741 
2742 	/* destroy nat set cache */
2743 	nid = 0;
2744 	while ((found = __gang_lookup_nat_set(nm_i,
2745 					nid, SETVEC_SIZE, setvec))) {
2746 		unsigned idx;
2747 
2748 		nid = setvec[found - 1]->set + 1;
2749 		for (idx = 0; idx < found; idx++) {
2750 			/* entry_cnt is not zero, when cp_error was occurred */
2751 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2752 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2753 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2754 		}
2755 	}
2756 	up_write(&nm_i->nat_tree_lock);
2757 
2758 	kvfree(nm_i->nat_block_bitmap);
2759 	kvfree(nm_i->free_nid_bitmap);
2760 	kvfree(nm_i->free_nid_count);
2761 
2762 	kfree(nm_i->nat_bitmap);
2763 	kfree(nm_i->nat_bits);
2764 #ifdef CONFIG_F2FS_CHECK_FS
2765 	kfree(nm_i->nat_bitmap_mir);
2766 #endif
2767 	sbi->nm_info = NULL;
2768 	kfree(nm_i);
2769 }
2770 
2771 int __init create_node_manager_caches(void)
2772 {
2773 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2774 			sizeof(struct nat_entry));
2775 	if (!nat_entry_slab)
2776 		goto fail;
2777 
2778 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2779 			sizeof(struct free_nid));
2780 	if (!free_nid_slab)
2781 		goto destroy_nat_entry;
2782 
2783 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2784 			sizeof(struct nat_entry_set));
2785 	if (!nat_entry_set_slab)
2786 		goto destroy_free_nid;
2787 	return 0;
2788 
2789 destroy_free_nid:
2790 	kmem_cache_destroy(free_nid_slab);
2791 destroy_nat_entry:
2792 	kmem_cache_destroy(nat_entry_slab);
2793 fail:
2794 	return -ENOMEM;
2795 }
2796 
2797 void destroy_node_manager_caches(void)
2798 {
2799 	kmem_cache_destroy(nat_entry_set_slab);
2800 	kmem_cache_destroy(free_nid_slab);
2801 	kmem_cache_destroy(nat_entry_slab);
2802 }
2803