xref: /openbmc/linux/fs/f2fs/node.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 							PAGE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 		if (excess_cached_nats(sbi))
56 			res = false;
57 	} else if (type == DIRTY_DENTS) {
58 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 			return false;
60 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 	} else if (type == INO_ENTRIES) {
63 		int i;
64 
65 		for (i = 0; i <= UPDATE_INO; i++)
66 			mem_size += (sbi->im[i].ino_num *
67 				sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 	} else if (type == EXTENT_CACHE) {
70 		mem_size = (atomic_read(&sbi->total_ext_tree) *
71 				sizeof(struct extent_tree) +
72 				atomic_read(&sbi->total_ext_node) *
73 				sizeof(struct extent_node)) >> PAGE_SHIFT;
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else {
76 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return true;
78 	}
79 	return res;
80 }
81 
82 static void clear_node_page_dirty(struct page *page)
83 {
84 	struct address_space *mapping = page->mapping;
85 	unsigned int long flags;
86 
87 	if (PageDirty(page)) {
88 		spin_lock_irqsave(&mapping->tree_lock, flags);
89 		radix_tree_tag_clear(&mapping->page_tree,
90 				page_index(page),
91 				PAGECACHE_TAG_DIRTY);
92 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
93 
94 		clear_page_dirty_for_io(page);
95 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96 	}
97 	ClearPageUptodate(page);
98 }
99 
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102 	pgoff_t index = current_nat_addr(sbi, nid);
103 	return get_meta_page(sbi, index);
104 }
105 
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 	struct page *src_page;
109 	struct page *dst_page;
110 	pgoff_t src_off;
111 	pgoff_t dst_off;
112 	void *src_addr;
113 	void *dst_addr;
114 	struct f2fs_nm_info *nm_i = NM_I(sbi);
115 
116 	src_off = current_nat_addr(sbi, nid);
117 	dst_off = next_nat_addr(sbi, src_off);
118 
119 	/* get current nat block page with lock */
120 	src_page = get_meta_page(sbi, src_off);
121 	dst_page = grab_meta_page(sbi, dst_off);
122 	f2fs_bug_on(sbi, PageDirty(src_page));
123 
124 	src_addr = page_address(src_page);
125 	dst_addr = page_address(dst_page);
126 	memcpy(dst_addr, src_addr, PAGE_SIZE);
127 	set_page_dirty(dst_page);
128 	f2fs_put_page(src_page, 1);
129 
130 	set_to_next_nat(nm_i, nid);
131 
132 	return dst_page;
133 }
134 
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137 	return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139 
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 		nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145 
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148 	list_del(&e->list);
149 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 	nm_i->nat_cnt--;
151 	kmem_cache_free(nat_entry_slab, e);
152 }
153 
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 						struct nat_entry *ne)
156 {
157 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 	struct nat_entry_set *head;
159 
160 	if (get_nat_flag(ne, IS_DIRTY))
161 		return;
162 
163 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 	if (!head) {
165 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166 
167 		INIT_LIST_HEAD(&head->entry_list);
168 		INIT_LIST_HEAD(&head->set_list);
169 		head->set = set;
170 		head->entry_cnt = 0;
171 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 	}
173 	list_move_tail(&ne->list, &head->entry_list);
174 	nm_i->dirty_nat_cnt++;
175 	head->entry_cnt++;
176 	set_nat_flag(ne, IS_DIRTY, true);
177 }
178 
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 						struct nat_entry *ne)
181 {
182 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 	struct nat_entry_set *head;
184 
185 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 	if (head) {
187 		list_move_tail(&ne->list, &nm_i->nat_entries);
188 		set_nat_flag(ne, IS_DIRTY, false);
189 		head->entry_cnt--;
190 		nm_i->dirty_nat_cnt--;
191 	}
192 }
193 
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 							start, nr);
199 }
200 
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 	struct f2fs_nm_info *nm_i = NM_I(sbi);
204 	struct nat_entry *e;
205 	bool need = false;
206 
207 	down_read(&nm_i->nat_tree_lock);
208 	e = __lookup_nat_cache(nm_i, nid);
209 	if (e) {
210 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 				!get_nat_flag(e, HAS_FSYNCED_INODE))
212 			need = true;
213 	}
214 	up_read(&nm_i->nat_tree_lock);
215 	return need;
216 }
217 
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
221 	struct nat_entry *e;
222 	bool is_cp = true;
223 
224 	down_read(&nm_i->nat_tree_lock);
225 	e = __lookup_nat_cache(nm_i, nid);
226 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 		is_cp = false;
228 	up_read(&nm_i->nat_tree_lock);
229 	return is_cp;
230 }
231 
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 	struct f2fs_nm_info *nm_i = NM_I(sbi);
235 	struct nat_entry *e;
236 	bool need_update = true;
237 
238 	down_read(&nm_i->nat_tree_lock);
239 	e = __lookup_nat_cache(nm_i, ino);
240 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 			(get_nat_flag(e, IS_CHECKPOINTED) ||
242 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 		need_update = false;
244 	up_read(&nm_i->nat_tree_lock);
245 	return need_update;
246 }
247 
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
249 {
250 	struct nat_entry *new;
251 
252 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
254 	memset(new, 0, sizeof(struct nat_entry));
255 	nat_set_nid(new, nid);
256 	nat_reset_flag(new);
257 	list_add_tail(&new->list, &nm_i->nat_entries);
258 	nm_i->nat_cnt++;
259 	return new;
260 }
261 
262 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
263 						struct f2fs_nat_entry *ne)
264 {
265 	struct f2fs_nm_info *nm_i = NM_I(sbi);
266 	struct nat_entry *e;
267 
268 	e = __lookup_nat_cache(nm_i, nid);
269 	if (!e) {
270 		e = grab_nat_entry(nm_i, nid);
271 		node_info_from_raw_nat(&e->ni, ne);
272 	} else {
273 		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
274 				nat_get_blkaddr(e) != ne->block_addr ||
275 				nat_get_version(e) != ne->version);
276 	}
277 }
278 
279 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
280 			block_t new_blkaddr, bool fsync_done)
281 {
282 	struct f2fs_nm_info *nm_i = NM_I(sbi);
283 	struct nat_entry *e;
284 
285 	down_write(&nm_i->nat_tree_lock);
286 	e = __lookup_nat_cache(nm_i, ni->nid);
287 	if (!e) {
288 		e = grab_nat_entry(nm_i, ni->nid);
289 		copy_node_info(&e->ni, ni);
290 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
291 	} else if (new_blkaddr == NEW_ADDR) {
292 		/*
293 		 * when nid is reallocated,
294 		 * previous nat entry can be remained in nat cache.
295 		 * So, reinitialize it with new information.
296 		 */
297 		copy_node_info(&e->ni, ni);
298 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
299 	}
300 
301 	/* sanity check */
302 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
303 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
304 			new_blkaddr == NULL_ADDR);
305 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
306 			new_blkaddr == NEW_ADDR);
307 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
308 			nat_get_blkaddr(e) != NULL_ADDR &&
309 			new_blkaddr == NEW_ADDR);
310 
311 	/* increment version no as node is removed */
312 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
313 		unsigned char version = nat_get_version(e);
314 		nat_set_version(e, inc_node_version(version));
315 
316 		/* in order to reuse the nid */
317 		if (nm_i->next_scan_nid > ni->nid)
318 			nm_i->next_scan_nid = ni->nid;
319 	}
320 
321 	/* change address */
322 	nat_set_blkaddr(e, new_blkaddr);
323 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
324 		set_nat_flag(e, IS_CHECKPOINTED, false);
325 	__set_nat_cache_dirty(nm_i, e);
326 
327 	/* update fsync_mark if its inode nat entry is still alive */
328 	if (ni->nid != ni->ino)
329 		e = __lookup_nat_cache(nm_i, ni->ino);
330 	if (e) {
331 		if (fsync_done && ni->nid == ni->ino)
332 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
333 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
334 	}
335 	up_write(&nm_i->nat_tree_lock);
336 }
337 
338 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
339 {
340 	struct f2fs_nm_info *nm_i = NM_I(sbi);
341 	int nr = nr_shrink;
342 
343 	if (!down_write_trylock(&nm_i->nat_tree_lock))
344 		return 0;
345 
346 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
347 		struct nat_entry *ne;
348 		ne = list_first_entry(&nm_i->nat_entries,
349 					struct nat_entry, list);
350 		__del_from_nat_cache(nm_i, ne);
351 		nr_shrink--;
352 	}
353 	up_write(&nm_i->nat_tree_lock);
354 	return nr - nr_shrink;
355 }
356 
357 /*
358  * This function always returns success
359  */
360 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
361 {
362 	struct f2fs_nm_info *nm_i = NM_I(sbi);
363 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
364 	struct f2fs_journal *journal = curseg->journal;
365 	nid_t start_nid = START_NID(nid);
366 	struct f2fs_nat_block *nat_blk;
367 	struct page *page = NULL;
368 	struct f2fs_nat_entry ne;
369 	struct nat_entry *e;
370 	int i;
371 
372 	ni->nid = nid;
373 
374 	/* Check nat cache */
375 	down_read(&nm_i->nat_tree_lock);
376 	e = __lookup_nat_cache(nm_i, nid);
377 	if (e) {
378 		ni->ino = nat_get_ino(e);
379 		ni->blk_addr = nat_get_blkaddr(e);
380 		ni->version = nat_get_version(e);
381 		up_read(&nm_i->nat_tree_lock);
382 		return;
383 	}
384 
385 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
386 
387 	/* Check current segment summary */
388 	down_read(&curseg->journal_rwsem);
389 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
390 	if (i >= 0) {
391 		ne = nat_in_journal(journal, i);
392 		node_info_from_raw_nat(ni, &ne);
393 	}
394 	up_read(&curseg->journal_rwsem);
395 	if (i >= 0)
396 		goto cache;
397 
398 	/* Fill node_info from nat page */
399 	page = get_current_nat_page(sbi, start_nid);
400 	nat_blk = (struct f2fs_nat_block *)page_address(page);
401 	ne = nat_blk->entries[nid - start_nid];
402 	node_info_from_raw_nat(ni, &ne);
403 	f2fs_put_page(page, 1);
404 cache:
405 	up_read(&nm_i->nat_tree_lock);
406 	/* cache nat entry */
407 	down_write(&nm_i->nat_tree_lock);
408 	cache_nat_entry(sbi, nid, &ne);
409 	up_write(&nm_i->nat_tree_lock);
410 }
411 
412 /*
413  * readahead MAX_RA_NODE number of node pages.
