xref: /openbmc/linux/fs/f2fs/node.c (revision e1f7c9ee)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25 
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29 
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32 	struct f2fs_nm_info *nm_i = NM_I(sbi);
33 	struct sysinfo val;
34 	unsigned long mem_size = 0;
35 	bool res = false;
36 
37 	si_meminfo(&val);
38 	/* give 25%, 25%, 50% memory for each components respectively */
39 	if (type == FREE_NIDS) {
40 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
41 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
42 	} else if (type == NAT_ENTRIES) {
43 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
44 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
45 	} else if (type == DIRTY_DENTS) {
46 		if (sbi->sb->s_bdi->dirty_exceeded)
47 			return false;
48 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
49 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
50 	}
51 	return res;
52 }
53 
54 static void clear_node_page_dirty(struct page *page)
55 {
56 	struct address_space *mapping = page->mapping;
57 	unsigned int long flags;
58 
59 	if (PageDirty(page)) {
60 		spin_lock_irqsave(&mapping->tree_lock, flags);
61 		radix_tree_tag_clear(&mapping->page_tree,
62 				page_index(page),
63 				PAGECACHE_TAG_DIRTY);
64 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
65 
66 		clear_page_dirty_for_io(page);
67 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
68 	}
69 	ClearPageUptodate(page);
70 }
71 
72 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
73 {
74 	pgoff_t index = current_nat_addr(sbi, nid);
75 	return get_meta_page(sbi, index);
76 }
77 
78 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
79 {
80 	struct page *src_page;
81 	struct page *dst_page;
82 	pgoff_t src_off;
83 	pgoff_t dst_off;
84 	void *src_addr;
85 	void *dst_addr;
86 	struct f2fs_nm_info *nm_i = NM_I(sbi);
87 
88 	src_off = current_nat_addr(sbi, nid);
89 	dst_off = next_nat_addr(sbi, src_off);
90 
91 	/* get current nat block page with lock */
92 	src_page = get_meta_page(sbi, src_off);
93 	dst_page = grab_meta_page(sbi, dst_off);
94 	f2fs_bug_on(sbi, PageDirty(src_page));
95 
96 	src_addr = page_address(src_page);
97 	dst_addr = page_address(dst_page);
98 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
99 	set_page_dirty(dst_page);
100 	f2fs_put_page(src_page, 1);
101 
102 	set_to_next_nat(nm_i, nid);
103 
104 	return dst_page;
105 }
106 
107 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
108 {
109 	return radix_tree_lookup(&nm_i->nat_root, n);
110 }
111 
112 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
113 		nid_t start, unsigned int nr, struct nat_entry **ep)
114 {
115 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
116 }
117 
118 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
119 {
120 	list_del(&e->list);
121 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
122 	nm_i->nat_cnt--;
123 	kmem_cache_free(nat_entry_slab, e);
124 }
125 
126 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
127 						struct nat_entry *ne)
128 {
129 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
130 	struct nat_entry_set *head;
131 
132 	if (get_nat_flag(ne, IS_DIRTY))
133 		return;
134 retry:
135 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
136 	if (!head) {
137 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
138 
139 		INIT_LIST_HEAD(&head->entry_list);
140 		INIT_LIST_HEAD(&head->set_list);
141 		head->set = set;
142 		head->entry_cnt = 0;
143 
144 		if (radix_tree_insert(&nm_i->nat_set_root, set, head)) {
145 			cond_resched();
146 			goto retry;
147 		}
148 	}
149 	list_move_tail(&ne->list, &head->entry_list);
150 	nm_i->dirty_nat_cnt++;
151 	head->entry_cnt++;
152 	set_nat_flag(ne, IS_DIRTY, true);
153 }
154 
155 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
156 						struct nat_entry *ne)
157 {
158 	nid_t set = ne->ni.nid / NAT_ENTRY_PER_BLOCK;
159 	struct nat_entry_set *head;
160 
161 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 	if (head) {
163 		list_move_tail(&ne->list, &nm_i->nat_entries);
164 		set_nat_flag(ne, IS_DIRTY, false);
165 		head->entry_cnt--;
166 		nm_i->dirty_nat_cnt--;
167 	}
168 }
169 
170 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
171 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
172 {
173 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
174 							start, nr);
175 }
176 
177 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
178 {
179 	struct f2fs_nm_info *nm_i = NM_I(sbi);
180 	struct nat_entry *e;
181 	bool is_cp = true;
182 
183 	read_lock(&nm_i->nat_tree_lock);
184 	e = __lookup_nat_cache(nm_i, nid);
185 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
186 		is_cp = false;
187 	read_unlock(&nm_i->nat_tree_lock);
188 	return is_cp;
189 }
190 
191 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
192 {
193 	struct f2fs_nm_info *nm_i = NM_I(sbi);
194 	struct nat_entry *e;
195 	bool fsynced = false;
196 
197 	read_lock(&nm_i->nat_tree_lock);
198 	e = __lookup_nat_cache(nm_i, ino);
199 	if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
200 		fsynced = true;
201 	read_unlock(&nm_i->nat_tree_lock);
202 	return fsynced;
203 }
204 
205 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
206 {
207 	struct f2fs_nm_info *nm_i = NM_I(sbi);
208 	struct nat_entry *e;
209 	bool need_update = true;
210 
211 	read_lock(&nm_i->nat_tree_lock);
212 	e = __lookup_nat_cache(nm_i, ino);
213 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
214 			(get_nat_flag(e, IS_CHECKPOINTED) ||
215 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
216 		need_update = false;
217 	read_unlock(&nm_i->nat_tree_lock);
218 	return need_update;
219 }
220 
221 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
222 {
223 	struct nat_entry *new;
224 
225 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
226 	if (!new)
227 		return NULL;
228 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
229 		kmem_cache_free(nat_entry_slab, new);
230 		return NULL;
231 	}
232 	memset(new, 0, sizeof(struct nat_entry));
233 	nat_set_nid(new, nid);
234 	nat_reset_flag(new);
235 	list_add_tail(&new->list, &nm_i->nat_entries);
236 	nm_i->nat_cnt++;
237 	return new;
238 }
239 
240 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
241 						struct f2fs_nat_entry *ne)
242 {
243 	struct nat_entry *e;
244 retry:
245 	write_lock(&nm_i->nat_tree_lock);
246 	e = __lookup_nat_cache(nm_i, nid);
247 	if (!e) {
248 		e = grab_nat_entry(nm_i, nid);
249 		if (!e) {
250 			write_unlock(&nm_i->nat_tree_lock);
251 			goto retry;
252 		}
253 		node_info_from_raw_nat(&e->ni, ne);
254 	}
255 	write_unlock(&nm_i->nat_tree_lock);
256 }
257 
258 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
259 			block_t new_blkaddr, bool fsync_done)
260 {
261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
262 	struct nat_entry *e;
263 retry:
264 	write_lock(&nm_i->nat_tree_lock);
265 	e = __lookup_nat_cache(nm_i, ni->nid);
266 	if (!e) {
267 		e = grab_nat_entry(nm_i, ni->nid);
268 		if (!e) {
269 			write_unlock(&nm_i->nat_tree_lock);
270 			goto retry;
271 		}
272 		e->ni = *ni;
273 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
274 	} else if (new_blkaddr == NEW_ADDR) {
275 		/*
276 		 * when nid is reallocated,
277 		 * previous nat entry can be remained in nat cache.
278 		 * So, reinitialize it with new information.
