xref: /openbmc/linux/fs/f2fs/node.c (revision bc000245)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 
27 static void clear_node_page_dirty(struct page *page)
28 {
29 	struct address_space *mapping = page->mapping;
30 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 	unsigned int long flags;
32 
33 	if (PageDirty(page)) {
34 		spin_lock_irqsave(&mapping->tree_lock, flags);
35 		radix_tree_tag_clear(&mapping->page_tree,
36 				page_index(page),
37 				PAGECACHE_TAG_DIRTY);
38 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
39 
40 		clear_page_dirty_for_io(page);
41 		dec_page_count(sbi, F2FS_DIRTY_NODES);
42 	}
43 	ClearPageUptodate(page);
44 }
45 
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 	pgoff_t index = current_nat_addr(sbi, nid);
49 	return get_meta_page(sbi, index);
50 }
51 
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 	struct page *src_page;
55 	struct page *dst_page;
56 	pgoff_t src_off;
57 	pgoff_t dst_off;
58 	void *src_addr;
59 	void *dst_addr;
60 	struct f2fs_nm_info *nm_i = NM_I(sbi);
61 
62 	src_off = current_nat_addr(sbi, nid);
63 	dst_off = next_nat_addr(sbi, src_off);
64 
65 	/* get current nat block page with lock */
66 	src_page = get_meta_page(sbi, src_off);
67 
68 	/* Dirty src_page means that it is already the new target NAT page. */
69 	if (PageDirty(src_page))
70 		return src_page;
71 
72 	dst_page = grab_meta_page(sbi, dst_off);
73 
74 	src_addr = page_address(src_page);
75 	dst_addr = page_address(dst_page);
76 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 	set_page_dirty(dst_page);
78 	f2fs_put_page(src_page, 1);
79 
80 	set_to_next_nat(nm_i, nid);
81 
82 	return dst_page;
83 }
84 
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 	struct address_space *mapping = sbi->meta_inode->i_mapping;
91 	struct f2fs_nm_info *nm_i = NM_I(sbi);
92 	struct blk_plug plug;
93 	struct page *page;
94 	pgoff_t index;
95 	int i;
96 
97 	blk_start_plug(&plug);
98 
99 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 		if (nid >= nm_i->max_nid)
101 			nid = 0;
102 		index = current_nat_addr(sbi, nid);
103 
104 		page = grab_cache_page(mapping, index);
105 		if (!page)
106 			continue;
107 		if (PageUptodate(page)) {
108 			f2fs_put_page(page, 1);
109 			continue;
110 		}
111 		if (f2fs_readpage(sbi, page, index, READ))
112 			continue;
113 
114 		f2fs_put_page(page, 0);
115 	}
116 	blk_finish_plug(&plug);
117 }
118 
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121 	return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123 
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 		nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129 
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132 	list_del(&e->list);
133 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 	nm_i->nat_cnt--;
135 	kmem_cache_free(nat_entry_slab, e);
136 }
137 
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct f2fs_nm_info *nm_i = NM_I(sbi);
141 	struct nat_entry *e;
142 	int is_cp = 1;
143 
144 	read_lock(&nm_i->nat_tree_lock);
145 	e = __lookup_nat_cache(nm_i, nid);
146 	if (e && !e->checkpointed)
147 		is_cp = 0;
148 	read_unlock(&nm_i->nat_tree_lock);
149 	return is_cp;
150 }
151 
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154 	struct nat_entry *new;
155 
156 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 	if (!new)
158 		return NULL;
159 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 		kmem_cache_free(nat_entry_slab, new);
161 		return NULL;
162 	}
163 	memset(new, 0, sizeof(struct nat_entry));
164 	nat_set_nid(new, nid);
165 	list_add_tail(&new->list, &nm_i->nat_entries);
166 	nm_i->nat_cnt++;
167 	return new;
168 }
169 
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 						struct f2fs_nat_entry *ne)
172 {
173 	struct nat_entry *e;
174 retry:
175 	write_lock(&nm_i->nat_tree_lock);
176 	e = __lookup_nat_cache(nm_i, nid);
177 	if (!e) {
178 		e = grab_nat_entry(nm_i, nid);
179 		if (!e) {
180 			write_unlock(&nm_i->nat_tree_lock);
181 			goto retry;
182 		}
183 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 		nat_set_ino(e, le32_to_cpu(ne->ino));
185 		nat_set_version(e, ne->version);
186 		e->checkpointed = true;
187 	}
188 	write_unlock(&nm_i->nat_tree_lock);
189 }
190 
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 			block_t new_blkaddr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 	struct nat_entry *e;
196 retry:
197 	write_lock(&nm_i->nat_tree_lock);
198 	e = __lookup_nat_cache(nm_i, ni->nid);
199 	if (!e) {
200 		e = grab_nat_entry(nm_i, ni->nid);
201 		if (!e) {
202 			write_unlock(&nm_i->nat_tree_lock);
203 			goto retry;
204 		}
205 		e->ni = *ni;
206 		e->checkpointed = true;
207 		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
208 	} else if (new_blkaddr == NEW_ADDR) {
209 		/*
210 		 * when nid is reallocated,
211 		 * previous nat entry can be remained in nat cache.