414  */
415 static void ra_node_pages(struct page *parent, int start, int n)
416 {
417 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
418 	struct blk_plug plug;
419 	int i, end;
420 	nid_t nid;
421 
422 	blk_start_plug(&plug);
423 
424 	/* Then, try readahead for siblings of the desired node */
425 	end = start + n;
426 	end = min(end, NIDS_PER_BLOCK);
427 	for (i = start; i < end; i++) {
428 		nid = get_nid(parent, i, false);
429 		ra_node_page(sbi, nid);
430 	}
431 
432 	blk_finish_plug(&plug);
433 }
434 
435 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
436 {
437 	const long direct_index = ADDRS_PER_INODE(dn->inode);
438 	const long direct_blks = ADDRS_PER_BLOCK;
439 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
440 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
441 	int cur_level = dn->cur_level;
442 	int max_level = dn->max_level;
443 	pgoff_t base = 0;
444 
445 	if (!dn->max_level)
446 		return pgofs + 1;
447 
448 	while (max_level-- > cur_level)
449 		skipped_unit *= NIDS_PER_BLOCK;
450 
451 	switch (dn->max_level) {
452 	case 3:
453 		base += 2 * indirect_blks;
454 	case 2:
455 		base += 2 * direct_blks;
456 	case 1:
457 		base += direct_index;
458 		break;
459 	default:
460 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
461 	}
462 
463 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
464 }
465 
466 /*
467  * The maximum depth is four.
468  * Offset[0] will have raw inode offset.
469  */
470 static int get_node_path(struct inode *inode, long block,
471 				int offset[4], unsigned int noffset[4])
472 {
473 	const long direct_index = ADDRS_PER_INODE(inode);
474 	const long direct_blks = ADDRS_PER_BLOCK;
475 	const long dptrs_per_blk = NIDS_PER_BLOCK;
476 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
477 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
478 	int n = 0;
479 	int level = 0;
480 
481 	noffset[0] = 0;
482 
483 	if (block < direct_index) {
484 		offset[n] = block;
485 		goto got;
486 	}
487 	block -= direct_index;
488 	if (block < direct_blks) {
489 		offset[n++] = NODE_DIR1_BLOCK;
490 		noffset[n] = 1;
491 		offset[n] = block;
492 		level = 1;
493 		goto got;
494 	}
495 	block -= direct_blks;
496 	if (block < direct_blks) {
497 		offset[n++] = NODE_DIR2_BLOCK;
498 		noffset[n] = 2;
499 		offset[n] = block;
500 		level = 1;
501 		goto got;
502 	}
503 	block -= direct_blks;
504 	if (block < indirect_blks) {
505 		offset[n++] = NODE_IND1_BLOCK;
506 		noffset[n] = 3;
507 		offset[n++] = block / direct_blks;
508 		noffset[n] = 4 + offset[n - 1];
509 		offset[n] = block % direct_blks;
510 		level = 2;
511 		goto got;
512 	}
513 	block -= indirect_blks;
514 	if (block < indirect_blks) {
515 		offset[n++] = NODE_IND2_BLOCK;
516 		noffset[n] = 4 + dptrs_per_blk;
517 		offset[n++] = block / direct_blks;
518 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
519 		offset[n] = block % direct_blks;
520 		level = 2;
521 		goto got;
522 	}
523 	block -= indirect_blks;
524 	if (block < dindirect_blks) {
525 		offset[n++] = NODE_DIND_BLOCK;
526 		noffset[n] = 5 + (dptrs_per_blk * 2);
527 		offset[n++] = block / indirect_blks;
528 		noffset[n] = 6 + (dptrs_per_blk * 2) +
529 			      offset[n - 1] * (dptrs_per_blk + 1);
530 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
531 		noffset[n] = 7 + (dptrs_per_blk * 2) +
532 			      offset[n - 2] * (dptrs_per_blk + 1) +
533 			      offset[n - 1];
534 		offset[n] = block % direct_blks;
535 		level = 3;
536 		goto got;
537 	} else {
538 		BUG();
539 	}
540 got:
541 	return level;
542 }
543 
544 /*
545  * Caller should call f2fs_put_dnode(dn).
546  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
547  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
548  * In the case of RDONLY_NODE, we don't need to care about mutex.
549  */
550 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
551 {
552 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
553 	struct page *npage[4];
554 	struct page *parent = NULL;
555 	int offset[4];
556 	unsigned int noffset[4];
557 	nid_t nids[4];
558 	int level, i = 0;
559 	int err = 0;
560 
561 	level = get_node_path(dn->inode, index, offset, noffset);
562 
563 	nids[0] = dn->inode->i_ino;
564 	npage[0] = dn->inode_page;
565 
566 	if (!npage[0]) {
567 		npage[0] = get_node_page(sbi, nids[0]);
568 		if (IS_ERR(npage[0]))
569 			return PTR_ERR(npage[0]);
570 	}
571 
572 	/* if inline_data is set, should not report any block indices */
573 	if (f2fs_has_inline_data(dn->inode) && index) {
574 		err = -ENOENT;
575 		f2fs_put_page(npage[0], 1);
576 		goto release_out;
577 	}
578 
579 	parent = npage[0];
580 	if (level != 0)
581 		nids[1] = get_nid(parent, offset[0], true);
582 	dn->inode_page = npage[0];
583 	dn->inode_page_locked = true;
584 
585 	/* get indirect or direct nodes */
586 	for (i = 1; i <= level; i++) {
587 		bool done = false;
588 
589 		if (!nids[i] && mode == ALLOC_NODE) {
590 			/* alloc new node */
591 			if (!alloc_nid(sbi, &(nids[i]))) {
592 				err = -ENOSPC;
593 				goto release_pages;
594 			}
595 
596 			dn->nid = nids[i];
597 			npage[i] = new_node_page(dn, noffset[i], NULL);
598 			if (IS_ERR(npage[i])) {
599 				alloc_nid_failed(sbi, nids[i]);
600 				err = PTR_ERR(npage[i]);
601 				goto release_pages;
602 			}
603 
604 			set_nid(parent, offset[i - 1], nids[i], i == 1);
605 			alloc_nid_done(sbi, nids[i]);
606 			done = true;
607 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
608 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
609 			if (IS_ERR(npage[i])) {
610 				err = PTR_ERR(npage[i]);
611 				goto release_pages;
612 			}
613 			done = true;
614 		}
615 		if (i == 1) {
616 			dn->inode_page_locked = false;
617 			unlock_page(parent);
618 		} else {
619 			f2fs_put_page(parent, 1);
620 		}
621 
622 		if (!done) {
623 			npage[i] = get_node_page(sbi, nids[i]);
624 			if (IS_ERR(npage[i])) {
625 				err = PTR_ERR(npage[i]);
626 				f2fs_put_page(npage[0], 0);
627 				goto release_out;
628 			}
629 		}
630 		if (i < level) {
631 			parent = npage[i];
632 			nids[i + 1] = get_nid(parent, offset[i], false);
633 		}
634 	}
635 	dn->nid = nids[level];
636 	dn->ofs_in_node = offset[level];
637 	dn->node_page = npage[level];
638 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
639 	return 0;
640 
641 release_pages:
642 	f2fs_put_page(parent, 1);
643 	if (i > 1)
644 		f2fs_put_page(npage[0], 0);
645 release_out:
646 	dn->inode_page = NULL;
647 	dn->node_page = NULL;
648 	if (err == -ENOENT) {
649 		dn->cur_level = i;
650 		dn->max_level = level;
651 		dn->ofs_in_node = offset[level];
652 	}
653 	return err;
654 }
655 
656 static void truncate_node(struct dnode_of_data *dn)
657 {
658 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
659 	struct node_info ni;
660 
661 	get_node_info(sbi, dn->nid, &ni);
662 	if (dn->inode->i_blocks == 0) {
663 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
664 		goto invalidate;
665 	}
666 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
667 
668 	/* Deallocate node address */
669 	invalidate_blocks(sbi, ni.blk_addr);
670 	dec_valid_node_count(sbi, dn->inode);
671 	set_node_addr(sbi, &ni, NULL_ADDR, false);
672 
673 	if (dn->nid == dn->inode->i_ino) {
674 		remove_orphan_inode(sbi, dn->nid);
675 		dec_valid_inode_count(sbi);
676 		f2fs_inode_synced(dn->inode);
677 	}
678 invalidate:
679 	clear_node_page_dirty(dn->node_page);
680 	set_sbi_flag(sbi, SBI_IS_DIRTY);
681 
682 	f2fs_put_page(dn->node_page, 1);
683 
684 	invalidate_mapping_pages(NODE_MAPPING(sbi),
685 			dn->node_page->index, dn->node_page->index);