279 		 */
280 		e->ni = *ni;
281 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
282 	}
283 
284 	/* sanity check */
285 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
286 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
287 			new_blkaddr == NULL_ADDR);
288 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
289 			new_blkaddr == NEW_ADDR);
290 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
291 			nat_get_blkaddr(e) != NULL_ADDR &&
292 			new_blkaddr == NEW_ADDR);
293 
294 	/* increment version no as node is removed */
295 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
296 		unsigned char version = nat_get_version(e);
297 		nat_set_version(e, inc_node_version(version));
298 	}
299 
300 	/* change address */
301 	nat_set_blkaddr(e, new_blkaddr);
302 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
303 		set_nat_flag(e, IS_CHECKPOINTED, false);
304 	__set_nat_cache_dirty(nm_i, e);
305 
306 	/* update fsync_mark if its inode nat entry is still alive */
307 	e = __lookup_nat_cache(nm_i, ni->ino);
308 	if (e) {
309 		if (fsync_done && ni->nid == ni->ino)
310 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
311 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
312 	}
313 	write_unlock(&nm_i->nat_tree_lock);
314 }
315 
316 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
317 {
318 	struct f2fs_nm_info *nm_i = NM_I(sbi);
319 
320 	if (available_free_memory(sbi, NAT_ENTRIES))
321 		return 0;
322 
323 	write_lock(&nm_i->nat_tree_lock);
324 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
325 		struct nat_entry *ne;
326 		ne = list_first_entry(&nm_i->nat_entries,
327 					struct nat_entry, list);
328 		__del_from_nat_cache(nm_i, ne);
329 		nr_shrink--;
330 	}
331 	write_unlock(&nm_i->nat_tree_lock);
332 	return nr_shrink;
333 }
334 
335 /*
336  * This function always returns success
337  */
338 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
339 {
340 	struct f2fs_nm_info *nm_i = NM_I(sbi);
341 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
342 	struct f2fs_summary_block *sum = curseg->sum_blk;
343 	nid_t start_nid = START_NID(nid);
344 	struct f2fs_nat_block *nat_blk;
345 	struct page *page = NULL;
346 	struct f2fs_nat_entry ne;
347 	struct nat_entry *e;
348 	int i;
349 
350 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
351 	ni->nid = nid;
352 
353 	/* Check nat cache */
354 	read_lock(&nm_i->nat_tree_lock);
355 	e = __lookup_nat_cache(nm_i, nid);
356 	if (e) {
357 		ni->ino = nat_get_ino(e);
358 		ni->blk_addr = nat_get_blkaddr(e);
359 		ni->version = nat_get_version(e);
360 	}
361 	read_unlock(&nm_i->nat_tree_lock);
362 	if (e)
363 		return;
364 
365 	/* Check current segment summary */
366 	mutex_lock(&curseg->curseg_mutex);
367 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
368 	if (i >= 0) {
369 		ne = nat_in_journal(sum, i);
370 		node_info_from_raw_nat(ni, &ne);
371 	}
372 	mutex_unlock(&curseg->curseg_mutex);
373 	if (i >= 0)
374 		goto cache;
375 
376 	/* Fill node_info from nat page */
377 	page = get_current_nat_page(sbi, start_nid);
378 	nat_blk = (struct f2fs_nat_block *)page_address(page);
379 	ne = nat_blk->entries[nid - start_nid];
380 	node_info_from_raw_nat(ni, &ne);
381 	f2fs_put_page(page, 1);
382 cache:
383 	/* cache nat entry */
384 	cache_nat_entry(NM_I(sbi), nid, &ne);
385 }
386 
387 /*
388  * The maximum depth is four.
389  * Offset[0] will have raw inode offset.
390  */
391 static int get_node_path(struct f2fs_inode_info *fi, long block,
392 				int offset[4], unsigned int noffset[4])
393 {
394 	const long direct_index = ADDRS_PER_INODE(fi);
395 	const long direct_blks = ADDRS_PER_BLOCK;
396 	const long dptrs_per_blk = NIDS_PER_BLOCK;
397 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
398 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
399 	int n = 0;
400 	int level = 0;
401 
402 	noffset[0] = 0;
403 
404 	if (block < direct_index) {
405 		offset[n] = block;
406 		goto got;
407 	}
408 	block -= direct_index;
409 	if (block < direct_blks) {
410 		offset[n++] = NODE_DIR1_BLOCK;
411 		noffset[n] = 1;
412 		offset[n] = block;
413 		level = 1;
414 		goto got;
415 	}
416 	block -= direct_blks;
417 	if (block < direct_blks) {
418 		offset[n++] = NODE_DIR2_BLOCK;
419 		noffset[n] = 2;
420 		offset[n] = block;
421 		level = 1;
422 		goto got;
423 	}
424 	block -= direct_blks;
425 	if (block < indirect_blks) {
426 		offset[n++] = NODE_IND1_BLOCK;
427 		noffset[n] = 3;
428 		offset[n++] = block / direct_blks;
429 		noffset[n] = 4 + offset[n - 1];
430 		offset[n] = block % direct_blks;
431 		level = 2;
432 		goto got;
433 	}
434 	block -= indirect_blks;
435 	if (block < indirect_blks) {
436 		offset[n++] = NODE_IND2_BLOCK;
437 		noffset[n] = 4 + dptrs_per_blk;
438 		offset[n++] = block / direct_blks;
439 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
440 		offset[n] = block % direct_blks;
441 		level = 2;
442 		goto got;
443 	}
444 	block -= indirect_blks;
445 	if (block < dindirect_blks) {
446 		offset[n++] = NODE_DIND_BLOCK;
447 		noffset[n] = 5 + (dptrs_per_blk * 2);
448 		offset[n++] = block / indirect_blks;
449 		noffset[n] = 6 + (dptrs_per_blk * 2) +
450 			      offset[n - 1] * (dptrs_per_blk + 1);
451 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
452 		noffset[n] = 7 + (dptrs_per_blk * 2) +
453 			      offset[n - 2] * (dptrs_per_blk + 1) +
454 			      offset[n - 1];
455 		offset[n] = block % direct_blks;
456 		level = 3;
457 		goto got;
458 	} else {
459 		BUG();
460 	}
461 got:
462 	return level;
463 }
464 
465 /*
466  * Caller should call f2fs_put_dnode(dn).
467  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
468  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
469  * In the case of RDONLY_NODE, we don't need to care about mutex.