212 		 * So, reinitialize it with new information.
213 		 */
214 		e->ni = *ni;
215 		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
216 	}
217 
218 	if (new_blkaddr == NEW_ADDR)
219 		e->checkpointed = false;
220 
221 	/* sanity check */
222 	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
223 	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
224 			new_blkaddr == NULL_ADDR);
225 	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
226 			new_blkaddr == NEW_ADDR);
227 	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
228 			nat_get_blkaddr(e) != NULL_ADDR &&
229 			new_blkaddr == NEW_ADDR);
230 
231 	/* increament version no as node is removed */
232 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 		unsigned char version = nat_get_version(e);
234 		nat_set_version(e, inc_node_version(version));
235 	}
236 
237 	/* change address */
238 	nat_set_blkaddr(e, new_blkaddr);
239 	__set_nat_cache_dirty(nm_i, e);
240 	write_unlock(&nm_i->nat_tree_lock);
241 }
242 
243 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
246 
247 	if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 		return 0;
249 
250 	write_lock(&nm_i->nat_tree_lock);
251 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 		struct nat_entry *ne;
253 		ne = list_first_entry(&nm_i->nat_entries,
254 					struct nat_entry, list);
255 		__del_from_nat_cache(nm_i, ne);
256 		nr_shrink--;
257 	}
258 	write_unlock(&nm_i->nat_tree_lock);
259 	return nr_shrink;
260 }
261 
262 /*
263  * This function returns always success
264  */
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267 	struct f2fs_nm_info *nm_i = NM_I(sbi);
268 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 	struct f2fs_summary_block *sum = curseg->sum_blk;
270 	nid_t start_nid = START_NID(nid);
271 	struct f2fs_nat_block *nat_blk;
272 	struct page *page = NULL;
273 	struct f2fs_nat_entry ne;
274 	struct nat_entry *e;
275 	int i;
276 
277 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 	ni->nid = nid;
279 
280 	/* Check nat cache */
281 	read_lock(&nm_i->nat_tree_lock);
282 	e = __lookup_nat_cache(nm_i, nid);
283 	if (e) {
284 		ni->ino = nat_get_ino(e);
285 		ni->blk_addr = nat_get_blkaddr(e);
286 		ni->version = nat_get_version(e);
287 	}
288 	read_unlock(&nm_i->nat_tree_lock);
289 	if (e)
290 		return;
291 
292 	/* Check current segment summary */
293 	mutex_lock(&curseg->curseg_mutex);
294 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 	if (i >= 0) {
296 		ne = nat_in_journal(sum, i);
297 		node_info_from_raw_nat(ni, &ne);
298 	}
299 	mutex_unlock(&curseg->curseg_mutex);
300 	if (i >= 0)
301 		goto cache;
302 
303 	/* Fill node_info from nat page */
304 	page = get_current_nat_page(sbi, start_nid);
305 	nat_blk = (struct f2fs_nat_block *)page_address(page);
306 	ne = nat_blk->entries[nid - start_nid];
307 	node_info_from_raw_nat(ni, &ne);
308 	f2fs_put_page(page, 1);
309 cache:
310 	/* cache nat entry */
311 	cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313 
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
318 static int get_node_path(struct f2fs_inode_info *fi, long block,
319 				int offset[4], unsigned int noffset[4])
320 {
321 	const long direct_index = ADDRS_PER_INODE(fi);
322 	const long direct_blks = ADDRS_PER_BLOCK;
323 	const long dptrs_per_blk = NIDS_PER_BLOCK;
324 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
326 	int n = 0;
327 	int level = 0;
328 
329 	noffset[0] = 0;
330 
331 	if (block < direct_index) {
332 		offset[n] = block;
333 		goto got;
334 	}
335 	block -= direct_index;
336 	if (block < direct_blks) {
337 		offset[n++] = NODE_DIR1_BLOCK;
338 		noffset[n] = 1;
339 		offset[n] = block;
340 		level = 1;
341 		goto got;
342 	}
343 	block -= direct_blks;
344 	if (block < direct_blks) {
345 		offset[n++] = NODE_DIR2_BLOCK;
346 		noffset[n] = 2;
347 		offset[n] = block;
348 		level = 1;
349 		goto got;
350 	}
351 	block -= direct_blks;
352 	if (block < indirect_blks) {
353 		offset[n++] = NODE_IND1_BLOCK;
354 		noffset[n] = 3;
355 		offset[n++] = block / direct_blks;
356 		noffset[n] = 4 + offset[n - 1];
357 		offset[n] = block % direct_blks;
358 		level = 2;
359 		goto got;
360 	}
361 	block -= indirect_blks;
362 	if (block < indirect_blks) {
363 		offset[n++] = NODE_IND2_BLOCK;
364 		noffset[n] = 4 + dptrs_per_blk;
365 		offset[n++] = block / direct_blks;
366 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
367 		offset[n] = block % direct_blks;
368 		level = 2;
369 		goto got;
370 	}
371 	block -= indirect_blks;
372 	if (block < dindirect_blks) {
373 		offset[n++] = NODE_DIND_BLOCK;
374 		noffset[n] = 5 + (dptrs_per_blk * 2);
375 		offset[n++] = block / indirect_blks;
376 		noffset[n] = 6 + (dptrs_per_blk * 2) +
377 			      offset[n - 1] * (dptrs_per_blk + 1);
378 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
379 		noffset[n] = 7 + (dptrs_per_blk * 2) +
380 			      offset[n - 2] * (dptrs_per_blk + 1) +
381 			      offset[n - 1];
382 		offset[n] = block % direct_blks;
383 		level = 3;
384 		goto got;
385 	} else {
386 		BUG();
387 	}
388 got:
389 	return level;
390 }
391 
392 /*
393  * Caller should call f2fs_put_dnode(dn).
394  * Also, it should grab and release a mutex by calling mutex_lock_op() and
395  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396  * In the case of RDONLY_NODE, we don't need to care about mutex.