686 
687 	dn->node_page = NULL;
688 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
689 }
690 
691 static int truncate_dnode(struct dnode_of_data *dn)
692 {
693 	struct page *page;
694 
695 	if (dn->nid == 0)
696 		return 1;
697 
698 	/* get direct node */
699 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
700 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
701 		return 1;
702 	else if (IS_ERR(page))
703 		return PTR_ERR(page);
704 
705 	/* Make dnode_of_data for parameter */
706 	dn->node_page = page;
707 	dn->ofs_in_node = 0;
708 	truncate_data_blocks(dn);
709 	truncate_node(dn);
710 	return 1;
711 }
712 
713 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
714 						int ofs, int depth)
715 {
716 	struct dnode_of_data rdn = *dn;
717 	struct page *page;
718 	struct f2fs_node *rn;
719 	nid_t child_nid;
720 	unsigned int child_nofs;
721 	int freed = 0;
722 	int i, ret;
723 
724 	if (dn->nid == 0)
725 		return NIDS_PER_BLOCK + 1;
726 
727 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
728 
729 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
730 	if (IS_ERR(page)) {
731 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
732 		return PTR_ERR(page);
733 	}
734 
735 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
736 
737 	rn = F2FS_NODE(page);
738 	if (depth < 3) {
739 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
740 			child_nid = le32_to_cpu(rn->in.nid[i]);
741 			if (child_nid == 0)
742 				continue;
743 			rdn.nid = child_nid;
744 			ret = truncate_dnode(&rdn);
745 			if (ret < 0)
746 				goto out_err;
747 			if (set_nid(page, i, 0, false))
748 				dn->node_changed = true;
749 		}
750 	} else {
751 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
752 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
753 			child_nid = le32_to_cpu(rn->in.nid[i]);
754 			if (child_nid == 0) {
755 				child_nofs += NIDS_PER_BLOCK + 1;
756 				continue;
757 			}
758 			rdn.nid = child_nid;
759 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
760 			if (ret == (NIDS_PER_BLOCK + 1)) {
761 				if (set_nid(page, i, 0, false))
762 					dn->node_changed = true;
763 				child_nofs += ret;
764 			} else if (ret < 0 && ret != -ENOENT) {
765 				goto out_err;
766 			}
767 		}
768 		freed = child_nofs;
769 	}
770 
771 	if (!ofs) {
772 		/* remove current indirect node */
773 		dn->node_page = page;
774 		truncate_node(dn);
775 		freed++;
776 	} else {
777 		f2fs_put_page(page, 1);
778 	}
779 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
780 	return freed;
781 
782 out_err:
783 	f2fs_put_page(page, 1);
784 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
785 	return ret;
786 }
787 
788 static int truncate_partial_nodes(struct dnode_of_data *dn,
789 			struct f2fs_inode *ri, int *offset, int depth)
790 {
791 	struct page *pages[2];
792 	nid_t nid[3];
793 	nid_t child_nid;
794 	int err = 0;
795 	int i;
796 	int idx = depth - 2;
797 
798 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
799 	if (!nid[0])
800 		return 0;
801 
802 	/* get indirect nodes in the path */
803 	for (i = 0; i < idx + 1; i++) {
804 		/* reference count'll be increased */
805 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
806 		if (IS_ERR(pages[i])) {
807 			err = PTR_ERR(pages[i]);
808 			idx = i - 1;
809 			goto fail;
810 		}
811 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
812 	}
813 
814 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
815 
816 	/* free direct nodes linked to a partial indirect node */
817 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
818 		child_nid = get_nid(pages[idx], i, false);
819 		if (!child_nid)
820 			continue;
821 		dn->nid = child_nid;
822 		err = truncate_dnode(dn);
823 		if (err < 0)
824 			goto fail;
825 		if (set_nid(pages[idx], i, 0, false))
826 			dn->node_changed = true;
827 	}
828 
829 	if (offset[idx + 1] == 0) {
830 		dn->node_page = pages[idx];
831 		dn->nid = nid[idx];
832 		truncate_node(dn);
833 	} else {
834 		f2fs_put_page(pages[idx], 1);
835 	}
836 	offset[idx]++;
837 	offset[idx + 1] = 0;
838 	idx--;
839 fail:
840 	for (i = idx; i >= 0; i--)
841 		f2fs_put_page(pages[i], 1);
842 
843 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
844 
845 	return err;
846 }
847 
848 /*
849  * All the block addresses of data and nodes should be nullified.
850  */
851 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
852 {
853 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
854 	int err = 0, cont = 1;
855 	int level, offset[4], noffset[4];
856 	unsigned int nofs = 0;
857 	struct f2fs_inode *ri;
858 	struct dnode_of_data dn;
859 	struct page *page;
860 
861 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
862 
863 	level = get_node_path(inode, from, offset, noffset);
864 
865 	page = get_node_page(sbi, inode->i_ino);
866 	if (IS_ERR(page)) {
867 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
868 		return PTR_ERR(page);
869 	}
870 
871 	set_new_dnode(&dn, inode, page, NULL, 0);
872 	unlock_page(page);
873 
874 	ri = F2FS_INODE(page);
875 	switch (level) {
876 	case 0:
877 	case 1:
878 		nofs = noffset[1];
879 		break;
880 	case 2:
881 		nofs = noffset[1];
882 		if (!offset[level - 1])
883 			goto skip_partial;
884 		err = truncate_partial_nodes(&dn, ri, offset, level);
885 		if (err < 0 && err != -ENOENT)
886 			goto fail;
887 		nofs += 1 + NIDS_PER_BLOCK;
888 		break;
889 	case 3:
890 		nofs = 5 + 2 * NIDS_PER_BLOCK;
891 		if (!offset[level - 1])
892 			goto skip_partial;
893 		err = truncate_partial_nodes(&dn, ri, offset, level);
894 		if (err < 0 && err != -ENOENT)
895 			goto fail;
896 		break;
897 	default:
898 		BUG();
899 	}
900 
901 skip_partial:
902 	while (cont) {
903 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
904 		switch (offset[0]) {
905 		case NODE_DIR1_BLOCK:
906 		case NODE_DIR2_BLOCK:
907 			err = truncate_dnode(&dn);
908 			break;
909 
910 		case NODE_IND1_BLOCK:
911 		case NODE_IND2_BLOCK:
912 			err = truncate_nodes(&dn, nofs, offset[1], 2);
913 			break;
914 
915 		case NODE_DIND_BLOCK:
916 			err = truncate_nodes(&dn, nofs, offset[1], 3);
917 			cont = 0;
918 			break;
919 
920 		default:
921 			BUG();
922 		}
923 		if (err < 0 && err != -ENOENT)
924 			goto fail;
925 		if (offset[1] == 0 &&
926 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
927 			lock_page(page);
928 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
929 			f2fs_wait_on_page_writeback(page, NODE, true);
930 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
931 			set_page_dirty(page);
932 			unlock_page(page);
933 		}
934 		offset[1] = 0;
935 		offset[0]++;
936 		nofs += err;
937 	}
938 fail:
939 	f2fs_put_page(page, 0);
940 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
941 	return err > 0 ? 0 : err;
942 }
943 
944 int truncate_xattr_node(struct inode *inode, struct page *page)
945 {
946 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
947 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
948 	struct dnode_of_data dn;
949 	struct page *npage;
950 
951 	if (!nid)
952 		return 0;
953 
954 	npage = get_node_page(sbi, nid);
955 	if (IS_ERR(npage))
956 		return PTR_ERR(npage);
957 
958 	f2fs_i_xnid_write(inode, 0);
959 
960 	/* need to do checkpoint during fsync */
961 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
962 
963 	set_new_dnode(&dn, inode, page, npage, nid);
964 
965 	if (page)
966 		dn.inode_page_locked = true;
967 	truncate_node(&dn);
968 	return 0;
969 }
970 
971 /*
972  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
973  * f2fs_unlock_op().