470  */
471 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
472 {
473 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
474 	struct page *npage[4];
475 	struct page *parent;
476 	int offset[4];
477 	unsigned int noffset[4];
478 	nid_t nids[4];
479 	int level, i;
480 	int err = 0;
481 
482 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
483 
484 	nids[0] = dn->inode->i_ino;
485 	npage[0] = dn->inode_page;
486 
487 	if (!npage[0]) {
488 		npage[0] = get_node_page(sbi, nids[0]);
489 		if (IS_ERR(npage[0]))
490 			return PTR_ERR(npage[0]);
491 	}
492 	parent = npage[0];
493 	if (level != 0)
494 		nids[1] = get_nid(parent, offset[0], true);
495 	dn->inode_page = npage[0];
496 	dn->inode_page_locked = true;
497 
498 	/* get indirect or direct nodes */
499 	for (i = 1; i <= level; i++) {
500 		bool done = false;
501 
502 		if (!nids[i] && mode == ALLOC_NODE) {
503 			/* alloc new node */
504 			if (!alloc_nid(sbi, &(nids[i]))) {
505 				err = -ENOSPC;
506 				goto release_pages;
507 			}
508 
509 			dn->nid = nids[i];
510 			npage[i] = new_node_page(dn, noffset[i], NULL);
511 			if (IS_ERR(npage[i])) {
512 				alloc_nid_failed(sbi, nids[i]);
513 				err = PTR_ERR(npage[i]);
514 				goto release_pages;
515 			}
516 
517 			set_nid(parent, offset[i - 1], nids[i], i == 1);
518 			alloc_nid_done(sbi, nids[i]);
519 			done = true;
520 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
521 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
522 			if (IS_ERR(npage[i])) {
523 				err = PTR_ERR(npage[i]);
524 				goto release_pages;
525 			}
526 			done = true;
527 		}
528 		if (i == 1) {
529 			dn->inode_page_locked = false;
530 			unlock_page(parent);
531 		} else {
532 			f2fs_put_page(parent, 1);
533 		}
534 
535 		if (!done) {
536 			npage[i] = get_node_page(sbi, nids[i]);
537 			if (IS_ERR(npage[i])) {
538 				err = PTR_ERR(npage[i]);
539 				f2fs_put_page(npage[0], 0);
540 				goto release_out;
541 			}
542 		}
543 		if (i < level) {
544 			parent = npage[i];
545 			nids[i + 1] = get_nid(parent, offset[i], false);
546 		}
547 	}
548 	dn->nid = nids[level];
549 	dn->ofs_in_node = offset[level];
550 	dn->node_page = npage[level];
551 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
552 	return 0;
553 
554 release_pages:
555 	f2fs_put_page(parent, 1);
556 	if (i > 1)
557 		f2fs_put_page(npage[0], 0);
558 release_out:
559 	dn->inode_page = NULL;
560 	dn->node_page = NULL;
561 	return err;
562 }
563 
564 static void truncate_node(struct dnode_of_data *dn)
565 {
566 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
567 	struct node_info ni;
568 
569 	get_node_info(sbi, dn->nid, &ni);
570 	if (dn->inode->i_blocks == 0) {
571 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
572 		goto invalidate;
573 	}
574 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
575 
576 	/* Deallocate node address */
577 	invalidate_blocks(sbi, ni.blk_addr);
578 	dec_valid_node_count(sbi, dn->inode);
579 	set_node_addr(sbi, &ni, NULL_ADDR, false);
580 
581 	if (dn->nid == dn->inode->i_ino) {
582 		remove_orphan_inode(sbi, dn->nid);
583 		dec_valid_inode_count(sbi);
584 	} else {
585 		sync_inode_page(dn);
586 	}
587 invalidate:
588 	clear_node_page_dirty(dn->node_page);
589 	F2FS_SET_SB_DIRT(sbi);
590 
591 	f2fs_put_page(dn->node_page, 1);
592 
593 	invalidate_mapping_pages(NODE_MAPPING(sbi),
594 			dn->node_page->index, dn->node_page->index);
595 
596 	dn->node_page = NULL;
597 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
598 }
599 
600 static int truncate_dnode(struct dnode_of_data *dn)
601 {
602 	struct page *page;
603 
604 	if (dn->nid == 0)
605 		return 1;
606 
607 	/* get direct node */
608 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
609 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
610 		return 1;
611 	else if (IS_ERR(page))
612 		return PTR_ERR(page);
613 
614 	/* Make dnode_of_data for parameter */
615 	dn->node_page = page;
616 	dn->ofs_in_node = 0;
617 	truncate_data_blocks(dn);
618 	truncate_node(dn);
619 	return 1;
620 }
621 
622 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
623 						int ofs, int depth)
624 {
625 	struct dnode_of_data rdn = *dn;
626 	struct page *page;
627 	struct f2fs_node *rn;
628 	nid_t child_nid;
629 	unsigned int child_nofs;
630 	int freed = 0;
631 	int i, ret;
632 
633 	if (dn->nid == 0)
634 		return NIDS_PER_BLOCK + 1;
635 
636 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
637 
638 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
639 	if (IS_ERR(page)) {
640 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
641 		return PTR_ERR(page);
642 	}
643 
644 	rn = F2FS_NODE(page);
645 	if (depth < 3) {
646 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
647 			child_nid = le32_to_cpu(rn->in.nid[i]);
648 			if (child_nid == 0)
649 				continue;
650 			rdn.nid = child_nid;
651 			ret = truncate_dnode(&rdn);
652 			if (ret < 0)
653 				goto out_err;
654 			set_nid(page, i, 0, false);
655 		}
656 	} else {
657 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
658 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
659 			child_nid = le32_to_cpu(rn->in.nid[i]);
660 			if (child_nid == 0) {
661 				child_nofs += NIDS_PER_BLOCK + 1;
662 				continue;
663 			}
664 			rdn.nid = child_nid;
665 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
666 			if (ret == (NIDS_PER_BLOCK + 1)) {
667 				set_nid(page, i, 0, false);
668 				child_nofs += ret;
669 			} else if (ret < 0 && ret != -ENOENT) {
670 				goto out_err;
671 			}
672 		}
673 		freed = child_nofs;
674 	}
675 
676 	if (!ofs) {
677 		/* remove current indirect node */
678 		dn->node_page = page;
679 		truncate_node(dn);
680 		freed++;
681 	} else {
682 		f2fs_put_page(page, 1);
683 	}
684 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
685 	return freed;
686 
687 out_err:
688 	f2fs_put_page(page, 1);
689 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
690 	return ret;
691 }
692 
693 static int truncate_partial_nodes(struct dnode_of_data *dn,
694 			struct f2fs_inode *ri, int *offset, int depth)
695 {
696 	struct page *pages[2];
697 	nid_t nid[3];
698 	nid_t child_nid;
699 	int err = 0;
700 	int i;
701 	int idx = depth - 2;
702 
703 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
704 	if (!nid[0])
705 		return 0;
706 
707 	/* get indirect nodes in the path */
708 	for (i = 0; i < idx + 1; i++) {
709 		/* reference count'll be increased */
710 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
711 		if (IS_ERR(pages[i])) {
712 			err = PTR_ERR(pages[i]);
713 			idx = i - 1;
714 			goto fail;
715 		}
716 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
717 	}
718 
719 	/* free direct nodes linked to a partial indirect node */
720 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
721 		child_nid = get_nid(pages[idx], i, false);
722 		if (!child_nid)
723 			continue;
724 		dn->nid = child_nid;
725 		err = truncate_dnode(dn);
726 		if (err < 0)
727 			goto fail;
728 		set_nid(pages[idx], i, 0, false);
729 	}
730 
731 	if (offset[idx + 1] == 0) {
732 		dn->node_page = pages[idx];
733 		dn->nid = nid[idx];
734 		truncate_node(dn);
735 	} else {
736 		f2fs_put_page(pages[idx], 1);
737 	}
738 	offset[idx]++;
739 	offset[idx + 1] = 0;
740 	idx--;
741 fail:
742 	for (i = idx; i >= 0; i--)
743 		f2fs_put_page(pages[i], 1);
744 
745 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
746 
747 	return err;
748 }
749 
750 /*
751  * All the block addresses of data and nodes should be nullified.
