xref: /openbmc/linux/fs/f2fs/node.c (revision d2999e1b)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25 
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 
29 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
30 {
31 	struct f2fs_nm_info *nm_i = NM_I(sbi);
32 	struct sysinfo val;
33 	unsigned long mem_size = 0;
34 	bool res = false;
35 
36 	si_meminfo(&val);
37 	/* give 25%, 25%, 50% memory for each components respectively */
38 	if (type == FREE_NIDS) {
39 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
40 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
41 	} else if (type == NAT_ENTRIES) {
42 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
43 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
44 	} else if (type == DIRTY_DENTS) {
45 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
46 		res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
47 	}
48 	return res;
49 }
50 
51 static void clear_node_page_dirty(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
55 	unsigned int long flags;
56 
57 	if (PageDirty(page)) {
58 		spin_lock_irqsave(&mapping->tree_lock, flags);
59 		radix_tree_tag_clear(&mapping->page_tree,
60 				page_index(page),
61 				PAGECACHE_TAG_DIRTY);
62 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
63 
64 		clear_page_dirty_for_io(page);
65 		dec_page_count(sbi, F2FS_DIRTY_NODES);
66 	}
67 	ClearPageUptodate(page);
68 }
69 
70 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72 	pgoff_t index = current_nat_addr(sbi, nid);
73 	return get_meta_page(sbi, index);
74 }
75 
76 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
77 {
78 	struct page *src_page;
79 	struct page *dst_page;
80 	pgoff_t src_off;
81 	pgoff_t dst_off;
82 	void *src_addr;
83 	void *dst_addr;
84 	struct f2fs_nm_info *nm_i = NM_I(sbi);
85 
86 	src_off = current_nat_addr(sbi, nid);
87 	dst_off = next_nat_addr(sbi, src_off);
88 
89 	/* get current nat block page with lock */
90 	src_page = get_meta_page(sbi, src_off);
91 
92 	/* Dirty src_page means that it is already the new target NAT page. */
93 	if (PageDirty(src_page))
94 		return src_page;
95 
96 	dst_page = grab_meta_page(sbi, dst_off);
97 
98 	src_addr = page_address(src_page);
99 	dst_addr = page_address(dst_page);
100 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
101 	set_page_dirty(dst_page);
102 	f2fs_put_page(src_page, 1);
103 
104 	set_to_next_nat(nm_i, nid);
105 
106 	return dst_page;
107 }
108 
109 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
110 {
111 	return radix_tree_lookup(&nm_i->nat_root, n);
112 }
113 
114 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
115 		nid_t start, unsigned int nr, struct nat_entry **ep)
116 {
117 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
118 }
119 
120 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
121 {
122 	list_del(&e->list);
123 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
124 	nm_i->nat_cnt--;
125 	kmem_cache_free(nat_entry_slab, e);
126 }
127 
128 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130 	struct f2fs_nm_info *nm_i = NM_I(sbi);
131 	struct nat_entry *e;
132 	int is_cp = 1;
133 
134 	read_lock(&nm_i->nat_tree_lock);
135 	e = __lookup_nat_cache(nm_i, nid);
136 	if (e && !e->checkpointed)
137 		is_cp = 0;
138 	read_unlock(&nm_i->nat_tree_lock);
139 	return is_cp;
140 }
141 
142 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
143 {
144 	struct f2fs_nm_info *nm_i = NM_I(sbi);
145 	struct nat_entry *e;
146 	bool fsync_done = false;
147 
148 	read_lock(&nm_i->nat_tree_lock);
149 	e = __lookup_nat_cache(nm_i, nid);
150 	if (e)
151 		fsync_done = e->fsync_done;
152 	read_unlock(&nm_i->nat_tree_lock);
153 	return fsync_done;
154 }
155 
156 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
157 {
158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
159 	struct nat_entry *e;
160 
161 	write_lock(&nm_i->nat_tree_lock);
162 	e = __lookup_nat_cache(nm_i, nid);
163 	if (e)
164 		e->fsync_done = false;
165 	write_unlock(&nm_i->nat_tree_lock);
166 }
167 
168 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
169 {
170 	struct nat_entry *new;
171 
172 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
173 	if (!new)
174 		return NULL;
175 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
176 		kmem_cache_free(nat_entry_slab, new);
177 		return NULL;
178 	}
179 	memset(new, 0, sizeof(struct nat_entry));
180 	nat_set_nid(new, nid);
181 	new->checkpointed = true;
182 	list_add_tail(&new->list, &nm_i->nat_entries);
183 	nm_i->nat_cnt++;
184 	return new;
185 }
186 
187 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
188 						struct f2fs_nat_entry *ne)
189 {
190 	struct nat_entry *e;
191 retry:
192 	write_lock(&nm_i->nat_tree_lock);
193 	e = __lookup_nat_cache(nm_i, nid);
194 	if (!e) {
195 		e = grab_nat_entry(nm_i, nid);
196 		if (!e) {
197 			write_unlock(&nm_i->nat_tree_lock);
198 			goto retry;
199 		}
200 		node_info_from_raw_nat(&e->ni, ne);
201 	}
202 	write_unlock(&nm_i->nat_tree_lock);
203 }
204 
205 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
206 			block_t new_blkaddr, bool fsync_done)
207 {
208 	struct f2fs_nm_info *nm_i = NM_I(sbi);
209 	struct nat_entry *e;
210 retry:
211 	write_lock(&nm_i->nat_tree_lock);
212 	e = __lookup_nat_cache(nm_i, ni->nid);
213 	if (!e) {
214 		e = grab_nat_entry(nm_i, ni->nid);
215 		if (!e) {
216 			write_unlock(&nm_i->nat_tree_lock);
217 			goto retry;
218 		}
219 		e->ni = *ni;
220 		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
221 	} else if (new_blkaddr == NEW_ADDR) {
222 		/*
223 		 * when nid is reallocated,
224 		 * previous nat entry can be remained in nat cache.
225 		 * So, reinitialize it with new information.