974  */
975 int remove_inode_page(struct inode *inode)
976 {
977 	struct dnode_of_data dn;
978 	int err;
979 
980 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
981 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
982 	if (err)
983 		return err;
984 
985 	err = truncate_xattr_node(inode, dn.inode_page);
986 	if (err) {
987 		f2fs_put_dnode(&dn);
988 		return err;
989 	}
990 
991 	/* remove potential inline_data blocks */
992 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
993 				S_ISLNK(inode->i_mode))
994 		truncate_data_blocks_range(&dn, 1);
995 
996 	/* 0 is possible, after f2fs_new_inode() has failed */
997 	f2fs_bug_on(F2FS_I_SB(inode),
998 			inode->i_blocks != 0 && inode->i_blocks != 1);
999 
1000 	/* will put inode & node pages */
1001 	truncate_node(&dn);
1002 	return 0;
1003 }
1004 
1005 struct page *new_inode_page(struct inode *inode)
1006 {
1007 	struct dnode_of_data dn;
1008 
1009 	/* allocate inode page for new inode */
1010 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1011 
1012 	/* caller should f2fs_put_page(page, 1); */
1013 	return new_node_page(&dn, 0, NULL);
1014 }
1015 
1016 struct page *new_node_page(struct dnode_of_data *dn,
1017 				unsigned int ofs, struct page *ipage)
1018 {
1019 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1020 	struct node_info old_ni, new_ni;
1021 	struct page *page;
1022 	int err;
1023 
1024 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1025 		return ERR_PTR(-EPERM);
1026 
1027 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1028 	if (!page)
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1032 		err = -ENOSPC;
1033 		goto fail;
1034 	}
1035 
1036 	get_node_info(sbi, dn->nid, &old_ni);
1037 
1038 	/* Reinitialize old_ni with new node page */
1039 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1040 	new_ni = old_ni;
1041 	new_ni.ino = dn->inode->i_ino;
1042 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1043 
1044 	f2fs_wait_on_page_writeback(page, NODE, true);
1045 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1046 	set_cold_node(dn->inode, page);
1047 	if (!PageUptodate(page))
1048 		SetPageUptodate(page);
1049 	if (set_page_dirty(page))
1050 		dn->node_changed = true;
1051 
1052 	if (f2fs_has_xattr_block(ofs))
1053 		f2fs_i_xnid_write(dn->inode, dn->nid);
1054 
1055 	if (ofs == 0)
1056 		inc_valid_inode_count(sbi);
1057 	return page;
1058 
1059 fail:
1060 	clear_node_page_dirty(page);
1061 	f2fs_put_page(page, 1);
1062 	return ERR_PTR(err);
1063 }
1064 
1065 /*
1066  * Caller should do after getting the following values.
1067  * 0: f2fs_put_page(page, 0)
1068  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1069  */
1070 static int read_node_page(struct page *page, int op_flags)
1071 {
1072 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1073 	struct node_info ni;
1074 	struct f2fs_io_info fio = {
1075 		.sbi = sbi,
1076 		.type = NODE,
1077 		.op = REQ_OP_READ,
1078 		.op_flags = op_flags,
1079 		.page = page,
1080 		.encrypted_page = NULL,
1081 	};
1082 
1083 	if (PageUptodate(page))
1084 		return LOCKED_PAGE;
1085 
1086 	get_node_info(sbi, page->index, &ni);
1087 
1088 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1089 		ClearPageUptodate(page);
1090 		return -ENOENT;
1091 	}
1092 
1093 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1094 	return f2fs_submit_page_bio(&fio);
1095 }
1096 
1097 /*
1098  * Readahead a node page
1099  */
1100 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1101 {
1102 	struct page *apage;
1103 	int err;
1104 
1105 	if (!nid)
1106 		return;
1107 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1108 
1109 	rcu_read_lock();
1110 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1111 	rcu_read_unlock();
1112 	if (apage)
1113 		return;
1114 
1115 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1116 	if (!apage)
1117 		return;
1118 
1119 	err = read_node_page(apage, REQ_RAHEAD);
1120 	f2fs_put_page(apage, err ? 1 : 0);
1121 }
1122 
1123 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1124 					struct page *parent, int start)
1125 {
1126 	struct page *page;
1127 	int err;
1128 
1129 	if (!nid)
1130 		return ERR_PTR(-ENOENT);
1131 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1132 repeat:
1133 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134 	if (!page)
1135 		return ERR_PTR(-ENOMEM);
1136 
1137 	err = read_node_page(page, READ_SYNC);
1138 	if (err < 0) {
1139 		f2fs_put_page(page, 1);
1140 		return ERR_PTR(err);
1141 	} else if (err == LOCKED_PAGE) {
1142 		goto page_hit;
1143 	}
1144 
1145 	if (parent)
1146 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1147 
1148 	lock_page(page);
1149 
1150 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1151 		f2fs_put_page(page, 1);
1152 		goto repeat;
1153 	}
1154 
1155 	if (unlikely(!PageUptodate(page)))
1156 		goto out_err;
1157 page_hit:
1158 	if(unlikely(nid != nid_of_node(page))) {
1159 		f2fs_bug_on(sbi, 1);
1160 		ClearPageUptodate(page);
1161 out_err:
1162 		f2fs_put_page(page, 1);
1163 		return ERR_PTR(-EIO);
1164 	}
1165 	return page;
1166 }
1167 
1168 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1169 {
1170 	return __get_node_page(sbi, nid, NULL, 0);
1171 }
1172 
1173 struct page *get_node_page_ra(struct page *parent, int start)
1174 {
1175 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1176 	nid_t nid = get_nid(parent, start, false);
1177 
1178 	return __get_node_page(sbi, nid, parent, start);
1179 }
1180 
1181 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1182 {
1183 	struct inode *inode;
1184 	struct page *page;
1185 	int ret;
1186 
1187 	/* should flush inline_data before evict_inode */
1188 	inode = ilookup(sbi->sb, ino);
1189 	if (!inode)
1190 		return;
1191 
1192 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1193 	if (!page)
1194 		goto iput_out;
1195 
1196 	if (!PageUptodate(page))
1197 		goto page_out;
1198 
1199 	if (!PageDirty(page))
1200 		goto page_out;
1201 
1202 	if (!clear_page_dirty_for_io(page))
1203 		goto page_out;
1204 
1205 	ret = f2fs_write_inline_data(inode, page);
1206 	inode_dec_dirty_pages(inode);
1207 	if (ret)
1208 		set_page_dirty(page);
1209 page_out:
1210 	f2fs_put_page(page, 1);
1211 iput_out:
1212 	iput(inode);
1213 }
1214 
1215 void move_node_page(struct page *node_page, int gc_type)
1216 {
1217 	if (gc_type == FG_GC) {
1218 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1219 		struct writeback_control wbc = {
1220 			.sync_mode = WB_SYNC_ALL,
1221 			.nr_to_write = 1,
1222 			.for_reclaim = 0,
1223 		};
1224 
1225 		set_page_dirty(node_page);
1226 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1227 
1228 		f2fs_bug_on(sbi, PageWriteback(node_page));
1229 		if (!clear_page_dirty_for_io(node_page))
1230 			goto out_page;
1231 
1232 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1233 			unlock_page(node_page);
1234 		goto release_page;
1235 	} else {
1236 		/* set page dirty and write it */
1237 		if (!PageWriteback(node_page))
1238 			set_page_dirty(node_page);
1239 	}
1240 out_page:
1241 	unlock_page(node_page);
1242 release_page:
1243 	f2fs_put_page(node_page, 0);
1244 }
1245 
1246 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1247 {
1248 	pgoff_t index, end;
1249 	struct pagevec pvec;
1250 	struct page *last_page = NULL;
1251 
1252 	pagevec_init(&pvec, 0);
1253 	index = 0;
1254 	end = ULONG_MAX;
1255 
1256 	while (index <= end) {
1257 		int i, nr_pages;
1258 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1259 				PAGECACHE_TAG_DIRTY,
1260 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1261 		if (nr_pages == 0)
1262 			break;
1263 
1264 		for (i = 0; i < nr_pages; i++) {
1265 			struct page *page = pvec.pages[i];
1266 
1267 			if (unlikely(f2fs_cp_error(sbi))) {
1268 				f2fs_put_page(last_page, 0);
1269 				pagevec_release(&pvec);