752  */
753 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
754 {
755 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
756 	int err = 0, cont = 1;
757 	int level, offset[4], noffset[4];
758 	unsigned int nofs = 0;
759 	struct f2fs_inode *ri;
760 	struct dnode_of_data dn;
761 	struct page *page;
762 
763 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
764 
765 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
766 restart:
767 	page = get_node_page(sbi, inode->i_ino);
768 	if (IS_ERR(page)) {
769 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
770 		return PTR_ERR(page);
771 	}
772 
773 	set_new_dnode(&dn, inode, page, NULL, 0);
774 	unlock_page(page);
775 
776 	ri = F2FS_INODE(page);
777 	switch (level) {
778 	case 0:
779 	case 1:
780 		nofs = noffset[1];
781 		break;
782 	case 2:
783 		nofs = noffset[1];
784 		if (!offset[level - 1])
785 			goto skip_partial;
786 		err = truncate_partial_nodes(&dn, ri, offset, level);
787 		if (err < 0 && err != -ENOENT)
788 			goto fail;
789 		nofs += 1 + NIDS_PER_BLOCK;
790 		break;
791 	case 3:
792 		nofs = 5 + 2 * NIDS_PER_BLOCK;
793 		if (!offset[level - 1])
794 			goto skip_partial;
795 		err = truncate_partial_nodes(&dn, ri, offset, level);
796 		if (err < 0 && err != -ENOENT)
797 			goto fail;
798 		break;
799 	default:
800 		BUG();
801 	}
802 
803 skip_partial:
804 	while (cont) {
805 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
806 		switch (offset[0]) {
807 		case NODE_DIR1_BLOCK:
808 		case NODE_DIR2_BLOCK:
809 			err = truncate_dnode(&dn);
810 			break;
811 
812 		case NODE_IND1_BLOCK:
813 		case NODE_IND2_BLOCK:
814 			err = truncate_nodes(&dn, nofs, offset[1], 2);
815 			break;
816 
817 		case NODE_DIND_BLOCK:
818 			err = truncate_nodes(&dn, nofs, offset[1], 3);
819 			cont = 0;
820 			break;
821 
822 		default:
823 			BUG();
824 		}
825 		if (err < 0 && err != -ENOENT)
826 			goto fail;
827 		if (offset[1] == 0 &&
828 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
829 			lock_page(page);
830 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
831 				f2fs_put_page(page, 1);
832 				goto restart;
833 			}
834 			f2fs_wait_on_page_writeback(page, NODE);
835 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
836 			set_page_dirty(page);
837 			unlock_page(page);
838 		}
839 		offset[1] = 0;
840 		offset[0]++;
841 		nofs += err;
842 	}
843 fail:
844 	f2fs_put_page(page, 0);
845 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
846 	return err > 0 ? 0 : err;
847 }
848 
849 int truncate_xattr_node(struct inode *inode, struct page *page)
850 {
851 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
852 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
853 	struct dnode_of_data dn;
854 	struct page *npage;
855 
856 	if (!nid)
857 		return 0;
858 
859 	npage = get_node_page(sbi, nid);
860 	if (IS_ERR(npage))
861 		return PTR_ERR(npage);
862 
863 	F2FS_I(inode)->i_xattr_nid = 0;
864 
865 	/* need to do checkpoint during fsync */
866 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
867 
868 	set_new_dnode(&dn, inode, page, npage, nid);
869 
870 	if (page)
871 		dn.inode_page_locked = true;
872 	truncate_node(&dn);
873 	return 0;
874 }
875 
876 /*
877  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
878  * f2fs_unlock_op().
879  */
880 void remove_inode_page(struct inode *inode)
881 {
882 	struct dnode_of_data dn;
883 
884 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
885 	if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
886 		return;
887 
888 	if (truncate_xattr_node(inode, dn.inode_page)) {
889 		f2fs_put_dnode(&dn);
890 		return;
891 	}
892 
893 	/* remove potential inline_data blocks */
894 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
895 				S_ISLNK(inode->i_mode))
896 		truncate_data_blocks_range(&dn, 1);
897 
898 	/* 0 is possible, after f2fs_new_inode() has failed */
899 	f2fs_bug_on(F2FS_I_SB(inode),
900 			inode->i_blocks != 0 && inode->i_blocks != 1);
901 
902 	/* will put inode & node pages */
903 	truncate_node(&dn);
904 }
905 
906 struct page *new_inode_page(struct inode *inode)
907 {
908 	struct dnode_of_data dn;
909 
910 	/* allocate inode page for new inode */
911 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
912 
913 	/* caller should f2fs_put_page(page, 1); */
914 	return new_node_page(&dn, 0, NULL);
915 }
916 
917 struct page *new_node_page(struct dnode_of_data *dn,
918 				unsigned int ofs, struct page *ipage)
919 {
920 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
921 	struct node_info old_ni, new_ni;
922 	struct page *page;
923 	int err;
924 
925 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
926 		return ERR_PTR(-EPERM);
927 
928 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
929 	if (!page)
930 		return ERR_PTR(-ENOMEM);
931 
932 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
933 		err = -ENOSPC;
934 		goto fail;
935 	}
936 
937 	get_node_info(sbi, dn->nid, &old_ni);
938 
939 	/* Reinitialize old_ni with new node page */
940 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
941 	new_ni = old_ni;
942 	new_ni.ino = dn->inode->i_ino;
943 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
944 
945 	f2fs_wait_on_page_writeback(page, NODE);
946 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
947 	set_cold_node(dn->inode, page);
948 	SetPageUptodate(page);
949 	set_page_dirty(page);
950 
951 	if (f2fs_has_xattr_block(ofs))
952 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
953 
954 	dn->node_page = page;
955 	if (ipage)
956 		update_inode(dn->inode, ipage);
957 	else
958 		sync_inode_page(dn);
959 	if (ofs == 0)
960 		inc_valid_inode_count(sbi);
961 
962 	return page;
963 
964 fail:
965 	clear_node_page_dirty(page);
966 	f2fs_put_page(page, 1);
967 	return ERR_PTR(err);
968 }
969 
970 /*
971  * Caller should do after getting the following values.
972  * 0: f2fs_put_page(page, 0)
973  * LOCKED_PAGE: f2fs_put_page(page, 1)
974  * error: nothing
975  */
976 static int read_node_page(struct page *page, int rw)
977 {
978 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
979 	struct node_info ni;
980 
981 	get_node_info(sbi, page->index, &ni);
982 
983 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
984 		f2fs_put_page(page, 1);
985 		return -ENOENT;
986 	}
987 
988 	if (PageUptodate(page))
989 		return LOCKED_PAGE;
990 
991 	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
992 }
993 
994 /*
995  * Readahead a node page
996  */
997 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
998 {
999 	struct page *apage;
1000 	int err;
1001 
1002 	apage = find_get_page(NODE_MAPPING(sbi), nid);
1003 	if (apage && PageUptodate(apage)) {
1004 		f2fs_put_page(apage, 0);
1005 		return;
1006 	}
1007 	f2fs_put_page(apage, 0);
1008 
1009 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1010 	if (!apage)
1011 		return;
1012 
1013 	err = read_node_page(apage, READA);
1014 	if (err == 0)
1015 		f2fs_put_page(apage, 0);
1016 	else if (err == LOCKED_PAGE)
1017 		f2fs_put_page(apage, 1);
1018 }
1019 
1020 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1021 {
1022 	struct page *page;
1023 	int err;
1024 repeat:
1025 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1026 	if (!page)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	err = read_node_page(page, READ_SYNC);
1030 	if (err < 0)
1031 		return ERR_PTR(err);
1032 	else if (err == LOCKED_PAGE)
1033 		goto got_it;
1034 
1035 	lock_page(page);
1036 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1037 		f2fs_put_page(page, 1);
1038 		return ERR_PTR(-EIO);
1039 	}
1040 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1041 		f2fs_put_page(page, 1);
1042 		goto repeat;
1043 	}
1044 got_it:
1045 	return page;
1046 }
1047 
1048 /*
1049  * Return a locked page for the desired node page.
1050  * And, readahead MAX_RA_NODE number of node pages.