226 		 */
227 		e->ni = *ni;
228 		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
229 	}
230 
231 	/* sanity check */
232 	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
233 	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
234 			new_blkaddr == NULL_ADDR);
235 	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
236 			new_blkaddr == NEW_ADDR);
237 	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
238 			nat_get_blkaddr(e) != NULL_ADDR &&
239 			new_blkaddr == NEW_ADDR);
240 
241 	/* increament version no as node is removed */
242 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
243 		unsigned char version = nat_get_version(e);
244 		nat_set_version(e, inc_node_version(version));
245 	}
246 
247 	/* change address */
248 	nat_set_blkaddr(e, new_blkaddr);
249 	__set_nat_cache_dirty(nm_i, e);
250 
251 	/* update fsync_mark if its inode nat entry is still alive */
252 	e = __lookup_nat_cache(nm_i, ni->ino);
253 	if (e)
254 		e->fsync_done = fsync_done;
255 	write_unlock(&nm_i->nat_tree_lock);
256 }
257 
258 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
259 {
260 	struct f2fs_nm_info *nm_i = NM_I(sbi);
261 
262 	if (available_free_memory(sbi, NAT_ENTRIES))
263 		return 0;
264 
265 	write_lock(&nm_i->nat_tree_lock);
266 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
267 		struct nat_entry *ne;
268 		ne = list_first_entry(&nm_i->nat_entries,
269 					struct nat_entry, list);
270 		__del_from_nat_cache(nm_i, ne);
271 		nr_shrink--;
272 	}
273 	write_unlock(&nm_i->nat_tree_lock);
274 	return nr_shrink;
275 }
276 
277 /*
278  * This function returns always success
279  */
280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
281 {
282 	struct f2fs_nm_info *nm_i = NM_I(sbi);
283 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
284 	struct f2fs_summary_block *sum = curseg->sum_blk;
285 	nid_t start_nid = START_NID(nid);
286 	struct f2fs_nat_block *nat_blk;
287 	struct page *page = NULL;
288 	struct f2fs_nat_entry ne;
289 	struct nat_entry *e;
290 	int i;
291 
292 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
293 	ni->nid = nid;
294 
295 	/* Check nat cache */
296 	read_lock(&nm_i->nat_tree_lock);
297 	e = __lookup_nat_cache(nm_i, nid);
298 	if (e) {
299 		ni->ino = nat_get_ino(e);
300 		ni->blk_addr = nat_get_blkaddr(e);
301 		ni->version = nat_get_version(e);
302 	}
303 	read_unlock(&nm_i->nat_tree_lock);
304 	if (e)
305 		return;
306 
307 	/* Check current segment summary */
308 	mutex_lock(&curseg->curseg_mutex);
309 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
310 	if (i >= 0) {
311 		ne = nat_in_journal(sum, i);
312 		node_info_from_raw_nat(ni, &ne);
313 	}
314 	mutex_unlock(&curseg->curseg_mutex);
315 	if (i >= 0)
316 		goto cache;
317 
318 	/* Fill node_info from nat page */
319 	page = get_current_nat_page(sbi, start_nid);
320 	nat_blk = (struct f2fs_nat_block *)page_address(page);
321 	ne = nat_blk->entries[nid - start_nid];
322 	node_info_from_raw_nat(ni, &ne);
323 	f2fs_put_page(page, 1);
324 cache:
325 	/* cache nat entry */
326 	cache_nat_entry(NM_I(sbi), nid, &ne);
327 }
328 
329 /*
330  * The maximum depth is four.
331  * Offset[0] will have raw inode offset.
332  */
333 static int get_node_path(struct f2fs_inode_info *fi, long block,
334 				int offset[4], unsigned int noffset[4])
335 {
336 	const long direct_index = ADDRS_PER_INODE(fi);
337 	const long direct_blks = ADDRS_PER_BLOCK;
338 	const long dptrs_per_blk = NIDS_PER_BLOCK;
339 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
340 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
341 	int n = 0;
342 	int level = 0;
343 
344 	noffset[0] = 0;
345 
346 	if (block < direct_index) {
347 		offset[n] = block;
348 		goto got;
349 	}
350 	block -= direct_index;
351 	if (block < direct_blks) {
352 		offset[n++] = NODE_DIR1_BLOCK;
353 		noffset[n] = 1;
354 		offset[n] = block;
355 		level = 1;
356 		goto got;
357 	}
358 	block -= direct_blks;
359 	if (block < direct_blks) {
360 		offset[n++] = NODE_DIR2_BLOCK;
361 		noffset[n] = 2;
362 		offset[n] = block;
363 		level = 1;
364 		goto got;
365 	}
366 	block -= direct_blks;
367 	if (block < indirect_blks) {
368 		offset[n++] = NODE_IND1_BLOCK;
369 		noffset[n] = 3;
370 		offset[n++] = block / direct_blks;
371 		noffset[n] = 4 + offset[n - 1];
372 		offset[n] = block % direct_blks;
373 		level = 2;
374 		goto got;
375 	}
376 	block -= indirect_blks;
377 	if (block < indirect_blks) {
378 		offset[n++] = NODE_IND2_BLOCK;
379 		noffset[n] = 4 + dptrs_per_blk;
380 		offset[n++] = block / direct_blks;
381 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
382 		offset[n] = block % direct_blks;
383 		level = 2;
384 		goto got;
385 	}
386 	block -= indirect_blks;
387 	if (block < dindirect_blks) {
388 		offset[n++] = NODE_DIND_BLOCK;
389 		noffset[n] = 5 + (dptrs_per_blk * 2);
390 		offset[n++] = block / indirect_blks;
391 		noffset[n] = 6 + (dptrs_per_blk * 2) +
392 			      offset[n - 1] * (dptrs_per_blk + 1);
393 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
394 		noffset[n] = 7 + (dptrs_per_blk * 2) +
395 			      offset[n - 2] * (dptrs_per_blk + 1) +
396 			      offset[n - 1];
397 		offset[n] = block % direct_blks;
398 		level = 3;
399 		goto got;
400 	} else {
401 		BUG();
402 	}
403 got:
404 	return level;
405 }
406 
407 /*
408  * Caller should call f2fs_put_dnode(dn).
409  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
410  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
411  * In the case of RDONLY_NODE, we don't need to care about mutex.
412  */
413 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
414 {
415 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
416 	struct page *npage[4];
417 	struct page *parent;
418 	int offset[4];
419 	unsigned int noffset[4];
420 	nid_t nids[4];
421 	int level, i;
422 	int err = 0;
423 
424 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
425 
426 	nids[0] = dn->inode->i_ino;
427 	npage[0] = dn->inode_page;
428 
429 	if (!npage[0]) {
430 		npage[0] = get_node_page(sbi, nids[0]);
431 		if (IS_ERR(npage[0]))
432 			return PTR_ERR(npage[0]);
433 	}
434 	parent = npage[0];
435 	if (level != 0)
436 		nids[1] = get_nid(parent, offset[0], true);
437 	dn->inode_page = npage[0];
438 	dn->inode_page_locked = true;
439 
440 	/* get indirect or direct nodes */
441 	for (i = 1; i <= level; i++) {
442 		bool done = false;
443 
444 		if (!nids[i] && mode == ALLOC_NODE) {
445 			/* alloc new node */
446 			if (!alloc_nid(sbi, &(nids[i]))) {
447 				err = -ENOSPC;
448 				goto release_pages;
449 			}
450 
451 			dn->nid = nids[i];
452 			npage[i] = new_node_page(dn, noffset[i], NULL);
453 			if (IS_ERR(npage[i])) {
454 				alloc_nid_failed(sbi, nids[i]);
455 				err = PTR_ERR(npage[i]);
456 				goto release_pages;
457 			}
458 
459 			set_nid(parent, offset[i - 1], nids[i], i == 1);
460 			alloc_nid_done(sbi, nids[i]);
461 			done = true;
462 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
463 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
464 			if (IS_ERR(npage[i])) {
465 				err = PTR_ERR(npage[i]);
466 				goto release_pages;
467 			}
468 			done = true;
469 		}
470 		if (i == 1) {
471 			dn->inode_page_locked = false;
472 			unlock_page(parent);
473 		} else {
474 			f2fs_put_page(parent, 1);
475 		}
476 
477 		if (!done) {
478 			npage[i] = get_node_page(sbi, nids[i]);
479 			if (IS_ERR(npage[i])) {
480 				err = PTR_ERR(npage[i]);
481 				f2fs_put_page(npage[0], 0);
482 				goto release_out;
483 			}
484 		}
485 		if (i < level) {
486 			parent = npage[i];
487 			nids[i + 1] = get_nid(parent, offset[i], false);
488 		}
489 	}
490 	dn->nid = nids[level];
491 	dn->ofs_in_node = offset[level];
492 	dn->node_page = npage[level];
493 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
494 	return 0;
495 
496 release_pages:
497 	f2fs_put_page(parent, 1);
498 	if (i > 1)
499 		f2fs_put_page(npage[0], 0);
500 release_out:
501 	dn->inode_page = NULL;
502 	dn->node_page = NULL;
503 	return err;
504 }
505 
506 static void truncate_node(struct dnode_of_data *dn)
507 {
508 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
509 	struct node_info ni;
510 
511 	get_node_info(sbi, dn->nid, &ni);
512 	if (dn->inode->i_blocks == 0) {