1270 				return ERR_PTR(-EIO);
1271 			}
1272 
1273 			if (!IS_DNODE(page) || !is_cold_node(page))
1274 				continue;
1275 			if (ino_of_node(page) != ino)
1276 				continue;
1277 
1278 			lock_page(page);
1279 
1280 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1281 continue_unlock:
1282 				unlock_page(page);
1283 				continue;
1284 			}
1285 			if (ino_of_node(page) != ino)
1286 				goto continue_unlock;
1287 
1288 			if (!PageDirty(page)) {
1289 				/* someone wrote it for us */
1290 				goto continue_unlock;
1291 			}
1292 
1293 			if (last_page)
1294 				f2fs_put_page(last_page, 0);
1295 
1296 			get_page(page);
1297 			last_page = page;
1298 			unlock_page(page);
1299 		}
1300 		pagevec_release(&pvec);
1301 		cond_resched();
1302 	}
1303 	return last_page;
1304 }
1305 
1306 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1307 			struct writeback_control *wbc, bool atomic)
1308 {
1309 	pgoff_t index, end;
1310 	struct pagevec pvec;
1311 	int ret = 0;
1312 	struct page *last_page = NULL;
1313 	bool marked = false;
1314 	nid_t ino = inode->i_ino;
1315 	int nwritten = 0;
1316 
1317 	if (atomic) {
1318 		last_page = last_fsync_dnode(sbi, ino);
1319 		if (IS_ERR_OR_NULL(last_page))
1320 			return PTR_ERR_OR_ZERO(last_page);
1321 	}
1322 retry:
1323 	pagevec_init(&pvec, 0);
1324 	index = 0;
1325 	end = ULONG_MAX;
1326 
1327 	while (index <= end) {
1328 		int i, nr_pages;
1329 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1330 				PAGECACHE_TAG_DIRTY,
1331 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1332 		if (nr_pages == 0)
1333 			break;
1334 
1335 		for (i = 0; i < nr_pages; i++) {
1336 			struct page *page = pvec.pages[i];
1337 
1338 			if (unlikely(f2fs_cp_error(sbi))) {
1339 				f2fs_put_page(last_page, 0);
1340 				pagevec_release(&pvec);
1341 				return -EIO;
1342 			}
1343 
1344 			if (!IS_DNODE(page) || !is_cold_node(page))
1345 				continue;
1346 			if (ino_of_node(page) != ino)
1347 				continue;
1348 
1349 			lock_page(page);
1350 
1351 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1352 continue_unlock:
1353 				unlock_page(page);
1354 				continue;
1355 			}
1356 			if (ino_of_node(page) != ino)
1357 				goto continue_unlock;
1358 
1359 			if (!PageDirty(page) && page != last_page) {
1360 				/* someone wrote it for us */
1361 				goto continue_unlock;
1362 			}
1363 
1364 			f2fs_wait_on_page_writeback(page, NODE, true);
1365 			BUG_ON(PageWriteback(page));
1366 
1367 			if (!atomic || page == last_page) {
1368 				set_fsync_mark(page, 1);
1369 				if (IS_INODE(page)) {
1370 					if (is_inode_flag_set(inode,
1371 								FI_DIRTY_INODE))
1372 						update_inode(inode, page);
1373 					set_dentry_mark(page,
1374 						need_dentry_mark(sbi, ino));
1375 				}
1376 				/*  may be written by other thread */
1377 				if (!PageDirty(page))
1378 					set_page_dirty(page);
1379 			}
1380 
1381 			if (!clear_page_dirty_for_io(page))
1382 				goto continue_unlock;
1383 
1384 			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1385 			if (ret) {
1386 				unlock_page(page);
1387 				f2fs_put_page(last_page, 0);
1388 				break;
1389 			} else {
1390 				nwritten++;
1391 			}
1392 
1393 			if (page == last_page) {
1394 				f2fs_put_page(page, 0);
1395 				marked = true;
1396 				break;
1397 			}
1398 		}
1399 		pagevec_release(&pvec);
1400 		cond_resched();
1401 
1402 		if (ret || marked)
1403 			break;
1404 	}
1405 	if (!ret && atomic && !marked) {
1406 		f2fs_msg(sbi->sb, KERN_DEBUG,
1407 			"Retry to write fsync mark: ino=%u, idx=%lx",
1408 					ino, last_page->index);
1409 		lock_page(last_page);
1410 		set_page_dirty(last_page);
1411 		unlock_page(last_page);
1412 		goto retry;
1413 	}
1414 
1415 	if (nwritten)
1416 		f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1417 	return ret ? -EIO: 0;
1418 }
1419 
1420 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1421 {
1422 	pgoff_t index, end;
1423 	struct pagevec pvec;
1424 	int step = 0;
1425 	int nwritten = 0;
1426 	int ret = 0;
1427 
1428 	pagevec_init(&pvec, 0);
1429 
1430 next_step:
1431 	index = 0;
1432 	end = ULONG_MAX;
1433 
1434 	while (index <= end) {
1435 		int i, nr_pages;
1436 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1437 				PAGECACHE_TAG_DIRTY,
1438 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1439 		if (nr_pages == 0)
1440 			break;
1441 
1442 		for (i = 0; i < nr_pages; i++) {
1443 			struct page *page = pvec.pages[i];
1444 
1445 			if (unlikely(f2fs_cp_error(sbi))) {
1446 				pagevec_release(&pvec);
1447 				ret = -EIO;
1448 				goto out;
1449 			}
1450 
1451 			/*
1452 			 * flushing sequence with step:
1453 			 * 0. indirect nodes
1454 			 * 1. dentry dnodes
1455 			 * 2. file dnodes
1456 			 */
1457 			if (step == 0 && IS_DNODE(page))
1458 				continue;
1459 			if (step == 1 && (!IS_DNODE(page) ||
1460 						is_cold_node(page)))
1461 				continue;
1462 			if (step == 2 && (!IS_DNODE(page) ||
1463 						!is_cold_node(page)))
1464 				continue;
1465 lock_node:
1466 			if (!trylock_page(page))
1467 				continue;
1468 
1469 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1470 continue_unlock:
1471 				unlock_page(page);
1472 				continue;
1473 			}
1474 
1475 			if (!PageDirty(page)) {
1476 				/* someone wrote it for us */
1477 				goto continue_unlock;
1478 			}
1479 
1480 			/* flush inline_data */
1481 			if (is_inline_node(page)) {
1482 				clear_inline_node(page);
1483 				unlock_page(page);
1484 				flush_inline_data(sbi, ino_of_node(page));
1485 				goto lock_node;
1486 			}
1487 
1488 			f2fs_wait_on_page_writeback(page, NODE, true);
1489 
1490 			BUG_ON(PageWriteback(page));
1491 			if (!clear_page_dirty_for_io(page))
1492 				goto continue_unlock;
1493 
1494 			set_fsync_mark(page, 0);
1495 			set_dentry_mark(page, 0);
1496 
1497 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1498 				unlock_page(page);
1499 			else
1500 				nwritten++;
1501 
1502 			if (--wbc->nr_to_write == 0)
1503 				break;
1504 		}
1505 		pagevec_release(&pvec);
1506 		cond_resched();
1507 
1508 		if (wbc->nr_to_write == 0) {
1509 			step = 2;
1510 			break;
1511 		}
1512 	}
1513 
1514 	if (step < 2) {
1515 		step++;
1516 		goto next_step;
1517 	}
1518 out:
1519 	if (nwritten)
1520 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1521 	return ret;
1522 }
1523 
1524 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1525 {
1526 	pgoff_t index = 0, end = ULONG_MAX;
1527 	struct pagevec pvec;
1528 	int ret2, ret = 0;
1529 
1530 	pagevec_init(&pvec, 0);
1531 
1532 	while (index <= end) {
1533 		int i, nr_pages;
1534 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1535 				PAGECACHE_TAG_WRITEBACK,
1536 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1537 		if (nr_pages == 0)
1538 			break;
1539 
1540 		for (i = 0; i < nr_pages; i++) {
1541 			struct page *page = pvec.pages[i];
1542 
1543 			/* until radix tree lookup accepts end_index */
1544 			if (unlikely(page->index > end))
1545 				continue;
1546 
1547 			if (ino && ino_of_node(page) == ino) {
1548 				f2fs_wait_on_page_writeback(page, NODE, true);
1549 				if (TestClearPageError(page))
1550 					ret = -EIO;
1551 			}
1552 		}
1553 		pagevec_release(&pvec);
1554 		cond_resched();
1555 	}
1556 
1557 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1558 	if (!ret)
1559 		ret = ret2;
1560 	return ret;
1561 }
1562 
1563 static int f2fs_write_node_page(struct page *page,
1564 				struct writeback_control *wbc)
1565 {
1566 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1567 	nid_t nid;
1568 	struct node_info ni;
1569 	struct f2fs_io_info fio = {
1570 		.sbi = sbi,
1571 		.type = NODE,
1572 		.op = REQ_OP_WRITE,
1573 		.op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1574 		.page = page,
1575 		.encrypted_page = NULL,
1576 	};
1577 
1578 	trace_f2fs_writepage(page, NODE);
1579 