397  */
398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
399 {
400 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401 	struct page *npage[4];
402 	struct page *parent;
403 	int offset[4];
404 	unsigned int noffset[4];
405 	nid_t nids[4];
406 	int level, i;
407 	int err = 0;
408 
409 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
410 
411 	nids[0] = dn->inode->i_ino;
412 	npage[0] = dn->inode_page;
413 
414 	if (!npage[0]) {
415 		npage[0] = get_node_page(sbi, nids[0]);
416 		if (IS_ERR(npage[0]))
417 			return PTR_ERR(npage[0]);
418 	}
419 	parent = npage[0];
420 	if (level != 0)
421 		nids[1] = get_nid(parent, offset[0], true);
422 	dn->inode_page = npage[0];
423 	dn->inode_page_locked = true;
424 
425 	/* get indirect or direct nodes */
426 	for (i = 1; i <= level; i++) {
427 		bool done = false;
428 
429 		if (!nids[i] && mode == ALLOC_NODE) {
430 			/* alloc new node */
431 			if (!alloc_nid(sbi, &(nids[i]))) {
432 				err = -ENOSPC;
433 				goto release_pages;
434 			}
435 
436 			dn->nid = nids[i];
437 			npage[i] = new_node_page(dn, noffset[i], NULL);
438 			if (IS_ERR(npage[i])) {
439 				alloc_nid_failed(sbi, nids[i]);
440 				err = PTR_ERR(npage[i]);
441 				goto release_pages;
442 			}
443 
444 			set_nid(parent, offset[i - 1], nids[i], i == 1);
445 			alloc_nid_done(sbi, nids[i]);
446 			done = true;
447 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
448 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
449 			if (IS_ERR(npage[i])) {
450 				err = PTR_ERR(npage[i]);
451 				goto release_pages;
452 			}
453 			done = true;
454 		}
455 		if (i == 1) {
456 			dn->inode_page_locked = false;
457 			unlock_page(parent);
458 		} else {
459 			f2fs_put_page(parent, 1);
460 		}
461 
462 		if (!done) {
463 			npage[i] = get_node_page(sbi, nids[i]);
464 			if (IS_ERR(npage[i])) {
465 				err = PTR_ERR(npage[i]);
466 				f2fs_put_page(npage[0], 0);
467 				goto release_out;
468 			}
469 		}
470 		if (i < level) {
471 			parent = npage[i];
472 			nids[i + 1] = get_nid(parent, offset[i], false);
473 		}
474 	}
475 	dn->nid = nids[level];
476 	dn->ofs_in_node = offset[level];
477 	dn->node_page = npage[level];
478 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
479 	return 0;
480 
481 release_pages:
482 	f2fs_put_page(parent, 1);
483 	if (i > 1)
484 		f2fs_put_page(npage[0], 0);
485 release_out:
486 	dn->inode_page = NULL;
487 	dn->node_page = NULL;
488 	return err;
489 }
490 
491 static void truncate_node(struct dnode_of_data *dn)
492 {
493 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494 	struct node_info ni;
495 
496 	get_node_info(sbi, dn->nid, &ni);
497 	if (dn->inode->i_blocks == 0) {
498 		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
499 		goto invalidate;
500 	}
501 	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
502 
503 	/* Deallocate node address */
504 	invalidate_blocks(sbi, ni.blk_addr);
505 	dec_valid_node_count(sbi, dn->inode, 1);
506 	set_node_addr(sbi, &ni, NULL_ADDR);
507 
508 	if (dn->nid == dn->inode->i_ino) {
509 		remove_orphan_inode(sbi, dn->nid);
510 		dec_valid_inode_count(sbi);
511 	} else {
512 		sync_inode_page(dn);
513 	}
514 invalidate:
515 	clear_node_page_dirty(dn->node_page);
516 	F2FS_SET_SB_DIRT(sbi);
517 
518 	f2fs_put_page(dn->node_page, 1);
519 	dn->node_page = NULL;
520 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
521 }
522 
523 static int truncate_dnode(struct dnode_of_data *dn)
524 {
525 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
526 	struct page *page;
527 
528 	if (dn->nid == 0)
529 		return 1;
530 
531 	/* get direct node */
532 	page = get_node_page(sbi, dn->nid);
533 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
534 		return 1;