513 		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
514 		goto invalidate;
515 	}
516 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
517 
518 	/* Deallocate node address */
519 	invalidate_blocks(sbi, ni.blk_addr);
520 	dec_valid_node_count(sbi, dn->inode);
521 	set_node_addr(sbi, &ni, NULL_ADDR, false);
522 
523 	if (dn->nid == dn->inode->i_ino) {
524 		remove_orphan_inode(sbi, dn->nid);
525 		dec_valid_inode_count(sbi);
526 	} else {
527 		sync_inode_page(dn);
528 	}
529 invalidate:
530 	clear_node_page_dirty(dn->node_page);
531 	F2FS_SET_SB_DIRT(sbi);
532 
533 	f2fs_put_page(dn->node_page, 1);
534 
535 	invalidate_mapping_pages(NODE_MAPPING(sbi),
536 			dn->node_page->index, dn->node_page->index);
537 
538 	dn->node_page = NULL;
539 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
540 }
541 
542 static int truncate_dnode(struct dnode_of_data *dn)
543 {
544 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
545 	struct page *page;
546 
547 	if (dn->nid == 0)
548 		return 1;
549 
550 	/* get direct node */
551 	page = get_node_page(sbi, dn->nid);
552 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
553 		return 1;
554 	else if (IS_ERR(page))
555 		return PTR_ERR(page);
556 
557 	/* Make dnode_of_data for parameter */
558 	dn->node_page = page;
559 	dn->ofs_in_node = 0;
560 	truncate_data_blocks(dn);
561 	truncate_node(dn);
562 	return 1;
563 }
564 
565 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
566 						int ofs, int depth)
567 {
568 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
569 	struct dnode_of_data rdn = *dn;
570 	struct page *page;
571 	struct f2fs_node *rn;
572 	nid_t child_nid;
573 	unsigned int child_nofs;
574 	int freed = 0;
575 	int i, ret;
576 
577 	if (dn->nid == 0)
578 		return NIDS_PER_BLOCK + 1;
579 
580 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
581 
582 	page = get_node_page(sbi, dn->nid);
583 	if (IS_ERR(page)) {
584 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
585 		return PTR_ERR(page);
586 	}
587 
588 	rn = F2FS_NODE(page);
589 	if (depth < 3) {
590 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
591 			child_nid = le32_to_cpu(rn->in.nid[i]);
592 			if (child_nid == 0)
593 				continue;
594 			rdn.nid = child_nid;
595 			ret = truncate_dnode(&rdn);
596 			if (ret < 0)
597 				goto out_err;
598 			set_nid(page, i, 0, false);
599 		}
600 	} else {
601 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
602 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
603 			child_nid = le32_to_cpu(rn->in.nid[i]);
604 			if (child_nid == 0) {
605 				child_nofs += NIDS_PER_BLOCK + 1;
606 				continue;
607 			}
608 			rdn.nid = child_nid;
609 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
610 			if (ret == (NIDS_PER_BLOCK + 1)) {
611 				set_nid(page, i, 0, false);
612 				child_nofs += ret;
613 			} else if (ret < 0 && ret != -ENOENT) {
614 				goto out_err;
615 			}
616 		}
617 		freed = child_nofs;
618 	}
619 
620 	if (!ofs) {
621 		/* remove current indirect node */
622 		dn->node_page = page;
623 		truncate_node(dn);
624 		freed++;
625 	} else {
626 		f2fs_put_page(page, 1);
627 	}
628 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
629 	return freed;
630 
631 out_err:
632 	f2fs_put_page(page, 1);
633 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
634 	return ret;
635 }
636 
637 static int truncate_partial_nodes(struct dnode_of_data *dn,
638 			struct f2fs_inode *ri, int *offset, int depth)
639 {
640 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
641 	struct page *pages[2];
642 	nid_t nid[3];
643 	nid_t child_nid;
644 	int err = 0;
645 	int i;
646 	int idx = depth - 2;
647 
648 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
649 	if (!nid[0])
650 		return 0;
651 
652 	/* get indirect nodes in the path */
653 	for (i = 0; i < idx + 1; i++) {
654 		/* refernece count'll be increased */
655 		pages[i] = get_node_page(sbi, nid[i]);
656 		if (IS_ERR(pages[i])) {
657 			err = PTR_ERR(pages[i]);
658 			idx = i - 1;
659 			goto fail;
660 		}
661 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
662 	}
663 
664 	/* free direct nodes linked to a partial indirect node */
665 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
666 		child_nid = get_nid(pages[idx], i, false);
667 		if (!child_nid)
668 			continue;
669 		dn->nid = child_nid;
670 		err = truncate_dnode(dn);
671 		if (err < 0)
672 			goto fail;
673 		set_nid(pages[idx], i, 0, false);
674 	}
675 
676 	if (offset[idx + 1] == 0) {
677 		dn->node_page = pages[idx];
678 		dn->nid = nid[idx];
679 		truncate_node(dn);
680 	} else {
681 		f2fs_put_page(pages[idx], 1);
682 	}
683 	offset[idx]++;
684 	offset[idx + 1] = 0;
685 	idx--;
686 fail:
687 	for (i = idx; i >= 0; i--)
688 		f2fs_put_page(pages[i], 1);
689 
690 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
691 
692 	return err;
693 }
694 
695 /*
696  * All the block addresses of data and nodes should be nullified.
697  */
698 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
699 {
700 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
701 	int err = 0, cont = 1;
702 	int level, offset[4], noffset[4];
703 	unsigned int nofs = 0;
704 	struct f2fs_inode *ri;
705 	struct dnode_of_data dn;
706 	struct page *page;
707 
708 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
709 
710 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
711 restart:
712 	page = get_node_page(sbi, inode->i_ino);
713 	if (IS_ERR(page)) {
714 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
715 		return PTR_ERR(page);
716 	}
717 
718 	set_new_dnode(&dn, inode, page, NULL, 0);
719 	unlock_page(page);
720 
721 	ri = F2FS_INODE(page);
722 	switch (level) {
723 	case 0:
724 	case 1:
725 		nofs = noffset[1];
726 		break;
727 	case 2:
728 		nofs = noffset[1];
729 		if (!offset[level - 1])
730 			goto skip_partial;
731 		err = truncate_partial_nodes(&dn, ri, offset, level);
732 		if (err < 0 && err != -ENOENT)
733 			goto fail;
734 		nofs += 1 + NIDS_PER_BLOCK;
735 		break;
736 	case 3:
737 		nofs = 5 + 2 * NIDS_PER_BLOCK;
738 		if (!offset[level - 1])
739 			goto skip_partial;
740 		err = truncate_partial_nodes(&dn, ri, offset, level);
741 		if (err < 0 && err != -ENOENT)
742 			goto fail;
743 		break;
744 	default:
745 		BUG();
746 	}
747 
748 skip_partial:
749 	while (cont) {
750 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
751 		switch (offset[0]) {
752 		case NODE_DIR1_BLOCK:
753 		case NODE_DIR2_BLOCK:
754 			err = truncate_dnode(&dn);
755 			break;
756 
757 		case NODE_IND1_BLOCK:
758 		case NODE_IND2_BLOCK:
759 			err = truncate_nodes(&dn, nofs, offset[1], 2);
760 			break;
761 
762 		case NODE_DIND_BLOCK:
763 			err = truncate_nodes(&dn, nofs, offset[1], 3);
764 			cont = 0;
765 			break;
766 
767 		default:
768 			BUG();
769 		}
770 		if (err < 0 && err != -ENOENT)
771 			goto fail;
772 		if (offset[1] == 0 &&
773 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
774 			lock_page(page);
775 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
776 				f2fs_put_page(page, 1);
777 				goto restart;
778 			}
779 			f2fs_wait_on_page_writeback(page, NODE);
780 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
781 			set_page_dirty(page);
782 			unlock_page(page);
783 		}
784 		offset[1] = 0;
785 		offset[0]++;
786 		nofs += err;
787 	}
788 fail:
789 	f2fs_put_page(page, 0);
790 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
791 	return err > 0 ? 0 : err;
792 }
793 
794 int truncate_xattr_node(struct inode *inode, struct page *page)
795 {
796 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
797 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
798 	struct dnode_of_data dn;
799 	struct page *npage;
800 
801 	if (!nid)
802 		return 0;
803 
804 	npage = get_node_page(sbi, nid);
805 	if (IS_ERR(npage))
806 		return PTR_ERR(npage);
807 
808 	F2FS_I(inode)->i_xattr_nid = 0;
809 
810 	/* need to do checkpoint during fsync */
811 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
812 
813 	set_new_dnode(&dn, inode, page, npage, nid);
814 
815 	if (page)
816 		dn.inode_page_locked = true;
817 	truncate_node(&dn);
818 	return 0;
819 }
820 
821 /*
822  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
823  * f2fs_unlock_op().