1580 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1581 		goto redirty_out;
1582 	if (unlikely(f2fs_cp_error(sbi)))
1583 		goto redirty_out;
1584 
1585 	/* get old block addr of this node page */
1586 	nid = nid_of_node(page);
1587 	f2fs_bug_on(sbi, page->index != nid);
1588 
1589 	if (wbc->for_reclaim) {
1590 		if (!down_read_trylock(&sbi->node_write))
1591 			goto redirty_out;
1592 	} else {
1593 		down_read(&sbi->node_write);
1594 	}
1595 
1596 	get_node_info(sbi, nid, &ni);
1597 
1598 	/* This page is already truncated */
1599 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1600 		ClearPageUptodate(page);
1601 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 		up_read(&sbi->node_write);
1603 		unlock_page(page);
1604 		return 0;
1605 	}
1606 
1607 	set_page_writeback(page);
1608 	fio.old_blkaddr = ni.blk_addr;
1609 	write_node_page(nid, &fio);
1610 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1611 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1612 	up_read(&sbi->node_write);
1613 
1614 	if (wbc->for_reclaim)
1615 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1616 
1617 	unlock_page(page);
1618 
1619 	if (unlikely(f2fs_cp_error(sbi)))
1620 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1621 
1622 	return 0;
1623 
1624 redirty_out:
1625 	redirty_page_for_writepage(wbc, page);
1626 	return AOP_WRITEPAGE_ACTIVATE;
1627 }
1628 
1629 static int f2fs_write_node_pages(struct address_space *mapping,
1630 			    struct writeback_control *wbc)
1631 {
1632 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1633 	struct blk_plug plug;
1634 	long diff;
1635 
1636 	/* balancing f2fs's metadata in background */
1637 	f2fs_balance_fs_bg(sbi);
1638 
1639 	/* collect a number of dirty node pages and write together */
1640 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1641 		goto skip_write;
1642 
1643 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1644 
1645 	diff = nr_pages_to_write(sbi, NODE, wbc);
1646 	wbc->sync_mode = WB_SYNC_NONE;
1647 	blk_start_plug(&plug);
1648 	sync_node_pages(sbi, wbc);
1649 	blk_finish_plug(&plug);
1650 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1651 	return 0;
1652 
1653 skip_write:
1654 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1655 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1656 	return 0;
1657 }
1658 
1659 static int f2fs_set_node_page_dirty(struct page *page)
1660 {
1661 	trace_f2fs_set_page_dirty(page, NODE);
1662 
1663 	if (!PageUptodate(page))
1664 		SetPageUptodate(page);
1665 	if (!PageDirty(page)) {
1666 		f2fs_set_page_dirty_nobuffers(page);
1667 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1668 		SetPagePrivate(page);
1669 		f2fs_trace_pid(page);
1670 		return 1;
1671 	}
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Structure of the f2fs node operations
1677  */
1678 const struct address_space_operations f2fs_node_aops = {
1679 	.writepage	= f2fs_write_node_page,
1680 	.writepages	= f2fs_write_node_pages,
1681 	.set_page_dirty	= f2fs_set_node_page_dirty,
1682 	.invalidatepage	= f2fs_invalidate_page,
1683 	.releasepage	= f2fs_release_page,
1684 #ifdef CONFIG_MIGRATION
1685 	.migratepage    = f2fs_migrate_page,
1686 #endif
1687 };
1688 
1689 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1690 						nid_t n)
1691 {
1692 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1693 }
1694 
1695 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1696 						struct free_nid *i)
1697 {
1698 	list_del(&i->list);
1699 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1700 }
1701 
1702 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1703 {
1704 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1705 	struct free_nid *i;
1706 	struct nat_entry *ne;
1707 
1708 	if (!available_free_memory(sbi, FREE_NIDS))
1709 		return -1;
1710 
1711 	/* 0 nid should not be used */
1712 	if (unlikely(nid == 0))
1713 		return 0;
1714 
1715 	if (build) {
1716 		/* do not add allocated nids */
1717 		ne = __lookup_nat_cache(nm_i, nid);
1718 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1719 				nat_get_blkaddr(ne) != NULL_ADDR))
1720 			return 0;
1721 	}
1722 
1723 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1724 	i->nid = nid;
1725 	i->state = NID_NEW;
1726 
1727 	if (radix_tree_preload(GFP_NOFS)) {
1728 		kmem_cache_free(free_nid_slab, i);
1729 		return 0;
1730 	}
1731 
1732 	spin_lock(&nm_i->free_nid_list_lock);
1733 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1734 		spin_unlock(&nm_i->free_nid_list_lock);
1735 		radix_tree_preload_end();
1736 		kmem_cache_free(free_nid_slab, i);
1737 		return 0;
1738 	}
1739 	list_add_tail(&i->list, &nm_i->free_nid_list);
1740 	nm_i->fcnt++;
1741 	spin_unlock(&nm_i->free_nid_list_lock);
1742 	radix_tree_preload_end();
1743 	return 1;
1744 }
1745 
1746 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1747 {
1748 	struct free_nid *i;
1749 	bool need_free = false;
1750 
1751 	spin_lock(&nm_i->free_nid_list_lock);
1752 	i = __lookup_free_nid_list(nm_i, nid);
1753 	if (i && i->state == NID_NEW) {
1754 		__del_from_free_nid_list(nm_i, i);
1755 		nm_i->fcnt--;
1756 		need_free = true;
1757 	}
1758 	spin_unlock(&nm_i->free_nid_list_lock);
1759 
1760 	if (need_free)
1761 		kmem_cache_free(free_nid_slab, i);
1762 }
1763 
1764 static void scan_nat_page(struct f2fs_sb_info *sbi,
1765 			struct page *nat_page, nid_t start_nid)
1766 {
1767 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1768 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1769 	block_t blk_addr;
1770 	int i;
1771 
1772 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1773 
1774 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1775 
1776 		if (unlikely(start_nid >= nm_i->max_nid))
1777 			break;
1778 
1779 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1780 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1781 		if (blk_addr == NULL_ADDR) {
1782 			if (add_free_nid(sbi, start_nid, true) < 0)
1783 				break;
1784 		}
1785 	}
1786 }
1787 
1788 void build_free_nids(struct f2fs_sb_info *sbi)
1789 {
1790 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1791 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1792 	struct f2fs_journal *journal = curseg->journal;
1793 	int i = 0;
1794 	nid_t nid = nm_i->next_scan_nid;
1795 
1796 	/* Enough entries */
1797 	if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1798 		return;
1799 
1800 	/* readahead nat pages to be scanned */
1801 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1802 							META_NAT, true);
1803 
1804 	down_read(&nm_i->nat_tree_lock);
1805 
1806 	while (1) {
1807 		struct page *page = get_current_nat_page(sbi, nid);
1808 
1809 		scan_nat_page(sbi, page, nid);
1810 		f2fs_put_page(page, 1);
1811 
1812 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1813 		if (unlikely(nid >= nm_i->max_nid))
1814 			nid = 0;
1815 
1816 		if (++i >= FREE_NID_PAGES)
1817 			break;
1818 	}
1819 
1820 	/* go to the next free nat pages to find free nids abundantly */
1821 	nm_i->next_scan_nid = nid;
1822 
1823 	/* find free nids from current sum_pages */
1824 	down_read(&curseg->journal_rwsem);
1825 	for (i = 0; i < nats_in_cursum(journal); i++) {
1826 		block_t addr;
1827 
1828 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1829 		nid = le32_to_cpu(nid_in_journal(journal, i));
1830 		if (addr == NULL_ADDR)
1831 			add_free_nid(sbi, nid, true);
1832 		else
1833 			remove_free_nid(nm_i, nid);
1834 	}
1835 	up_read(&curseg->journal_rwsem);
1836 	up_read(&nm_i->nat_tree_lock);
1837 
1838 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1839 					nm_i->ra_nid_pages, META_NAT, false);
1840 }
1841 
1842 /*
1843  * If this function returns success, caller can obtain a new nid
1844  * from second parameter of this function.
1845  * The returned nid could be used ino as well as nid when inode is created.