1051  */
1052 struct page *get_node_page_ra(struct page *parent, int start)
1053 {
1054 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1055 	struct blk_plug plug;
1056 	struct page *page;
1057 	int err, i, end;
1058 	nid_t nid;
1059 
1060 	/* First, try getting the desired direct node. */
1061 	nid = get_nid(parent, start, false);
1062 	if (!nid)
1063 		return ERR_PTR(-ENOENT);
1064 repeat:
1065 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1066 	if (!page)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	err = read_node_page(page, READ_SYNC);
1070 	if (err < 0)
1071 		return ERR_PTR(err);
1072 	else if (err == LOCKED_PAGE)
1073 		goto page_hit;
1074 
1075 	blk_start_plug(&plug);
1076 
1077 	/* Then, try readahead for siblings of the desired node */
1078 	end = start + MAX_RA_NODE;
1079 	end = min(end, NIDS_PER_BLOCK);
1080 	for (i = start + 1; i < end; i++) {
1081 		nid = get_nid(parent, i, false);
1082 		if (!nid)
1083 			continue;
1084 		ra_node_page(sbi, nid);
1085 	}
1086 
1087 	blk_finish_plug(&plug);
1088 
1089 	lock_page(page);
1090 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1091 		f2fs_put_page(page, 1);
1092 		goto repeat;
1093 	}
1094 page_hit:
1095 	if (unlikely(!PageUptodate(page))) {
1096 		f2fs_put_page(page, 1);
1097 		return ERR_PTR(-EIO);
1098 	}
1099 	return page;
1100 }
1101 
1102 void sync_inode_page(struct dnode_of_data *dn)
1103 {
1104 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1105 		update_inode(dn->inode, dn->node_page);
1106 	} else if (dn->inode_page) {
1107 		if (!dn->inode_page_locked)
1108 			lock_page(dn->inode_page);
1109 		update_inode(dn->inode, dn->inode_page);
1110 		if (!dn->inode_page_locked)
1111 			unlock_page(dn->inode_page);
1112 	} else {
1113 		update_inode_page(dn->inode);
1114 	}
1115 }
1116 
1117 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1118 					struct writeback_control *wbc)
1119 {
1120 	pgoff_t index, end;
1121 	struct pagevec pvec;
1122 	int step = ino ? 2 : 0;
1123 	int nwritten = 0, wrote = 0;
1124 
1125 	pagevec_init(&pvec, 0);
1126 
1127 next_step:
1128 	index = 0;
1129 	end = LONG_MAX;
1130 
1131 	while (index <= end) {
1132 		int i, nr_pages;
1133 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1134 				PAGECACHE_TAG_DIRTY,
1135 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1136 		if (nr_pages == 0)
1137 			break;
1138 
1139 		for (i = 0; i < nr_pages; i++) {
1140 			struct page *page = pvec.pages[i];
1141 
1142 			/*
1143 			 * flushing sequence with step:
1144 			 * 0. indirect nodes
1145 			 * 1. dentry dnodes
1146 			 * 2. file dnodes
1147 			 */
1148 			if (step == 0 && IS_DNODE(page))
1149 				continue;
1150 			if (step == 1 && (!IS_DNODE(page) ||
1151 						is_cold_node(page)))
1152 				continue;
1153 			if (step == 2 && (!IS_DNODE(page) ||
1154 						!is_cold_node(page)))
1155 				continue;
1156 
1157 			/*
1158 			 * If an fsync mode,
1159 			 * we should not skip writing node pages.
1160 			 */
1161 			if (ino && ino_of_node(page) == ino)
1162 				lock_page(page);
1163 			else if (!trylock_page(page))
1164 				continue;
1165 
1166 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1167 continue_unlock:
1168 				unlock_page(page);
1169 				continue;
1170 			}
1171 			if (ino && ino_of_node(page) != ino)
1172 				goto continue_unlock;
1173 
1174 			if (!PageDirty(page)) {
1175 				/* someone wrote it for us */
1176 				goto continue_unlock;
1177 			}
1178 
1179 			if (!clear_page_dirty_for_io(page))
1180 				goto continue_unlock;
1181 
1182 			/* called by fsync() */
1183 			if (ino && IS_DNODE(page)) {
1184 				set_fsync_mark(page, 1);
1185 				if (IS_INODE(page)) {
1186 					if (!is_checkpointed_node(sbi, ino) &&
1187 						!has_fsynced_inode(sbi, ino))
1188 						set_dentry_mark(page, 1);
1189 					else
1190 						set_dentry_mark(page, 0);
1191 				}
1192 				nwritten++;
1193 			} else {
1194 				set_fsync_mark(page, 0);
1195 				set_dentry_mark(page, 0);
1196 			}
1197 
1198 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1199 				unlock_page(page);
1200 			else
1201 				wrote++;
1202 
1203 			if (--wbc->nr_to_write == 0)
1204 				break;
1205 		}
1206 		pagevec_release(&pvec);
1207 		cond_resched();
1208 
1209 		if (wbc->nr_to_write == 0) {
1210 			step = 2;
1211 			break;
1212 		}
1213 	}
1214 
1215 	if (step < 2) {
1216 		step++;
1217 		goto next_step;
1218 	}
1219 
1220 	if (wrote)
1221 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1222 	return nwritten;
1223 }
1224 
1225 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1226 {
1227 	pgoff_t index = 0, end = LONG_MAX;
1228 	struct pagevec pvec;
1229 	int ret2 = 0, ret = 0;
1230 
1231 	pagevec_init(&pvec, 0);
1232 
1233 	while (index <= end) {
1234 		int i, nr_pages;
1235 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1236 				PAGECACHE_TAG_WRITEBACK,
1237 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1238 		if (nr_pages == 0)
1239 			break;
1240 
1241 		for (i = 0; i < nr_pages; i++) {
1242 			struct page *page = pvec.pages[i];
1243 
1244 			/* until radix tree lookup accepts end_index */
1245 			if (unlikely(page->index > end))
1246 				continue;
1247 
1248 			if (ino && ino_of_node(page) == ino) {
1249 				f2fs_wait_on_page_writeback(page, NODE);
1250 				if (TestClearPageError(page))
1251 					ret = -EIO;
1252 			}
1253 		}
1254 		pagevec_release(&pvec);
1255 		cond_resched();
1256 	}
1257 
1258 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1259 		ret2 = -ENOSPC;
1260 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1261 		ret2 = -EIO;
1262 	if (!ret)
1263 		ret = ret2;
1264 	return ret;
1265 }
1266 
1267 static int f2fs_write_node_page(struct page *page,
1268 				struct writeback_control *wbc)
1269 {
1270 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1271 	nid_t nid;
1272 	block_t new_addr;
1273 	struct node_info ni;
1274 	struct f2fs_io_info fio = {
1275 		.type = NODE,
1276 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1277 	};
1278 
1279 	trace_f2fs_writepage(page, NODE);
1280 
1281 	if (unlikely(sbi->por_doing))
1282 		goto redirty_out;
1283 	if (unlikely(f2fs_cp_error(sbi)))
1284 		goto redirty_out;
1285 
1286 	f2fs_wait_on_page_writeback(page, NODE);
1287 
1288 	/* get old block addr of this node page */
1289 	nid = nid_of_node(page);
1290 	f2fs_bug_on(sbi, page->index != nid);
1291 
1292 	get_node_info(sbi, nid, &ni);
1293 
1294 	/* This page is already truncated */
1295 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1296 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1297 		unlock_page(page);
1298 		return 0;
1299 	}
1300 
1301 	if (wbc->for_reclaim)
1302 		goto redirty_out;
1303 
1304 	down_read(&sbi->node_write);
1305 	set_page_writeback(page);
1306 	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1307 	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1308 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1309 	up_read(&sbi->node_write);
1310 	unlock_page(page);
1311 	return 0;
1312 
1313 redirty_out:
1314 	redirty_page_for_writepage(wbc, page);
1315 	return AOP_WRITEPAGE_ACTIVATE;
1316 }
1317 
1318 static int f2fs_write_node_pages(struct address_space *mapping,
1319 			    struct writeback_control *wbc)
1320 {
1321 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1322 	long diff;
1323 
1324 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1325 
1326 	/* balancing f2fs's metadata in background */
1327 	f2fs_balance_fs_bg(sbi);
1328 
1329 	/* collect a number of dirty node pages and write together */