535 	else if (IS_ERR(page))
536 		return PTR_ERR(page);
537 
538 	/* Make dnode_of_data for parameter */
539 	dn->node_page = page;
540 	dn->ofs_in_node = 0;
541 	truncate_data_blocks(dn);
542 	truncate_node(dn);
543 	return 1;
544 }
545 
546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
547 						int ofs, int depth)
548 {
549 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550 	struct dnode_of_data rdn = *dn;
551 	struct page *page;
552 	struct f2fs_node *rn;
553 	nid_t child_nid;
554 	unsigned int child_nofs;
555 	int freed = 0;
556 	int i, ret;
557 
558 	if (dn->nid == 0)
559 		return NIDS_PER_BLOCK + 1;
560 
561 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
562 
563 	page = get_node_page(sbi, dn->nid);
564 	if (IS_ERR(page)) {
565 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
566 		return PTR_ERR(page);
567 	}
568 
569 	rn = F2FS_NODE(page);
570 	if (depth < 3) {
571 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572 			child_nid = le32_to_cpu(rn->in.nid[i]);
573 			if (child_nid == 0)
574 				continue;
575 			rdn.nid = child_nid;
576 			ret = truncate_dnode(&rdn);
577 			if (ret < 0)
578 				goto out_err;
579 			set_nid(page, i, 0, false);
580 		}
581 	} else {
582 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584 			child_nid = le32_to_cpu(rn->in.nid[i]);
585 			if (child_nid == 0) {
586 				child_nofs += NIDS_PER_BLOCK + 1;
587 				continue;
588 			}
589 			rdn.nid = child_nid;
590 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591 			if (ret == (NIDS_PER_BLOCK + 1)) {
592 				set_nid(page, i, 0, false);
593 				child_nofs += ret;
594 			} else if (ret < 0 && ret != -ENOENT) {
595 				goto out_err;
596 			}
597 		}
598 		freed = child_nofs;
599 	}
600 
601 	if (!ofs) {
602 		/* remove current indirect node */
603 		dn->node_page = page;
604 		truncate_node(dn);
605 		freed++;
606 	} else {
607 		f2fs_put_page(page, 1);
608 	}
609 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
610 	return freed;
611 
612 out_err:
613 	f2fs_put_page(page, 1);
614 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
615 	return ret;
616 }
617 
618 static int truncate_partial_nodes(struct dnode_of_data *dn,
619 			struct f2fs_inode *ri, int *offset, int depth)
620 {
621 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622 	struct page *pages[2];
623 	nid_t nid[3];
624 	nid_t child_nid;
625 	int err = 0;
626 	int i;
627 	int idx = depth - 2;
628 
629 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
630 	if (!nid[0])
631 		return 0;
632 
633 	/* get indirect nodes in the path */
634 	for (i = 0; i < depth - 1; i++) {
635 		/* refernece count'll be increased */
636 		pages[i] = get_node_page(sbi, nid[i]);
637 		if (IS_ERR(pages[i])) {
638 			depth = i + 1;
639 			err = PTR_ERR(pages[i]);
640 			goto fail;
641 		}
642 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
643 	}
644 
645 	/* free direct nodes linked to a partial indirect node */
646 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647 		child_nid = get_nid(pages[idx], i, false);
648 		if (!child_nid)
649 			continue;
650 		dn->nid = child_nid;
651 		err = truncate_dnode(dn);
652 		if (err < 0)
653 			goto fail;
654 		set_nid(pages[idx], i, 0, false);
655 	}
656 
657 	if (offset[depth - 1] == 0) {
658 		dn->node_page = pages[idx];
659 		dn->nid = nid[idx];
660 		truncate_node(dn);
661 	} else {
662 		f2fs_put_page(pages[idx], 1);
663 	}
664 	offset[idx]++;
665 	offset[depth - 1] = 0;
666 fail:
667 	for (i = depth - 3; i >= 0; i--)
668 		f2fs_put_page(pages[i], 1);
669 
670 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
671 
672 	return err;
673 }
674 
675 /*
676  * All the block addresses of data and nodes should be nullified.