1846  */
1847 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1848 {
1849 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1850 	struct free_nid *i = NULL;
1851 retry:
1852 #ifdef CONFIG_F2FS_FAULT_INJECTION
1853 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
1854 		return false;
1855 #endif
1856 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1857 		return false;
1858 
1859 	spin_lock(&nm_i->free_nid_list_lock);
1860 
1861 	/* We should not use stale free nids created by build_free_nids */
1862 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1863 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1864 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1865 			if (i->state == NID_NEW)
1866 				break;
1867 
1868 		f2fs_bug_on(sbi, i->state != NID_NEW);
1869 		*nid = i->nid;
1870 		i->state = NID_ALLOC;
1871 		nm_i->fcnt--;
1872 		spin_unlock(&nm_i->free_nid_list_lock);
1873 		return true;
1874 	}
1875 	spin_unlock(&nm_i->free_nid_list_lock);
1876 
1877 	/* Let's scan nat pages and its caches to get free nids */
1878 	mutex_lock(&nm_i->build_lock);
1879 	build_free_nids(sbi);
1880 	mutex_unlock(&nm_i->build_lock);
1881 	goto retry;
1882 }
1883 
1884 /*
1885  * alloc_nid() should be called prior to this function.
1886  */
1887 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1888 {
1889 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1890 	struct free_nid *i;
1891 
1892 	spin_lock(&nm_i->free_nid_list_lock);
1893 	i = __lookup_free_nid_list(nm_i, nid);
1894 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1895 	__del_from_free_nid_list(nm_i, i);
1896 	spin_unlock(&nm_i->free_nid_list_lock);
1897 
1898 	kmem_cache_free(free_nid_slab, i);
1899 }
1900 
1901 /*
1902  * alloc_nid() should be called prior to this function.
1903  */
1904 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1905 {
1906 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1907 	struct free_nid *i;
1908 	bool need_free = false;
1909 
1910 	if (!nid)
1911 		return;
1912 
1913 	spin_lock(&nm_i->free_nid_list_lock);
1914 	i = __lookup_free_nid_list(nm_i, nid);
1915 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1916 	if (!available_free_memory(sbi, FREE_NIDS)) {
1917 		__del_from_free_nid_list(nm_i, i);
1918 		need_free = true;
1919 	} else {
1920 		i->state = NID_NEW;
1921 		nm_i->fcnt++;
1922 	}
1923 	spin_unlock(&nm_i->free_nid_list_lock);
1924 
1925 	if (need_free)
1926 		kmem_cache_free(free_nid_slab, i);
1927 }
1928 
1929 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1930 {
1931 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1932 	struct free_nid *i, *next;
1933 	int nr = nr_shrink;
1934 
1935 	if (nm_i->fcnt <= MAX_FREE_NIDS)
1936 		return 0;
1937 
1938 	if (!mutex_trylock(&nm_i->build_lock))
1939 		return 0;
1940 
1941 	spin_lock(&nm_i->free_nid_list_lock);
1942 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1943 		if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1944 			break;
1945 		if (i->state == NID_ALLOC)
1946 			continue;
1947 		__del_from_free_nid_list(nm_i, i);
1948 		kmem_cache_free(free_nid_slab, i);
1949 		nm_i->fcnt--;
1950 		nr_shrink--;
1951 	}
1952 	spin_unlock(&nm_i->free_nid_list_lock);
1953 	mutex_unlock(&nm_i->build_lock);
1954 
1955 	return nr - nr_shrink;
1956 }
1957 
1958 void recover_inline_xattr(struct inode *inode, struct page *page)
1959 {
1960 	void *src_addr, *dst_addr;
1961 	size_t inline_size;
1962 	struct page *ipage;
1963 	struct f2fs_inode *ri;
1964 
1965 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1966 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1967 
1968 	ri = F2FS_INODE(page);
1969 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1970 		clear_inode_flag(inode, FI_INLINE_XATTR);
1971 		goto update_inode;
1972 	}
1973 
1974 	dst_addr = inline_xattr_addr(ipage);
1975 	src_addr = inline_xattr_addr(page);
1976 	inline_size = inline_xattr_size(inode);
1977 
1978 	f2fs_wait_on_page_writeback(ipage, NODE, true);
1979 	memcpy(dst_addr, src_addr, inline_size);
1980 update_inode:
1981 	update_inode(inode, ipage);
1982 	f2fs_put_page(ipage, 1);
1983 }
1984 
1985 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1986 {
1987 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1988 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1989 	nid_t new_xnid = nid_of_node(page);
1990 	struct node_info ni;
1991 
1992 	/* 1: invalidate the previous xattr nid */
1993 	if (!prev_xnid)
1994 		goto recover_xnid;
1995 
1996 	/* Deallocate node address */
1997 	get_node_info(sbi, prev_xnid, &ni);
1998 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1999 	invalidate_blocks(sbi, ni.blk_addr);
2000 	dec_valid_node_count(sbi, inode);
2001 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2002 
2003 recover_xnid:
2004 	/* 2: allocate new xattr nid */
2005 	if (unlikely(!inc_valid_node_count(sbi, inode)))
2006 		f2fs_bug_on(sbi, 1);
2007 
2008 	remove_free_nid(NM_I(sbi), new_xnid);
2009 	get_node_info(sbi, new_xnid, &ni);
2010 	ni.ino = inode->i_ino;
2011 	set_node_addr(sbi, &ni, NEW_ADDR, false);
2012 	f2fs_i_xnid_write(inode, new_xnid);
2013 
2014 	/* 3: update xattr blkaddr */
2015 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2016 	set_node_addr(sbi, &ni, blkaddr, false);
2017 }
2018 
2019 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2020 {
2021 	struct f2fs_inode *src, *dst;
2022 	nid_t ino = ino_of_node(page);
2023 	struct node_info old_ni, new_ni;
2024 	struct page *ipage;
2025 
2026 	get_node_info(sbi, ino, &old_ni);
2027 
2028 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2029 		return -EINVAL;
2030 retry:
2031 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2032 	if (!ipage) {
2033 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2034 		goto retry;
2035 	}
2036 
2037 	/* Should not use this inode from free nid list */
2038 	remove_free_nid(NM_I(sbi), ino);
2039 
2040 	if (!PageUptodate(ipage))
2041 		SetPageUptodate(ipage);
2042 	fill_node_footer(ipage, ino, ino, 0, true);
2043 
2044 	src = F2FS_INODE(page);
2045 	dst = F2FS_INODE(ipage);
2046 
2047 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2048 	dst->i_size = 0;
2049 	dst->i_blocks = cpu_to_le64(1);
2050 	dst->i_links = cpu_to_le32(1);
2051 	dst->i_xattr_nid = 0;
2052 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2053 
2054 	new_ni = old_ni;
2055 	new_ni.ino = ino;
2056 
2057 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2058 		WARN_ON(1);
2059 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2060 	inc_valid_inode_count(sbi);
2061 	set_page_dirty(ipage);
2062 	f2fs_put_page(ipage, 1);
2063 	return 0;
2064 }
2065 
2066 int restore_node_summary(struct f2fs_sb_info *sbi,
2067 			unsigned int segno, struct f2fs_summary_block *sum)
2068 {
2069 	struct f2fs_node *rn;
2070 	struct f2fs_summary *sum_entry;
2071 	block_t addr;
2072 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
2073 	int i, idx, last_offset, nrpages;
2074 
2075 	/* scan the node segment */
2076 	last_offset = sbi->blocks_per_seg;
2077 	addr = START_BLOCK(sbi, segno);
2078 	sum_entry = &sum->entries[0];
2079 
2080 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2081 		nrpages = min(last_offset - i, bio_blocks);
2082 
2083 		/* readahead node pages */
2084 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2085 
2086 		for (idx = addr; idx < addr + nrpages; idx++) {
2087 			struct page *page = get_tmp_page(sbi, idx);
2088 
2089 			rn = F2FS_NODE(page);
2090 			sum_entry->nid = rn->footer.nid;
2091 			sum_entry->version = 0;
2092 			sum_entry->ofs_in_node = 0;
2093 			sum_entry++;
2094 			f2fs_put_page(page, 1);
2095 		}
2096 
2097 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2098 							addr + nrpages);
2099 	}
2100 	return 0;
2101 }
2102 
2103 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2104 {
2105 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2106 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2107 	struct f2fs_journal *journal = curseg->journal;
2108 	int i;
2109 
2110 	down_write(&curseg->journal_rwsem);
2111 	for (i = 0; i < nats_in_cursum(journal); i++) {
2112 		struct nat_entry *ne;
2113 		struct f2fs_nat_entry raw_ne;
2114 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2115 
2116 		raw_ne = nat_in_journal(journal, i);
2117 
2118 		ne = __lookup_nat_cache(nm_i, nid);
2119 		if (!ne) {
2120 			ne = grab_nat_entry(nm_i, nid);
2121 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2122 		}
2123 		__set_nat_cache_dirty(nm_i, ne);
2124 	}
2125 	update_nats_in_cursum(journal, -i);
2126 	up_write(&curseg->journal_rwsem);
2127 }
2128 
2129 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2130 						struct list_head *head, int max)
2131 {
2132 	struct nat_entry_set *cur;
2133 
2134 	if (nes->entry_cnt >= max)
2135 		goto add_out;
2136 
2137 	list_for_each_entry(cur, head, set_list) {
2138 		if (cur->entry_cnt >= nes->entry_cnt) {
2139 			list_add(&nes->set_list, cur->set_list.prev);
2140 			return;
2141 		}
2142 	}
2143 add_out:
2144 	list_add_tail(&nes->set_list, head);
2145 }
2146 
2147 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2148 					struct nat_entry_set *set)
2149 {
2150 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2151 	struct f2fs_journal *journal = curseg->journal;
2152 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2153 	bool to_journal = true;
2154 	struct f2fs_nat_block *nat_blk;
2155 	struct nat_entry *ne, *cur;
2156 	struct page *page = NULL;
2157 
2158 	/*
2159 	 * there are two steps to flush nat entries:
2160 	 * #1, flush nat entries to journal in current hot data summary block.