1330 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1331 		goto skip_write;
1332 
1333 	diff = nr_pages_to_write(sbi, NODE, wbc);
1334 	wbc->sync_mode = WB_SYNC_NONE;
1335 	sync_node_pages(sbi, 0, wbc);
1336 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1337 	return 0;
1338 
1339 skip_write:
1340 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1341 	return 0;
1342 }
1343 
1344 static int f2fs_set_node_page_dirty(struct page *page)
1345 {
1346 	trace_f2fs_set_page_dirty(page, NODE);
1347 
1348 	SetPageUptodate(page);
1349 	if (!PageDirty(page)) {
1350 		__set_page_dirty_nobuffers(page);
1351 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1352 		SetPagePrivate(page);
1353 		return 1;
1354 	}
1355 	return 0;
1356 }
1357 
1358 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1359 				      unsigned int length)
1360 {
1361 	struct inode *inode = page->mapping->host;
1362 	if (PageDirty(page))
1363 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1364 	ClearPagePrivate(page);
1365 }
1366 
1367 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1368 {
1369 	ClearPagePrivate(page);
1370 	return 1;
1371 }
1372 
1373 /*
1374  * Structure of the f2fs node operations
1375  */
1376 const struct address_space_operations f2fs_node_aops = {
1377 	.writepage	= f2fs_write_node_page,
1378 	.writepages	= f2fs_write_node_pages,
1379 	.set_page_dirty	= f2fs_set_node_page_dirty,
1380 	.invalidatepage	= f2fs_invalidate_node_page,
1381 	.releasepage	= f2fs_release_node_page,
1382 };
1383 
1384 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1385 						nid_t n)
1386 {
1387 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1388 }
1389 
1390 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1391 						struct free_nid *i)
1392 {
1393 	list_del(&i->list);
1394 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1395 }
1396 
1397 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1398 {
1399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1400 	struct free_nid *i;
1401 	struct nat_entry *ne;
1402 	bool allocated = false;
1403 
1404 	if (!available_free_memory(sbi, FREE_NIDS))
1405 		return -1;
1406 
1407 	/* 0 nid should not be used */
1408 	if (unlikely(nid == 0))
1409 		return 0;
1410 
1411 	if (build) {
1412 		/* do not add allocated nids */
1413 		read_lock(&nm_i->nat_tree_lock);
1414 		ne = __lookup_nat_cache(nm_i, nid);
1415 		if (ne &&
1416 			(!get_nat_flag(ne, IS_CHECKPOINTED) ||
1417 				nat_get_blkaddr(ne) != NULL_ADDR))
1418 			allocated = true;
1419 		read_unlock(&nm_i->nat_tree_lock);
1420 		if (allocated)
1421 			return 0;
1422 	}
1423 
1424 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1425 	i->nid = nid;
1426 	i->state = NID_NEW;
1427 
1428 	spin_lock(&nm_i->free_nid_list_lock);
1429 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1430 		spin_unlock(&nm_i->free_nid_list_lock);
1431 		kmem_cache_free(free_nid_slab, i);
1432 		return 0;
1433 	}
1434 	list_add_tail(&i->list, &nm_i->free_nid_list);
1435 	nm_i->fcnt++;
1436 	spin_unlock(&nm_i->free_nid_list_lock);
1437 	return 1;
1438 }
1439 
1440 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1441 {
1442 	struct free_nid *i;
1443 	bool need_free = false;
1444 
1445 	spin_lock(&nm_i->free_nid_list_lock);
1446 	i = __lookup_free_nid_list(nm_i, nid);
1447 	if (i && i->state == NID_NEW) {
1448 		__del_from_free_nid_list(nm_i, i);
1449 		nm_i->fcnt--;
1450 		need_free = true;
1451 	}
1452 	spin_unlock(&nm_i->free_nid_list_lock);
1453 
1454 	if (need_free)
1455 		kmem_cache_free(free_nid_slab, i);
1456 }
1457 
1458 static void scan_nat_page(struct f2fs_sb_info *sbi,
1459 			struct page *nat_page, nid_t start_nid)
1460 {
1461 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1462 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1463 	block_t blk_addr;
1464 	int i;
1465 
1466 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1467 
1468 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1469 
1470 		if (unlikely(start_nid >= nm_i->max_nid))
1471 			break;
1472 
1473 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1474 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1475 		if (blk_addr == NULL_ADDR) {
1476 			if (add_free_nid(sbi, start_nid, true) < 0)
1477 				break;
1478 		}
1479 	}
1480 }
1481 
1482 static void build_free_nids(struct f2fs_sb_info *sbi)
1483 {
1484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1485 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1486 	struct f2fs_summary_block *sum = curseg->sum_blk;
1487 	int i = 0;
1488 	nid_t nid = nm_i->next_scan_nid;
1489 
1490 	/* Enough entries */
1491 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1492 		return;
1493 
1494 	/* readahead nat pages to be scanned */
1495 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1496 
1497 	while (1) {
1498 		struct page *page = get_current_nat_page(sbi, nid);
1499 
1500 		scan_nat_page(sbi, page, nid);
1501 		f2fs_put_page(page, 1);
1502 
1503 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1504 		if (unlikely(nid >= nm_i->max_nid))
1505 			nid = 0;
1506 
1507 		if (i++ == FREE_NID_PAGES)
1508 			break;
1509 	}
1510 
1511 	/* go to the next free nat pages to find free nids abundantly */
1512 	nm_i->next_scan_nid = nid;
1513 
1514 	/* find free nids from current sum_pages */
1515 	mutex_lock(&curseg->curseg_mutex);
1516 	for (i = 0; i < nats_in_cursum(sum); i++) {
1517 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1518 		nid = le32_to_cpu(nid_in_journal(sum, i));
1519 		if (addr == NULL_ADDR)
1520 			add_free_nid(sbi, nid, true);
1521 		else
1522 			remove_free_nid(nm_i, nid);
1523 	}
1524 	mutex_unlock(&curseg->curseg_mutex);
1525 }
1526 
1527 /*
1528  * If this function returns success, caller can obtain a new nid
1529  * from second parameter of this function.
1530  * The returned nid could be used ino as well as nid when inode is created.
1531  */
1532 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1533 {
1534 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1535 	struct free_nid *i = NULL;
1536 retry:
1537 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1538 		return false;
1539 
1540 	spin_lock(&nm_i->free_nid_list_lock);
1541 
1542 	/* We should not use stale free nids created by build_free_nids */
1543 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1544 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1545 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1546 			if (i->state == NID_NEW)
1547 				break;
1548 
1549 		f2fs_bug_on(sbi, i->state != NID_NEW);
1550 		*nid = i->nid;
1551 		i->state = NID_ALLOC;
1552 		nm_i->fcnt--;
1553 		spin_unlock(&nm_i->free_nid_list_lock);
1554 		return true;
1555 	}
1556 	spin_unlock(&nm_i->free_nid_list_lock);
1557 
1558 	/* Let's scan nat pages and its caches to get free nids */
1559 	mutex_lock(&nm_i->build_lock);
1560 	build_free_nids(sbi);
1561 	mutex_unlock(&nm_i->build_lock);
1562 	goto retry;
1563 }
1564 
1565 /*
1566  * alloc_nid() should be called prior to this function.
1567  */
1568 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1569 {
1570 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1571 	struct free_nid *i;
1572 
1573 	spin_lock(&nm_i->free_nid_list_lock);
1574 	i = __lookup_free_nid_list(nm_i, nid);
1575 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1576 	__del_from_free_nid_list(nm_i, i);
1577 	spin_unlock(&nm_i->free_nid_list_lock);
1578 
1579 	kmem_cache_free(free_nid_slab, i);
1580 }
1581 
1582 /*
1583  * alloc_nid() should be called prior to this function.