824  */
825 void remove_inode_page(struct inode *inode)
826 {
827 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
828 	struct page *page;
829 	nid_t ino = inode->i_ino;
830 	struct dnode_of_data dn;
831 
832 	page = get_node_page(sbi, ino);
833 	if (IS_ERR(page))
834 		return;
835 
836 	if (truncate_xattr_node(inode, page)) {
837 		f2fs_put_page(page, 1);
838 		return;
839 	}
840 	/* 0 is possible, after f2fs_new_inode() is failed */
841 	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
842 	set_new_dnode(&dn, inode, page, page, ino);
843 	truncate_node(&dn);
844 }
845 
846 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
847 {
848 	struct dnode_of_data dn;
849 
850 	/* allocate inode page for new inode */
851 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
852 
853 	/* caller should f2fs_put_page(page, 1); */
854 	return new_node_page(&dn, 0, NULL);
855 }
856 
857 struct page *new_node_page(struct dnode_of_data *dn,
858 				unsigned int ofs, struct page *ipage)
859 {
860 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
861 	struct node_info old_ni, new_ni;
862 	struct page *page;
863 	int err;
864 
865 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
866 		return ERR_PTR(-EPERM);
867 
868 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
869 	if (!page)
870 		return ERR_PTR(-ENOMEM);
871 
872 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
873 		err = -ENOSPC;
874 		goto fail;
875 	}
876 
877 	get_node_info(sbi, dn->nid, &old_ni);
878 
879 	/* Reinitialize old_ni with new node page */
880 	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
881 	new_ni = old_ni;
882 	new_ni.ino = dn->inode->i_ino;
883 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
884 
885 	f2fs_wait_on_page_writeback(page, NODE);
886 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
887 	set_cold_node(dn->inode, page);
888 	SetPageUptodate(page);
889 	set_page_dirty(page);
890 
891 	if (f2fs_has_xattr_block(ofs))
892 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
893 
894 	dn->node_page = page;
895 	if (ipage)
896 		update_inode(dn->inode, ipage);
897 	else
898 		sync_inode_page(dn);
899 	if (ofs == 0)
900 		inc_valid_inode_count(sbi);
901 
902 	return page;
903 
904 fail:
905 	clear_node_page_dirty(page);
906 	f2fs_put_page(page, 1);
907 	return ERR_PTR(err);
908 }
909 
910 /*
911  * Caller should do after getting the following values.
912  * 0: f2fs_put_page(page, 0)
913  * LOCKED_PAGE: f2fs_put_page(page, 1)
914  * error: nothing
915  */
916 static int read_node_page(struct page *page, int rw)
917 {
918 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
919 	struct node_info ni;
920 
921 	get_node_info(sbi, page->index, &ni);
922 
923 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
924 		f2fs_put_page(page, 1);
925 		return -ENOENT;
926 	}
927 
928 	if (PageUptodate(page))
929 		return LOCKED_PAGE;
930 
931 	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
932 }
933 
934 /*
935  * Readahead a node page
936  */
937 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
938 {
939 	struct page *apage;
940 	int err;
941 
942 	apage = find_get_page(NODE_MAPPING(sbi), nid);
943 	if (apage && PageUptodate(apage)) {
944 		f2fs_put_page(apage, 0);
945 		return;
946 	}
947 	f2fs_put_page(apage, 0);
948 
949 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
950 	if (!apage)
951 		return;
952 
953 	err = read_node_page(apage, READA);
954 	if (err == 0)
955 		f2fs_put_page(apage, 0);
956 	else if (err == LOCKED_PAGE)
957 		f2fs_put_page(apage, 1);
958 }
959 
960 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
961 {
962 	struct page *page;
963 	int err;
964 repeat:
965 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
966 	if (!page)
967 		return ERR_PTR(-ENOMEM);
968 
969 	err = read_node_page(page, READ_SYNC);
970 	if (err < 0)
971 		return ERR_PTR(err);
972 	else if (err == LOCKED_PAGE)
973 		goto got_it;
974 
975 	lock_page(page);
976 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
977 		f2fs_put_page(page, 1);
978 		return ERR_PTR(-EIO);
979 	}
980 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
981 		f2fs_put_page(page, 1);
982 		goto repeat;
983 	}
984 got_it:
985 	return page;
986 }
987 
988 /*
989  * Return a locked page for the desired node page.
990  * And, readahead MAX_RA_NODE number of node pages.