2161 	 * #2, flush nat entries to nat page.
2162 	 */
2163 	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2164 		to_journal = false;
2165 
2166 	if (to_journal) {
2167 		down_write(&curseg->journal_rwsem);
2168 	} else {
2169 		page = get_next_nat_page(sbi, start_nid);
2170 		nat_blk = page_address(page);
2171 		f2fs_bug_on(sbi, !nat_blk);
2172 	}
2173 
2174 	/* flush dirty nats in nat entry set */
2175 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2176 		struct f2fs_nat_entry *raw_ne;
2177 		nid_t nid = nat_get_nid(ne);
2178 		int offset;
2179 
2180 		if (nat_get_blkaddr(ne) == NEW_ADDR)
2181 			continue;
2182 
2183 		if (to_journal) {
2184 			offset = lookup_journal_in_cursum(journal,
2185 							NAT_JOURNAL, nid, 1);
2186 			f2fs_bug_on(sbi, offset < 0);
2187 			raw_ne = &nat_in_journal(journal, offset);
2188 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2189 		} else {
2190 			raw_ne = &nat_blk->entries[nid - start_nid];
2191 		}
2192 		raw_nat_from_node_info(raw_ne, &ne->ni);
2193 		nat_reset_flag(ne);
2194 		__clear_nat_cache_dirty(NM_I(sbi), ne);
2195 		if (nat_get_blkaddr(ne) == NULL_ADDR)
2196 			add_free_nid(sbi, nid, false);
2197 	}
2198 
2199 	if (to_journal)
2200 		up_write(&curseg->journal_rwsem);
2201 	else
2202 		f2fs_put_page(page, 1);
2203 
2204 	f2fs_bug_on(sbi, set->entry_cnt);
2205 
2206 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2207 	kmem_cache_free(nat_entry_set_slab, set);
2208 }
2209 
2210 /*
2211  * This function is called during the checkpointing process.
2212  */
2213 void flush_nat_entries(struct f2fs_sb_info *sbi)
2214 {
2215 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2216 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2217 	struct f2fs_journal *journal = curseg->journal;
2218 	struct nat_entry_set *setvec[SETVEC_SIZE];
2219 	struct nat_entry_set *set, *tmp;
2220 	unsigned int found;
2221 	nid_t set_idx = 0;
2222 	LIST_HEAD(sets);
2223 
2224 	if (!nm_i->dirty_nat_cnt)
2225 		return;
2226 
2227 	down_write(&nm_i->nat_tree_lock);
2228 
2229 	/*
2230 	 * if there are no enough space in journal to store dirty nat
2231 	 * entries, remove all entries from journal and merge them
2232 	 * into nat entry set.
2233 	 */
2234 	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2235 		remove_nats_in_journal(sbi);
2236 
2237 	while ((found = __gang_lookup_nat_set(nm_i,
2238 					set_idx, SETVEC_SIZE, setvec))) {
2239 		unsigned idx;
2240 		set_idx = setvec[found - 1]->set + 1;
2241 		for (idx = 0; idx < found; idx++)
2242 			__adjust_nat_entry_set(setvec[idx], &sets,
2243 						MAX_NAT_JENTRIES(journal));
2244 	}
2245 
2246 	/* flush dirty nats in nat entry set */
2247 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2248 		__flush_nat_entry_set(sbi, set);
2249 
2250 	up_write(&nm_i->nat_tree_lock);
2251 
2252 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2253 }
2254 
2255 static int init_node_manager(struct f2fs_sb_info *sbi)
2256 {
2257 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2258 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2259 	unsigned char *version_bitmap;
2260 	unsigned int nat_segs, nat_blocks;
2261 
2262 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2263 
2264 	/* segment_count_nat includes pair segment so divide to 2. */
2265 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2266 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2267 
2268 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2269 
2270 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2271 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2272 	nm_i->fcnt = 0;
2273 	nm_i->nat_cnt = 0;
2274 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2275 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2276 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2277 
2278 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2279 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2280 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2281 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2282 	INIT_LIST_HEAD(&nm_i->nat_entries);
2283 
2284 	mutex_init(&nm_i->build_lock);
2285 	spin_lock_init(&nm_i->free_nid_list_lock);
2286 	init_rwsem(&nm_i->nat_tree_lock);
2287 
2288 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2289 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2290 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2291 	if (!version_bitmap)
2292 		return -EFAULT;
2293 
2294 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2295 					GFP_KERNEL);
2296 	if (!nm_i->nat_bitmap)
2297 		return -ENOMEM;
2298 	return 0;
2299 }
2300 
2301 int build_node_manager(struct f2fs_sb_info *sbi)
2302 {
2303 	int err;
2304 
2305 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2306 	if (!sbi->nm_info)
2307 		return -ENOMEM;
2308 
2309 	err = init_node_manager(sbi);
2310 	if (err)
2311 		return err;
2312 
2313 	build_free_nids(sbi);
2314 	return 0;
2315 }
2316 
2317 void destroy_node_manager(struct f2fs_sb_info *sbi)
2318 {
2319 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2320 	struct free_nid *i, *next_i;
2321 	struct nat_entry *natvec[NATVEC_SIZE];
2322 	struct nat_entry_set *setvec[SETVEC_SIZE];
2323 	nid_t nid = 0;
2324 	unsigned int found;
2325 
2326 	if (!nm_i)
2327 		return;
2328 
2329 	/* destroy free nid list */
2330 	spin_lock(&nm_i->free_nid_list_lock);
2331 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2332 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2333 		__del_from_free_nid_list(nm_i, i);
2334 		nm_i->fcnt--;
2335 		spin_unlock(&nm_i->free_nid_list_lock);
2336 		kmem_cache_free(free_nid_slab, i);
2337 		spin_lock(&nm_i->free_nid_list_lock);
2338 	}
2339 	f2fs_bug_on(sbi, nm_i->fcnt);
2340 	spin_unlock(&nm_i->free_nid_list_lock);
2341 
2342 	/* destroy nat cache */
2343 	down_write(&nm_i->nat_tree_lock);
2344 	while ((found = __gang_lookup_nat_cache(nm_i,
2345 					nid, NATVEC_SIZE, natvec))) {
2346 		unsigned idx;
2347 
2348 		nid = nat_get_nid(natvec[found - 1]) + 1;
2349 		for (idx = 0; idx < found; idx++)
2350 			__del_from_nat_cache(nm_i, natvec[idx]);
2351 	}
2352 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2353 
2354 	/* destroy nat set cache */
2355 	nid = 0;
2356 	while ((found = __gang_lookup_nat_set(nm_i,
2357 					nid, SETVEC_SIZE, setvec))) {
2358 		unsigned idx;
2359 
2360 		nid = setvec[found - 1]->set + 1;
2361 		for (idx = 0; idx < found; idx++) {
2362 			/* entry_cnt is not zero, when cp_error was occurred */
2363 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2364 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2365 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2366 		}
2367 	}
2368 	up_write(&nm_i->nat_tree_lock);
2369 
2370 	kfree(nm_i->nat_bitmap);
2371 	sbi->nm_info = NULL;
2372 	kfree(nm_i);
2373 }
2374 
2375 int __init create_node_manager_caches(void)
2376 {
2377 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2378 			sizeof(struct nat_entry));
2379 	if (!nat_entry_slab)
2380 		goto fail;
2381 
2382 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2383 			sizeof(struct free_nid));
2384 	if (!free_nid_slab)
2385 		goto destroy_nat_entry;
2386 
2387 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2388 			sizeof(struct nat_entry_set));
2389 	if (!nat_entry_set_slab)
2390 		goto destroy_free_nid;
2391 	return 0;
2392 
2393 destroy_free_nid:
2394 	kmem_cache_destroy(free_nid_slab);
2395 destroy_nat_entry:
2396 	kmem_cache_destroy(nat_entry_slab);
2397 fail:
2398 	return -ENOMEM;
2399 }
2400 
2401 void destroy_node_manager_caches(void)
2402 {
2403 	kmem_cache_destroy(nat_entry_set_slab);
2404 	kmem_cache_destroy(free_nid_slab);
2405 	kmem_cache_destroy(nat_entry_slab);
2406 }
2407