1584  */
1585 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1586 {
1587 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1588 	struct free_nid *i;
1589 	bool need_free = false;
1590 
1591 	if (!nid)
1592 		return;
1593 
1594 	spin_lock(&nm_i->free_nid_list_lock);
1595 	i = __lookup_free_nid_list(nm_i, nid);
1596 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1597 	if (!available_free_memory(sbi, FREE_NIDS)) {
1598 		__del_from_free_nid_list(nm_i, i);
1599 		need_free = true;
1600 	} else {
1601 		i->state = NID_NEW;
1602 		nm_i->fcnt++;
1603 	}
1604 	spin_unlock(&nm_i->free_nid_list_lock);
1605 
1606 	if (need_free)
1607 		kmem_cache_free(free_nid_slab, i);
1608 }
1609 
1610 void recover_inline_xattr(struct inode *inode, struct page *page)
1611 {
1612 	void *src_addr, *dst_addr;
1613 	size_t inline_size;
1614 	struct page *ipage;
1615 	struct f2fs_inode *ri;
1616 
1617 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1618 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1619 
1620 	ri = F2FS_INODE(page);
1621 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1622 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1623 		goto update_inode;
1624 	}
1625 
1626 	dst_addr = inline_xattr_addr(ipage);
1627 	src_addr = inline_xattr_addr(page);
1628 	inline_size = inline_xattr_size(inode);
1629 
1630 	f2fs_wait_on_page_writeback(ipage, NODE);
1631 	memcpy(dst_addr, src_addr, inline_size);
1632 update_inode:
1633 	update_inode(inode, ipage);
1634 	f2fs_put_page(ipage, 1);
1635 }
1636 
1637 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1638 {
1639 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1640 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1641 	nid_t new_xnid = nid_of_node(page);
1642 	struct node_info ni;
1643 
1644 	/* 1: invalidate the previous xattr nid */
1645 	if (!prev_xnid)
1646 		goto recover_xnid;
1647 
1648 	/* Deallocate node address */
1649 	get_node_info(sbi, prev_xnid, &ni);
1650 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1651 	invalidate_blocks(sbi, ni.blk_addr);
1652 	dec_valid_node_count(sbi, inode);
1653 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1654 
1655 recover_xnid:
1656 	/* 2: allocate new xattr nid */
1657 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1658 		f2fs_bug_on(sbi, 1);
1659 
1660 	remove_free_nid(NM_I(sbi), new_xnid);
1661 	get_node_info(sbi, new_xnid, &ni);
1662 	ni.ino = inode->i_ino;
1663 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1664 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1665 
1666 	/* 3: update xattr blkaddr */
1667 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1668 	set_node_addr(sbi, &ni, blkaddr, false);
1669 
1670 	update_inode_page(inode);
1671 }
1672 
1673 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1674 {
1675 	struct f2fs_inode *src, *dst;
1676 	nid_t ino = ino_of_node(page);
1677 	struct node_info old_ni, new_ni;
1678 	struct page *ipage;
1679 
1680 	get_node_info(sbi, ino, &old_ni);
1681 
1682 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1683 		return -EINVAL;
1684 
1685 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1686 	if (!ipage)
1687 		return -ENOMEM;
1688 
1689 	/* Should not use this inode from free nid list */
1690 	remove_free_nid(NM_I(sbi), ino);
1691 
1692 	SetPageUptodate(ipage);
1693 	fill_node_footer(ipage, ino, ino, 0, true);
1694 
1695 	src = F2FS_INODE(page);
1696 	dst = F2FS_INODE(ipage);
1697 
1698 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1699 	dst->i_size = 0;
1700 	dst->i_blocks = cpu_to_le64(1);
1701 	dst->i_links = cpu_to_le32(1);
1702 	dst->i_xattr_nid = 0;
1703 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1704 
1705 	new_ni = old_ni;
1706 	new_ni.ino = ino;
1707 
1708 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1709 		WARN_ON(1);
1710 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1711 	inc_valid_inode_count(sbi);
1712 	set_page_dirty(ipage);
1713 	f2fs_put_page(ipage, 1);
1714 	return 0;
1715 }
1716 
1717 /*
1718  * ra_sum_pages() merge contiguous pages into one bio and submit.
1719  * these pre-read pages are allocated in bd_inode's mapping tree.
1720  */
1721 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1722 				int start, int nrpages)
1723 {
1724 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1725 	struct address_space *mapping = inode->i_mapping;
1726 	int i, page_idx = start;
1727 	struct f2fs_io_info fio = {
1728 		.type = META,
1729 		.rw = READ_SYNC | REQ_META | REQ_PRIO
1730 	};
1731 
1732 	for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1733 		/* alloc page in bd_inode for reading node summary info */
1734 		pages[i] = grab_cache_page(mapping, page_idx);
1735 		if (!pages[i])
1736 			break;
1737 		f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1738 	}
1739 
1740 	f2fs_submit_merged_bio(sbi, META, READ);
1741 	return i;
1742 }
1743 
1744 int restore_node_summary(struct f2fs_sb_info *sbi,
1745 			unsigned int segno, struct f2fs_summary_block *sum)
1746 {
1747 	struct f2fs_node *rn;
1748 	struct f2fs_summary *sum_entry;
1749 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1750 	block_t addr;
1751 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1752 	struct page *pages[bio_blocks];
1753 	int i, idx, last_offset, nrpages, err = 0;
1754 
1755 	/* scan the node segment */
1756 	last_offset = sbi->blocks_per_seg;
1757 	addr = START_BLOCK(sbi, segno);
1758 	sum_entry = &sum->entries[0];
1759 
1760 	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1761 		nrpages = min(last_offset - i, bio_blocks);
1762 
1763 		/* readahead node pages */
1764 		nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1765 		if (!nrpages)
1766 			return -ENOMEM;
1767 
1768 		for (idx = 0; idx < nrpages; idx++) {
1769 			if (err)
1770 				goto skip;
1771 
1772 			lock_page(pages[idx]);
1773 			if (unlikely(!PageUptodate(pages[idx]))) {
1774 				err = -EIO;
1775 			} else {
1776 				rn = F2FS_NODE(pages[idx]);
1777 				sum_entry->nid = rn->footer.nid;
1778 				sum_entry->version = 0;
1779 				sum_entry->ofs_in_node = 0;
1780 				sum_entry++;
1781 			}
1782 			unlock_page(pages[idx]);
1783 skip:
1784 			page_cache_release(pages[idx]);
1785 		}
1786 
1787 		invalidate_mapping_pages(inode->i_mapping, addr,
1788 							addr + nrpages);
1789 	}
1790 	return err;
1791 }
1792 
1793 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1794 {
1795 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1796 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1797 	struct f2fs_summary_block *sum = curseg->sum_blk;
1798 	int i;
1799 
1800 	mutex_lock(&curseg->curseg_mutex);
1801 	for (i = 0; i < nats_in_cursum(sum); i++) {
1802 		struct nat_entry *ne;
1803 		struct f2fs_nat_entry raw_ne;
1804 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1805 
1806 		raw_ne = nat_in_journal(sum, i);
1807 retry:
1808 		write_lock(&nm_i->nat_tree_lock);
1809 		ne = __lookup_nat_cache(nm_i, nid);
1810 		if (ne)
1811 			goto found;
1812 
1813 		ne = grab_nat_entry(nm_i, nid);
1814 		if (!ne) {
1815 			write_unlock(&nm_i->nat_tree_lock);
1816 			goto retry;
1817 		}
1818 		node_info_from_raw_nat(&ne->ni, &raw_ne);
1819 found:
1820 		__set_nat_cache_dirty(nm_i, ne);
1821 		write_unlock(&nm_i->nat_tree_lock);
1822 	}
1823 	update_nats_in_cursum(sum, -i);
1824 	mutex_unlock(&curseg->curseg_mutex);
1825 }
1826 
1827 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1828 						struct list_head *head, int max)
1829 {
1830 	struct nat_entry_set *cur;
1831 
1832 	if (nes->entry_cnt >= max)
1833 		goto add_out;
1834 
1835 	list_for_each_entry(cur, head, set_list) {
1836 		if (cur->entry_cnt >= nes->entry_cnt) {
1837 			list_add(&nes->set_list, cur->set_list.prev);
1838 			return;
1839 		}
1840 	}
1841 add_out:
1842 	list_add_tail(&nes->set_list, head);
1843 }
1844 
1845 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1846 					struct nat_entry_set *set)
1847 {
1848 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1849 	struct f2fs_summary_block *sum = curseg->sum_blk;
1850 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1851 	bool to_journal = true;
1852 	struct f2fs_nat_block *nat_blk;
1853 	struct nat_entry *ne, *cur;
1854 	struct page *page = NULL;
1855 
1856 	/*
1857 	 * there are two steps to flush nat entries:
1858 	 * #1, flush nat entries to journal in current hot data summary block.