991  */
992 struct page *get_node_page_ra(struct page *parent, int start)
993 {
994 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
995 	struct blk_plug plug;
996 	struct page *page;
997 	int err, i, end;
998 	nid_t nid;
999 
1000 	/* First, try getting the desired direct node. */
1001 	nid = get_nid(parent, start, false);
1002 	if (!nid)
1003 		return ERR_PTR(-ENOENT);
1004 repeat:
1005 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1006 	if (!page)
1007 		return ERR_PTR(-ENOMEM);
1008 
1009 	err = read_node_page(page, READ_SYNC);
1010 	if (err < 0)
1011 		return ERR_PTR(err);
1012 	else if (err == LOCKED_PAGE)
1013 		goto page_hit;
1014 
1015 	blk_start_plug(&plug);
1016 
1017 	/* Then, try readahead for siblings of the desired node */
1018 	end = start + MAX_RA_NODE;
1019 	end = min(end, NIDS_PER_BLOCK);
1020 	for (i = start + 1; i < end; i++) {
1021 		nid = get_nid(parent, i, false);
1022 		if (!nid)
1023 			continue;
1024 		ra_node_page(sbi, nid);
1025 	}
1026 
1027 	blk_finish_plug(&plug);
1028 
1029 	lock_page(page);
1030 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1031 		f2fs_put_page(page, 1);
1032 		goto repeat;
1033 	}
1034 page_hit:
1035 	if (unlikely(!PageUptodate(page))) {
1036 		f2fs_put_page(page, 1);
1037 		return ERR_PTR(-EIO);
1038 	}
1039 	return page;
1040 }
1041 
1042 void sync_inode_page(struct dnode_of_data *dn)
1043 {
1044 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1045 		update_inode(dn->inode, dn->node_page);
1046 	} else if (dn->inode_page) {
1047 		if (!dn->inode_page_locked)
1048 			lock_page(dn->inode_page);
1049 		update_inode(dn->inode, dn->inode_page);
1050 		if (!dn->inode_page_locked)
1051 			unlock_page(dn->inode_page);
1052 	} else {
1053 		update_inode_page(dn->inode);
1054 	}
1055 }
1056 
1057 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1058 					struct writeback_control *wbc)
1059 {
1060 	pgoff_t index, end;
1061 	struct pagevec pvec;
1062 	int step = ino ? 2 : 0;
1063 	int nwritten = 0, wrote = 0;
1064 
1065 	pagevec_init(&pvec, 0);
1066 
1067 next_step:
1068 	index = 0;
1069 	end = LONG_MAX;
1070 
1071 	while (index <= end) {
1072 		int i, nr_pages;
1073 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1074 				PAGECACHE_TAG_DIRTY,
1075 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1076 		if (nr_pages == 0)
1077 			break;
1078 
1079 		for (i = 0; i < nr_pages; i++) {
1080 			struct page *page = pvec.pages[i];
1081 
1082 			/*
1083 			 * flushing sequence with step:
1084 			 * 0. indirect nodes
1085 			 * 1. dentry dnodes
1086 			 * 2. file dnodes
1087 			 */
1088 			if (step == 0 && IS_DNODE(page))
1089 				continue;
1090 			if (step == 1 && (!IS_DNODE(page) ||
1091 						is_cold_node(page)))
1092 				continue;
1093 			if (step == 2 && (!IS_DNODE(page) ||
1094 						!is_cold_node(page)))
1095 				continue;
1096 
1097 			/*
1098 			 * If an fsync mode,
1099 			 * we should not skip writing node pages.
1100 			 */
1101 			if (ino && ino_of_node(page) == ino)
1102 				lock_page(page);
1103 			else if (!trylock_page(page))
1104 				continue;
1105 
1106 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1107 continue_unlock:
1108 				unlock_page(page);
1109 				continue;
1110 			}
1111 			if (ino && ino_of_node(page) != ino)
1112 				goto continue_unlock;
1113 
1114 			if (!PageDirty(page)) {
1115 				/* someone wrote it for us */
1116 				goto continue_unlock;
1117 			}
1118 
1119 			if (!clear_page_dirty_for_io(page))
1120 				goto continue_unlock;
1121 
1122 			/* called by fsync() */
1123 			if (ino && IS_DNODE(page)) {
1124 				int mark = !is_checkpointed_node(sbi, ino);
1125 				set_fsync_mark(page, 1);
1126 				if (IS_INODE(page))
1127 					set_dentry_mark(page, mark);
1128 				nwritten++;
1129 			} else {
1130 				set_fsync_mark(page, 0);
1131 				set_dentry_mark(page, 0);
1132 			}
1133 			NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1134 			wrote++;
1135 
1136 			if (--wbc->nr_to_write == 0)
1137 				break;
1138 		}
1139 		pagevec_release(&pvec);
1140 		cond_resched();
1141 
1142 		if (wbc->nr_to_write == 0) {
1143 			step = 2;
1144 			break;
1145 		}
1146 	}
1147 
1148 	if (step < 2) {
1149 		step++;
1150 		goto next_step;
1151 	}
1152 
1153 	if (wrote)
1154 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1155 	return nwritten;
1156 }
1157 
1158 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1159 {
1160 	pgoff_t index = 0, end = LONG_MAX;
1161 	struct pagevec pvec;
1162 	int ret2 = 0, ret = 0;
1163 
1164 	pagevec_init(&pvec, 0);
1165 
1166 	while (index <= end) {
1167 		int i, nr_pages;
1168 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1169 				PAGECACHE_TAG_WRITEBACK,
1170 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1171 		if (nr_pages == 0)
1172 			break;
1173 
1174 		for (i = 0; i < nr_pages; i++) {
1175 			struct page *page = pvec.pages[i];
1176 
1177 			/* until radix tree lookup accepts end_index */
1178 			if (unlikely(page->index > end))
1179 				continue;
1180 
1181 			if (ino && ino_of_node(page) == ino) {
1182 				f2fs_wait_on_page_writeback(page, NODE);
1183 				if (TestClearPageError(page))
1184 					ret = -EIO;
1185 			}
1186 		}
1187 		pagevec_release(&pvec);
1188 		cond_resched();
1189 	}
1190 
1191 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1192 		ret2 = -ENOSPC;
1193 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1194 		ret2 = -EIO;
1195 	if (!ret)
1196 		ret = ret2;
1197 	return ret;
1198 }
1199 
1200 static int f2fs_write_node_page(struct page *page,
1201 				struct writeback_control *wbc)
1202 {
1203 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1204 	nid_t nid;
1205 	block_t new_addr;
1206 	struct node_info ni;
1207 	struct f2fs_io_info fio = {
1208 		.type = NODE,
1209 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1210 	};
1211 
1212 	trace_f2fs_writepage(page, NODE);
1213 
1214 	if (unlikely(sbi->por_doing))
1215 		goto redirty_out;
1216 
1217 	f2fs_wait_on_page_writeback(page, NODE);
1218 
1219 	/* get old block addr of this node page */
1220 	nid = nid_of_node(page);
1221 	f2fs_bug_on(page->index != nid);
1222 
1223 	get_node_info(sbi, nid, &ni);
1224 
1225 	/* This page is already truncated */
1226 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1227 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1228 		unlock_page(page);
1229 		return 0;
1230 	}
1231 
1232 	if (wbc->for_reclaim)
1233 		goto redirty_out;
1234 
1235 	mutex_lock(&sbi->node_write);
1236 	set_page_writeback(page);
1237 	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1238 	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1239 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1240 	mutex_unlock(&sbi->node_write);
1241 	unlock_page(page);
1242 	return 0;
1243 
1244 redirty_out:
1245 	redirty_page_for_writepage(wbc, page);
1246 	return AOP_WRITEPAGE_ACTIVATE;
1247 }
1248 
1249 static int f2fs_write_node_pages(struct address_space *mapping,
1250 			    struct writeback_control *wbc)
1251 {
1252 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1253 	long diff;
1254 
1255 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1256 
1257 	/* balancing f2fs's metadata in background */
1258 	f2fs_balance_fs_bg(sbi);
1259 
1260 	/* collect a number of dirty node pages and write together */
1261 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1262 		goto skip_write;
1263 
1264 	diff = nr_pages_to_write(sbi, NODE, wbc);
1265 	wbc->sync_mode = WB_SYNC_NONE;
1266 	sync_node_pages(sbi, 0, wbc);