677  */
678 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
679 {
680 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681 	struct address_space *node_mapping = sbi->node_inode->i_mapping;
682 	int err = 0, cont = 1;
683 	int level, offset[4], noffset[4];
684 	unsigned int nofs = 0;
685 	struct f2fs_node *rn;
686 	struct dnode_of_data dn;
687 	struct page *page;
688 
689 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
690 
691 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
692 restart:
693 	page = get_node_page(sbi, inode->i_ino);
694 	if (IS_ERR(page)) {
695 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
696 		return PTR_ERR(page);
697 	}
698 
699 	set_new_dnode(&dn, inode, page, NULL, 0);
700 	unlock_page(page);
701 
702 	rn = F2FS_NODE(page);
703 	switch (level) {
704 	case 0:
705 	case 1:
706 		nofs = noffset[1];
707 		break;
708 	case 2:
709 		nofs = noffset[1];
710 		if (!offset[level - 1])
711 			goto skip_partial;
712 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713 		if (err < 0 && err != -ENOENT)
714 			goto fail;
715 		nofs += 1 + NIDS_PER_BLOCK;
716 		break;
717 	case 3:
718 		nofs = 5 + 2 * NIDS_PER_BLOCK;
719 		if (!offset[level - 1])
720 			goto skip_partial;
721 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722 		if (err < 0 && err != -ENOENT)
723 			goto fail;
724 		break;
725 	default:
726 		BUG();
727 	}
728 
729 skip_partial:
730 	while (cont) {
731 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
732 		switch (offset[0]) {
733 		case NODE_DIR1_BLOCK:
734 		case NODE_DIR2_BLOCK:
735 			err = truncate_dnode(&dn);
736 			break;
737 
738 		case NODE_IND1_BLOCK:
739 		case NODE_IND2_BLOCK:
740 			err = truncate_nodes(&dn, nofs, offset[1], 2);
741 			break;
742 
743 		case NODE_DIND_BLOCK:
744 			err = truncate_nodes(&dn, nofs, offset[1], 3);
745 			cont = 0;
746 			break;
747 
748 		default:
749 			BUG();
750 		}
751 		if (err < 0 && err != -ENOENT)
752 			goto fail;
753 		if (offset[1] == 0 &&
754 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
755 			lock_page(page);
756 			if (page->mapping != node_mapping) {
757 				f2fs_put_page(page, 1);
758 				goto restart;
759 			}
760 			wait_on_page_writeback(page);
761 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762 			set_page_dirty(page);
763 			unlock_page(page);
764 		}
765 		offset[1] = 0;
766 		offset[0]++;
767 		nofs += err;
768 	}
769 fail:
770 	f2fs_put_page(page, 0);
771 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
772 	return err > 0 ? 0 : err;
773 }
774 
775 int truncate_xattr_node(struct inode *inode, struct page *page)
776 {
777 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
779 	struct dnode_of_data dn;
780 	struct page *npage;
781 
782 	if (!nid)
783 		return 0;
784 
785 	npage = get_node_page(sbi, nid);
786 	if (IS_ERR(npage))
787 		return PTR_ERR(npage);
788 