1859 	 * #2, flush nat entries to nat page.
1860 	 */
1861 	if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1862 		to_journal = false;
1863 
1864 	if (to_journal) {
1865 		mutex_lock(&curseg->curseg_mutex);
1866 	} else {
1867 		page = get_next_nat_page(sbi, start_nid);
1868 		nat_blk = page_address(page);
1869 		f2fs_bug_on(sbi, !nat_blk);
1870 	}
1871 
1872 	/* flush dirty nats in nat entry set */
1873 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1874 		struct f2fs_nat_entry *raw_ne;
1875 		nid_t nid = nat_get_nid(ne);
1876 		int offset;
1877 
1878 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1879 			continue;
1880 
1881 		if (to_journal) {
1882 			offset = lookup_journal_in_cursum(sum,
1883 							NAT_JOURNAL, nid, 1);
1884 			f2fs_bug_on(sbi, offset < 0);
1885 			raw_ne = &nat_in_journal(sum, offset);
1886 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1887 		} else {
1888 			raw_ne = &nat_blk->entries[nid - start_nid];
1889 		}
1890 		raw_nat_from_node_info(raw_ne, &ne->ni);
1891 
1892 		write_lock(&NM_I(sbi)->nat_tree_lock);
1893 		nat_reset_flag(ne);
1894 		__clear_nat_cache_dirty(NM_I(sbi), ne);
1895 		write_unlock(&NM_I(sbi)->nat_tree_lock);
1896 
1897 		if (nat_get_blkaddr(ne) == NULL_ADDR)
1898 			add_free_nid(sbi, nid, false);
1899 	}
1900 
1901 	if (to_journal)
1902 		mutex_unlock(&curseg->curseg_mutex);
1903 	else
1904 		f2fs_put_page(page, 1);
1905 
1906 	if (!set->entry_cnt) {
1907 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1908 		kmem_cache_free(nat_entry_set_slab, set);
1909 	}
1910 }
1911 
1912 /*
1913  * This function is called during the checkpointing process.
1914  */
1915 void flush_nat_entries(struct f2fs_sb_info *sbi)
1916 {
1917 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1918 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1919 	struct f2fs_summary_block *sum = curseg->sum_blk;
1920 	struct nat_entry_set *setvec[NATVEC_SIZE];
1921 	struct nat_entry_set *set, *tmp;
1922 	unsigned int found;
1923 	nid_t set_idx = 0;
1924 	LIST_HEAD(sets);
1925 
1926 	/*
1927 	 * if there are no enough space in journal to store dirty nat
1928 	 * entries, remove all entries from journal and merge them
1929 	 * into nat entry set.
1930 	 */
1931 	if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1932 		remove_nats_in_journal(sbi);
1933 
1934 	if (!nm_i->dirty_nat_cnt)
1935 		return;
1936 
1937 	while ((found = __gang_lookup_nat_set(nm_i,
1938 					set_idx, NATVEC_SIZE, setvec))) {
1939 		unsigned idx;
1940 		set_idx = setvec[found - 1]->set + 1;
1941 		for (idx = 0; idx < found; idx++)
1942 			__adjust_nat_entry_set(setvec[idx], &sets,
1943 							MAX_NAT_JENTRIES(sum));
1944 	}
1945 
1946 	/* flush dirty nats in nat entry set */
1947 	list_for_each_entry_safe(set, tmp, &sets, set_list)
1948 		__flush_nat_entry_set(sbi, set);
1949 
1950 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1951 }
1952 
1953 static int init_node_manager(struct f2fs_sb_info *sbi)
1954 {
1955 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1956 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1957 	unsigned char *version_bitmap;
1958 	unsigned int nat_segs, nat_blocks;
1959 
1960 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1961 
1962 	/* segment_count_nat includes pair segment so divide to 2. */
1963 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1964 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1965 
1966 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1967 
1968 	/* not used nids: 0, node, meta, (and root counted as valid node) */
1969 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1970 	nm_i->fcnt = 0;
1971 	nm_i->nat_cnt = 0;
1972 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1973 
1974 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1975 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1976 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1977 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_ATOMIC);
1978 	INIT_LIST_HEAD(&nm_i->nat_entries);
1979 
1980 	mutex_init(&nm_i->build_lock);
1981 	spin_lock_init(&nm_i->free_nid_list_lock);
1982 	rwlock_init(&nm_i->nat_tree_lock);
1983 
1984 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1985 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1986 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1987 	if (!version_bitmap)
1988 		return -EFAULT;
1989 
1990 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1991 					GFP_KERNEL);
1992 	if (!nm_i->nat_bitmap)
1993 		return -ENOMEM;
1994 	return 0;
1995 }
1996 
1997 int build_node_manager(struct f2fs_sb_info *sbi)
1998 {
1999 	int err;
2000 
2001 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2002 	if (!sbi->nm_info)
2003 		return -ENOMEM;
2004 
2005 	err = init_node_manager(sbi);
2006 	if (err)
2007 		return err;
2008 
2009 	build_free_nids(sbi);
2010 	return 0;
2011 }
2012 
2013 void destroy_node_manager(struct f2fs_sb_info *sbi)
2014 {
2015 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2016 	struct free_nid *i, *next_i;
2017 	struct nat_entry *natvec[NATVEC_SIZE];
2018 	nid_t nid = 0;
2019 	unsigned int found;
2020 
2021 	if (!nm_i)
2022 		return;
2023 
2024 	/* destroy free nid list */
2025 	spin_lock(&nm_i->free_nid_list_lock);
2026 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2027 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2028 		__del_from_free_nid_list(nm_i, i);
2029 		nm_i->fcnt--;
2030 		spin_unlock(&nm_i->free_nid_list_lock);
2031 		kmem_cache_free(free_nid_slab, i);
2032 		spin_lock(&nm_i->free_nid_list_lock);
2033 	}
2034 	f2fs_bug_on(sbi, nm_i->fcnt);
2035 	spin_unlock(&nm_i->free_nid_list_lock);
2036 
2037 	/* destroy nat cache */
2038 	write_lock(&nm_i->nat_tree_lock);
2039 	while ((found = __gang_lookup_nat_cache(nm_i,
2040 					nid, NATVEC_SIZE, natvec))) {
2041 		unsigned idx;
2042 		nid = nat_get_nid(natvec[found - 1]) + 1;
2043 		for (idx = 0; idx < found; idx++)
2044 			__del_from_nat_cache(nm_i, natvec[idx]);
2045 	}
2046 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2047 	write_unlock(&nm_i->nat_tree_lock);
2048 
2049 	kfree(nm_i->nat_bitmap);
2050 	sbi->nm_info = NULL;
2051 	kfree(nm_i);
2052 }
2053 
2054 int __init create_node_manager_caches(void)
2055 {
2056 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2057 			sizeof(struct nat_entry));
2058 	if (!nat_entry_slab)
2059 		goto fail;
2060 
2061 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2062 			sizeof(struct free_nid));
2063 	if (!free_nid_slab)
2064 		goto destory_nat_entry;
2065 
2066 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2067 			sizeof(struct nat_entry_set));
2068 	if (!nat_entry_set_slab)
2069 		goto destory_free_nid;
2070 	return 0;
2071 
2072 destory_free_nid:
2073 	kmem_cache_destroy(free_nid_slab);
2074 destory_nat_entry:
2075 	kmem_cache_destroy(nat_entry_slab);
2076 fail:
2077 	return -ENOMEM;
2078 }
2079 
2080 void destroy_node_manager_caches(void)
2081 {
2082 	kmem_cache_destroy(nat_entry_set_slab);
2083 	kmem_cache_destroy(free_nid_slab);
2084 	kmem_cache_destroy(nat_entry_slab);
2085 }
2086