1267 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1268 	return 0;
1269 
1270 skip_write:
1271 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1272 	return 0;
1273 }
1274 
1275 static int f2fs_set_node_page_dirty(struct page *page)
1276 {
1277 	struct address_space *mapping = page->mapping;
1278 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1279 
1280 	trace_f2fs_set_page_dirty(page, NODE);
1281 
1282 	SetPageUptodate(page);
1283 	if (!PageDirty(page)) {
1284 		__set_page_dirty_nobuffers(page);
1285 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1286 		SetPagePrivate(page);
1287 		return 1;
1288 	}
1289 	return 0;
1290 }
1291 
1292 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1293 				      unsigned int length)
1294 {
1295 	struct inode *inode = page->mapping->host;
1296 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1297 	if (PageDirty(page))
1298 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1299 	ClearPagePrivate(page);
1300 }
1301 
1302 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1303 {
1304 	ClearPagePrivate(page);
1305 	return 1;
1306 }
1307 
1308 /*
1309  * Structure of the f2fs node operations
1310  */
1311 const struct address_space_operations f2fs_node_aops = {
1312 	.writepage	= f2fs_write_node_page,
1313 	.writepages	= f2fs_write_node_pages,
1314 	.set_page_dirty	= f2fs_set_node_page_dirty,
1315 	.invalidatepage	= f2fs_invalidate_node_page,
1316 	.releasepage	= f2fs_release_node_page,
1317 };
1318 
1319 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1320 						nid_t n)
1321 {
1322 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1323 }
1324 
1325 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1326 						struct free_nid *i)
1327 {
1328 	list_del(&i->list);
1329 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1330 }
1331 
1332 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1333 {
1334 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1335 	struct free_nid *i;
1336 	struct nat_entry *ne;
1337 	bool allocated = false;
1338 
1339 	if (!available_free_memory(sbi, FREE_NIDS))
1340 		return -1;
1341 
1342 	/* 0 nid should not be used */
1343 	if (unlikely(nid == 0))
1344 		return 0;
1345 
1346 	if (build) {
1347 		/* do not add allocated nids */
1348 		read_lock(&nm_i->nat_tree_lock);
1349 		ne = __lookup_nat_cache(nm_i, nid);
1350 		if (ne &&
1351 			(!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1352 			allocated = true;
1353 		read_unlock(&nm_i->nat_tree_lock);
1354 		if (allocated)
1355 			return 0;
1356 	}
1357 
1358 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1359 	i->nid = nid;
1360 	i->state = NID_NEW;
1361 
1362 	spin_lock(&nm_i->free_nid_list_lock);
1363 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1364 		spin_unlock(&nm_i->free_nid_list_lock);
1365 		kmem_cache_free(free_nid_slab, i);
1366 		return 0;
1367 	}
1368 	list_add_tail(&i->list, &nm_i->free_nid_list);
1369 	nm_i->fcnt++;
1370 	spin_unlock(&nm_i->free_nid_list_lock);
1371 	return 1;
1372 }
1373 
1374 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1375 {
1376 	struct free_nid *i;
1377 	bool need_free = false;
1378 
1379 	spin_lock(&nm_i->free_nid_list_lock);
1380 	i = __lookup_free_nid_list(nm_i, nid);
1381 	if (i && i->state == NID_NEW) {
1382 		__del_from_free_nid_list(nm_i, i);
1383 		nm_i->fcnt--;
1384 		need_free = true;
1385 	}
1386 	spin_unlock(&nm_i->free_nid_list_lock);
1387 
1388 	if (need_free)
1389 		kmem_cache_free(free_nid_slab, i);
1390 }
1391 
1392 static void scan_nat_page(struct f2fs_sb_info *sbi,
1393 			struct page *nat_page, nid_t start_nid)
1394 {
1395 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1396 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1397 	block_t blk_addr;
1398 	int i;
1399 
1400 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1401 
1402 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1403 
1404 		if (unlikely(start_nid >= nm_i->max_nid))
1405 			break;
1406 
1407 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1408 		f2fs_bug_on(blk_addr == NEW_ADDR);
1409 		if (blk_addr == NULL_ADDR) {
1410 			if (add_free_nid(sbi, start_nid, true) < 0)
1411 				break;
1412 		}
1413 	}
1414 }
1415 
1416 static void build_free_nids(struct f2fs_sb_info *sbi)
1417 {
1418 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1419 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1420 	struct f2fs_summary_block *sum = curseg->sum_blk;
1421 	int i = 0;
1422 	nid_t nid = nm_i->next_scan_nid;
1423 
1424 	/* Enough entries */
1425 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1426 		return;
1427 
1428 	/* readahead nat pages to be scanned */
1429 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1430 
1431 	while (1) {
1432 		struct page *page = get_current_nat_page(sbi, nid);
1433 
1434 		scan_nat_page(sbi, page, nid);
1435 		f2fs_put_page(page, 1);
1436 
1437 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1438 		if (unlikely(nid >= nm_i->max_nid))
1439 			nid = 0;
1440 
1441 		if (i++ == FREE_NID_PAGES)
1442 			break;
1443 	}
1444 
1445 	/* go to the next free nat pages to find free nids abundantly */
1446 	nm_i->next_scan_nid = nid;
1447 
1448 	/* find free nids from current sum_pages */
1449 	mutex_lock(&curseg->curseg_mutex);
1450 	for (i = 0; i < nats_in_cursum(sum); i++) {
1451 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1452 		nid = le32_to_cpu(nid_in_journal(sum, i));
1453 		if (addr == NULL_ADDR)
1454 			add_free_nid(sbi, nid, true);
1455 		else
1456 			remove_free_nid(nm_i, nid);
1457 	}
1458 	mutex_unlock(&curseg->curseg_mutex);
1459 }
1460 
1461 /*
1462  * If this function returns success, caller can obtain a new nid
1463  * from second parameter of this function.
1464  * The returned nid could be used ino as well as nid when inode is created.
1465  */
1466 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1467 {
1468 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1469 	struct free_nid *i = NULL;
1470 retry:
1471 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1472 		return false;
1473 
1474 	spin_lock(&nm_i->free_nid_list_lock);
1475 
1476 	/* We should not use stale free nids created by build_free_nids */
1477 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1478 		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1479 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1480 			if (i->state == NID_NEW)
1481 				break;
1482 
1483 		f2fs_bug_on(i->state != NID_NEW);
1484 		*nid = i->nid;
1485 		i->state = NID_ALLOC;
1486 		nm_i->fcnt--;
1487 		spin_unlock(&nm_i->free_nid_list_lock);
1488 		return true;
1489 	}
1490 	spin_unlock(&nm_i->free_nid_list_lock);
1491 
1492 	/* Let's scan nat pages and its caches to get free nids */
1493 	mutex_lock(&nm_i->build_lock);
1494 	build_free_nids(sbi);
1495 	mutex_unlock(&nm_i->build_lock);
1496 	goto retry;
1497 }
1498 
1499 /*
1500  * alloc_nid() should be called prior to this function.
1501  */
1502 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1503 {
1504 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1505 	struct free_nid *i;
1506 
1507 	spin_lock(&nm_i->free_nid_list_lock);
1508 	i = __lookup_free_nid_list(nm_i, nid);
1509 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1510 	__del_from_free_nid_list(nm_i, i);
1511 	spin_unlock(&nm_i->free_nid_list_lock);
1512 
1513 	kmem_cache_free(free_nid_slab, i);
1514 }
1515 
1516 /*
1517  * alloc_nid() should be called prior to this function.