789 	F2FS_I(inode)->i_xattr_nid = 0;
790 
791 	/* need to do checkpoint during fsync */
792 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
793 
794 	set_new_dnode(&dn, inode, page, npage, nid);
795 
796 	if (page)
797 		dn.inode_page_locked = 1;
798 	truncate_node(&dn);
799 	return 0;
800 }
801 
802 /*
803  * Caller should grab and release a mutex by calling mutex_lock_op() and
804  * mutex_unlock_op().
805  */
806 int remove_inode_page(struct inode *inode)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
809 	struct page *page;
810 	nid_t ino = inode->i_ino;
811 	struct dnode_of_data dn;
812 	int err;
813 
814 	page = get_node_page(sbi, ino);
815 	if (IS_ERR(page))
816 		return PTR_ERR(page);
817 
818 	err = truncate_xattr_node(inode, page);
819 	if (err) {
820 		f2fs_put_page(page, 1);
821 		return err;
822 	}
823 
824 	/* 0 is possible, after f2fs_new_inode() is failed */
825 	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826 	set_new_dnode(&dn, inode, page, page, ino);
827 	truncate_node(&dn);
828 	return 0;
829 }
830 
831 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
832 {
833 	struct dnode_of_data dn;
834 
835 	/* allocate inode page for new inode */
836 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
837 
838 	/* caller should f2fs_put_page(page, 1); */
839 	return new_node_page(&dn, 0, NULL);
840 }
841 
842 struct page *new_node_page(struct dnode_of_data *dn,
843 				unsigned int ofs, struct page *ipage)
844 {
845 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
846 	struct address_space *mapping = sbi->node_inode->i_mapping;
847 	struct node_info old_ni, new_ni;
848 	struct page *page;
849 	int err;
850 
851 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
852 		return ERR_PTR(-EPERM);
853 
854 	page = grab_cache_page(mapping, dn->nid);
855 	if (!page)
856 		return ERR_PTR(-ENOMEM);
857 
858 	if (!inc_valid_node_count(sbi, dn->inode, 1)) {
859 		err = -ENOSPC;
860 		goto fail;
861 	}
862 
863 	get_node_info(sbi, dn->nid, &old_ni);
864 
865 	/* Reinitialize old_ni with new node page */
866 	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
867 	new_ni = old_ni;
868 	new_ni.ino = dn->inode->i_ino;
869 	set_node_addr(sbi, &new_ni, NEW_ADDR);
870 
871 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
872 	set_cold_node(dn->inode, page);
873 	SetPageUptodate(page);
874 	set_page_dirty(page);
875 
876 	if (ofs == XATTR_NODE_OFFSET)
877 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
878 
879 	dn->node_page = page;
880 	if (ipage)
881 		update_inode(dn->inode, ipage);
882 	else
883 		sync_inode_page(dn);
884 	if (ofs == 0)
885 		inc_valid_inode_count(sbi);
886 
887 	return page;
888 
889 fail:
890 	clear_node_page_dirty(page);
891 	f2fs_put_page(page, 1);
892 	return ERR_PTR(err);
893 }
894 
895 /*
896  * Caller should do after getting the following values.