1518  */
1519 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1520 {
1521 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1522 	struct free_nid *i;
1523 	bool need_free = false;
1524 
1525 	if (!nid)
1526 		return;
1527 
1528 	spin_lock(&nm_i->free_nid_list_lock);
1529 	i = __lookup_free_nid_list(nm_i, nid);
1530 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1531 	if (!available_free_memory(sbi, FREE_NIDS)) {
1532 		__del_from_free_nid_list(nm_i, i);
1533 		need_free = true;
1534 	} else {
1535 		i->state = NID_NEW;
1536 		nm_i->fcnt++;
1537 	}
1538 	spin_unlock(&nm_i->free_nid_list_lock);
1539 
1540 	if (need_free)
1541 		kmem_cache_free(free_nid_slab, i);
1542 }
1543 
1544 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1545 		struct f2fs_summary *sum, struct node_info *ni,
1546 		block_t new_blkaddr)
1547 {
1548 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1549 	set_node_addr(sbi, ni, new_blkaddr, false);
1550 	clear_node_page_dirty(page);
1551 }
1552 
1553 static void recover_inline_xattr(struct inode *inode, struct page *page)
1554 {
1555 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1556 	void *src_addr, *dst_addr;
1557 	size_t inline_size;
1558 	struct page *ipage;
1559 	struct f2fs_inode *ri;
1560 
1561 	if (!f2fs_has_inline_xattr(inode))
1562 		return;
1563 
1564 	if (!IS_INODE(page))
1565 		return;
1566 
1567 	ri = F2FS_INODE(page);
1568 	if (!(ri->i_inline & F2FS_INLINE_XATTR))
1569 		return;
1570 
1571 	ipage = get_node_page(sbi, inode->i_ino);
1572 	f2fs_bug_on(IS_ERR(ipage));
1573 
1574 	dst_addr = inline_xattr_addr(ipage);
1575 	src_addr = inline_xattr_addr(page);
1576 	inline_size = inline_xattr_size(inode);
1577 
1578 	f2fs_wait_on_page_writeback(ipage, NODE);
1579 	memcpy(dst_addr, src_addr, inline_size);
1580 
1581 	update_inode(inode, ipage);
1582 	f2fs_put_page(ipage, 1);
1583 }
1584 
1585 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1586 {
1587 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1588 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1589 	nid_t new_xnid = nid_of_node(page);
1590 	struct node_info ni;
1591 
1592 	recover_inline_xattr(inode, page);
1593 
1594 	if (!f2fs_has_xattr_block(ofs_of_node(page)))
1595 		return false;
1596 
1597 	/* 1: invalidate the previous xattr nid */
1598 	if (!prev_xnid)
1599 		goto recover_xnid;
1600 
1601 	/* Deallocate node address */
1602 	get_node_info(sbi, prev_xnid, &ni);
1603 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1604 	invalidate_blocks(sbi, ni.blk_addr);
1605 	dec_valid_node_count(sbi, inode);
1606 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1607 
1608 recover_xnid:
1609 	/* 2: allocate new xattr nid */
1610 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1611 		f2fs_bug_on(1);
1612 
1613 	remove_free_nid(NM_I(sbi), new_xnid);
1614 	get_node_info(sbi, new_xnid, &ni);
1615 	ni.ino = inode->i_ino;
1616 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1617 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1618 
1619 	/* 3: update xattr blkaddr */
1620 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1621 	set_node_addr(sbi, &ni, blkaddr, false);
1622 
1623 	update_inode_page(inode);
1624 	return true;
1625 }
1626 
1627 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1628 {
1629 	struct f2fs_inode *src, *dst;
1630 	nid_t ino = ino_of_node(page);
1631 	struct node_info old_ni, new_ni;
1632 	struct page *ipage;
1633 
1634 	get_node_info(sbi, ino, &old_ni);
1635 
1636 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1637 		return -EINVAL;
1638 
1639 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1640 	if (!ipage)
1641 		return -ENOMEM;
1642 
1643 	/* Should not use this inode  from free nid list */
1644 	remove_free_nid(NM_I(sbi), ino);
1645 
1646 	SetPageUptodate(ipage);
1647 	fill_node_footer(ipage, ino, ino, 0, true);
1648 
1649 	src = F2FS_INODE(page);
1650 	dst = F2FS_INODE(ipage);
1651 
1652 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1653 	dst->i_size = 0;
1654 	dst->i_blocks = cpu_to_le64(1);
1655 	dst->i_links = cpu_to_le32(1);
1656 	dst->i_xattr_nid = 0;
1657 
1658 	new_ni = old_ni;
1659 	new_ni.ino = ino;
1660 
1661 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1662 		WARN_ON(1);
1663 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1664 	inc_valid_inode_count(sbi);
1665 	f2fs_put_page(ipage, 1);
1666 	return 0;
1667 }
1668 
1669 /*
1670  * ra_sum_pages() merge contiguous pages into one bio and submit.
1671  * these pre-readed pages are alloced in bd_inode's mapping tree.
1672  */
1673 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1674 				int start, int nrpages)
1675 {
1676 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1677 	struct address_space *mapping = inode->i_mapping;
1678 	int i, page_idx = start;
1679 	struct f2fs_io_info fio = {
1680 		.type = META,
1681 		.rw = READ_SYNC | REQ_META | REQ_PRIO
1682 	};
1683 
1684 	for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1685 		/* alloc page in bd_inode for reading node summary info */
1686 		pages[i] = grab_cache_page(mapping, page_idx);
1687 		if (!pages[i])
1688 			break;
1689 		f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1690 	}
1691 
1692 	f2fs_submit_merged_bio(sbi, META, READ);
1693 	return i;
1694 }
1695 
1696 int restore_node_summary(struct f2fs_sb_info *sbi,
1697 			unsigned int segno, struct f2fs_summary_block *sum)
1698 {
1699 	struct f2fs_node *rn;
1700 	struct f2fs_summary *sum_entry;
1701 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1702 	block_t addr;
1703 	int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1704 	struct page *pages[bio_blocks];
1705 	int i, idx, last_offset, nrpages, err = 0;
1706 
1707 	/* scan the node segment */
1708 	last_offset = sbi->blocks_per_seg;
1709 	addr = START_BLOCK(sbi, segno);
1710 	sum_entry = &sum->entries[0];
1711 
1712 	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1713 		nrpages = min(last_offset - i, bio_blocks);
1714 
1715 		/* read ahead node pages */
1716 		nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1717 		if (!nrpages)
1718 			return -ENOMEM;
1719 
1720 		for (idx = 0; idx < nrpages; idx++) {
1721 			if (err)
1722 				goto skip;
1723 
1724 			lock_page(pages[idx]);
1725 			if (unlikely(!PageUptodate(pages[idx]))) {
1726 				err = -EIO;
1727 			} else {
1728 				rn = F2FS_NODE(pages[idx]);
1729 				sum_entry->nid = rn->footer.nid;
1730 				sum_entry->version = 0;
1731 				sum_entry->ofs_in_node = 0;
1732 				sum_entry++;
1733 			}
1734 			unlock_page(pages[idx]);
1735 skip:
1736 			page_cache_release(pages[idx]);
1737 		}
1738 
1739 		invalidate_mapping_pages(inode->i_mapping, addr,
1740 							addr + nrpages);
1741 	}
1742 	return err;
1743 }
1744 
1745 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1746 {
1747 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1748 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1749 	struct f2fs_summary_block *sum = curseg->sum_blk;
1750 	int i;
1751 
1752 	mutex_lock(&curseg->curseg_mutex);
1753 
1754 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1755 		mutex_unlock(&curseg->curseg_mutex);
1756 		return false;
1757 	}
1758 
1759 	for (i = 0; i < nats_in_cursum(sum); i++) {
1760 		struct nat_entry *ne;
1761 		struct f2fs_nat_entry raw_ne;
1762 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1763 
1764 		raw_ne = nat_in_journal(sum, i);
1765 retry:
1766 		write_lock(&nm_i->nat_tree_lock);
1767 		ne = __lookup_nat_cache(nm_i, nid);
1768 		if (ne) {
1769 			__set_nat_cache_dirty(nm_i, ne);
1770 			write_unlock(&nm_i->nat_tree_lock);
1771 			continue;
1772 		}
1773 		ne = grab_nat_entry(nm_i, nid);
1774 		if (!ne) {
1775 			write_unlock(&nm_i->nat_tree_lock);
1776 			goto retry;
1777 		}
1778 		node_info_from_raw_nat(&ne->ni, &raw_ne);
1779 		__set_nat_cache_dirty(nm_i, ne);
1780 		write_unlock(&nm_i->nat_tree_lock);
1781 	}
1782 	update_nats_in_cursum(sum, -i);
1783 	mutex_unlock(&curseg->curseg_mutex);
1784 	return true;
1785 }
1786 
1787 /*
1788  * This function is called during the checkpointing process.
1789  */
1790 void flush_nat_entries(struct f2fs_sb_info *sbi)
1791 {
1792 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1793 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1794 	struct f2fs_summary_block *sum = curseg->sum_blk;
1795 	struct nat_entry *ne, *cur;
1796 	struct page *page = NULL;
1797 	struct f2fs_nat_block *nat_blk = NULL;
1798 	nid_t start_nid = 0, end_nid = 0;
1799 	bool flushed;
1800 
1801 	flushed = flush_nats_in_journal(sbi);
1802 
1803 	if (!flushed)
1804 		mutex_lock(&curseg->curseg_mutex);
1805 
1806 	/* 1) flush dirty nat caches */
1807 	list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1808 		nid_t nid;
1809 		struct f2fs_nat_entry raw_ne;
1810 		int offset = -1;
1811 
1812 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1813 			continue;
1814 
1815 		nid = nat_get_nid(ne);
1816 
1817 		if (flushed)
1818 			goto to_nat_page;
1819 
1820 		/* if there is room for nat enries in curseg->sumpage */
1821 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1822 		if (offset >= 0) {
1823 			raw_ne = nat_in_journal(sum, offset);
1824 			goto flush_now;
1825 		}
1826 to_nat_page:
1827 		if (!page || (start_nid > nid || nid > end_nid)) {
1828 			if (page) {
1829 				f2fs_put_page(page, 1);
1830 				page = NULL;
1831 			}
1832 			start_nid = START_NID(nid);
1833 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1834 
1835 			/*
1836 			 * get nat block with dirty flag, increased reference
1837 			 * count, mapped and lock
1838 			 */
1839 			page = get_next_nat_page(sbi, start_nid);
1840 			nat_blk = page_address(page);
1841 		}
1842 
1843 		f2fs_bug_on(!nat_blk);
1844 		raw_ne = nat_blk->entries[nid - start_nid];
1845 flush_now:
1846 		raw_nat_from_node_info(&raw_ne, &ne->ni);
1847 
1848 		if (offset < 0) {
1849 			nat_blk->entries[nid - start_nid] = raw_ne;
1850 		} else {
1851 			nat_in_journal(sum, offset) = raw_ne;
1852 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1853 		}
1854 
1855 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1856 				add_free_nid(sbi, nid, false) <= 0) {
1857 			write_lock(&nm_i->nat_tree_lock);
1858 			__del_from_nat_cache(nm_i, ne);
1859 			write_unlock(&nm_i->nat_tree_lock);
1860 		} else {
1861 			write_lock(&nm_i->nat_tree_lock);
1862 			__clear_nat_cache_dirty(nm_i, ne);
1863 			write_unlock(&nm_i->nat_tree_lock);
1864 		}
1865 	}
1866 	if (!flushed)
1867 		mutex_unlock(&curseg->curseg_mutex);
1868 	f2fs_put_page(page, 1);
1869 }
1870 
1871 static int init_node_manager(struct f2fs_sb_info *sbi)
1872 {
1873 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1874 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1875 	unsigned char *version_bitmap;
1876 	unsigned int nat_segs, nat_blocks;
1877 
1878 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1879 
1880 	/* segment_count_nat includes pair segment so divide to 2. */
1881 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1882 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1883 
1884 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1885 
1886 	/* not used nids: 0, node, meta, (and root counted as valid node) */
1887 	nm_i->available_nids = nm_i->max_nid - 3;
1888 	nm_i->fcnt = 0;
1889 	nm_i->nat_cnt = 0;
1890 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1891 
1892 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1893 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1894 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1895 	INIT_LIST_HEAD(&nm_i->nat_entries);
1896 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1897 
1898 	mutex_init(&nm_i->build_lock);
1899 	spin_lock_init(&nm_i->free_nid_list_lock);
1900 	rwlock_init(&nm_i->nat_tree_lock);
1901 
1902 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1903 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1904 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1905 	if (!version_bitmap)
1906 		return -EFAULT;
1907 
1908 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1909 					GFP_KERNEL);
1910 	if (!nm_i->nat_bitmap)
1911 		return -ENOMEM;
1912 	return 0;
1913 }
1914 
1915 int build_node_manager(struct f2fs_sb_info *sbi)
1916 {
1917 	int err;
1918 
1919 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1920 	if (!sbi->nm_info)
1921 		return -ENOMEM;
1922 
1923 	err = init_node_manager(sbi);
1924 	if (err)
1925 		return err;
1926 
1927 	build_free_nids(sbi);
1928 	return 0;
1929 }
1930 
1931 void destroy_node_manager(struct f2fs_sb_info *sbi)
1932 {
1933 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934 	struct free_nid *i, *next_i;
1935 	struct nat_entry *natvec[NATVEC_SIZE];
1936 	nid_t nid = 0;
1937 	unsigned int found;
1938 
1939 	if (!nm_i)
1940 		return;
1941 
1942 	/* destroy free nid list */
1943 	spin_lock(&nm_i->free_nid_list_lock);
1944 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1945 		f2fs_bug_on(i->state == NID_ALLOC);
1946 		__del_from_free_nid_list(nm_i, i);
1947 		nm_i->fcnt--;
1948 		spin_unlock(&nm_i->free_nid_list_lock);
1949 		kmem_cache_free(free_nid_slab, i);
1950 		spin_lock(&nm_i->free_nid_list_lock);
1951 	}
1952 	f2fs_bug_on(nm_i->fcnt);
1953 	spin_unlock(&nm_i->free_nid_list_lock);
1954 
1955 	/* destroy nat cache */
1956 	write_lock(&nm_i->nat_tree_lock);
1957 	while ((found = __gang_lookup_nat_cache(nm_i,
1958 					nid, NATVEC_SIZE, natvec))) {
1959 		unsigned idx;
1960 		nid = nat_get_nid(natvec[found - 1]) + 1;
1961 		for (idx = 0; idx < found; idx++)
1962 			__del_from_nat_cache(nm_i, natvec[idx]);
1963 	}
1964 	f2fs_bug_on(nm_i->nat_cnt);
1965 	write_unlock(&nm_i->nat_tree_lock);
1966 
1967 	kfree(nm_i->nat_bitmap);
1968 	sbi->nm_info = NULL;
1969 	kfree(nm_i);
1970 }
1971 
1972 int __init create_node_manager_caches(void)
1973 {
1974 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1975 			sizeof(struct nat_entry));
1976 	if (!nat_entry_slab)
1977 		return -ENOMEM;
1978 
1979 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1980 			sizeof(struct free_nid));
1981 	if (!free_nid_slab) {
1982 		kmem_cache_destroy(nat_entry_slab);
1983 		return -ENOMEM;
1984 	}
1985 	return 0;
1986 }
1987 
1988 void destroy_node_manager_caches(void)
1989 {
1990 	kmem_cache_destroy(free_nid_slab);
1991 	kmem_cache_destroy(nat_entry_slab);
1992 }
1993