897  * 0: f2fs_put_page(page, 0)
898  * LOCKED_PAGE: f2fs_put_page(page, 1)
899  * error: nothing
900  */
901 static int read_node_page(struct page *page, int type)
902 {
903 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
904 	struct node_info ni;
905 
906 	get_node_info(sbi, page->index, &ni);
907 
908 	if (ni.blk_addr == NULL_ADDR) {
909 		f2fs_put_page(page, 1);
910 		return -ENOENT;
911 	}
912 
913 	if (PageUptodate(page))
914 		return LOCKED_PAGE;
915 
916 	return f2fs_readpage(sbi, page, ni.blk_addr, type);
917 }
918 
919 /*
920  * Readahead a node page
921  */
922 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
923 {
924 	struct address_space *mapping = sbi->node_inode->i_mapping;
925 	struct page *apage;
926 	int err;
927 
928 	apage = find_get_page(mapping, nid);
929 	if (apage && PageUptodate(apage)) {
930 		f2fs_put_page(apage, 0);
931 		return;
932 	}
933 	f2fs_put_page(apage, 0);
934 
935 	apage = grab_cache_page(mapping, nid);
936 	if (!apage)
937 		return;
938 
939 	err = read_node_page(apage, READA);
940 	if (err == 0)
941 		f2fs_put_page(apage, 0);
942 	else if (err == LOCKED_PAGE)
943 		f2fs_put_page(apage, 1);
944 }
945 
946 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
947 {
948 	struct address_space *mapping = sbi->node_inode->i_mapping;
949 	struct page *page;
950 	int err;
951 repeat:
952 	page = grab_cache_page(mapping, nid);
953 	if (!page)
954 		return ERR_PTR(-ENOMEM);
955 
956 	err = read_node_page(page, READ_SYNC);
957 	if (err < 0)
958 		return ERR_PTR(err);
959 	else if (err == LOCKED_PAGE)
960 		goto got_it;
961 
962 	lock_page(page);
963 	if (!PageUptodate(page)) {
964 		f2fs_put_page(page, 1);
965 		return ERR_PTR(-EIO);
966 	}
967 	if (page->mapping != mapping) {
968 		f2fs_put_page(page, 1);
969 		goto repeat;
970 	}
971 got_it:
972 	f2fs_bug_on(nid != nid_of_node(page));
973 	mark_page_accessed(page);
974 	return page;
975 }
976 
977 /*
978  * Return a locked page for the desired node page.
979  * And, readahead MAX_RA_NODE number of node pages.
980  */
981 struct page *get_node_page_ra(struct page *parent, int start)
982 {
983 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
984 	struct address_space *mapping = sbi->node_inode->i_mapping;
985 	struct blk_plug plug;
986 	struct page *page;
987 	int err, i, end;
988 	nid_t nid;
989 
990 	/* First, try getting the desired direct node. */
991 	nid = get_nid(parent, start, false);
992 	if (!nid)
993 		return ERR_PTR(-ENOENT);
994 repeat:
995 	page = grab_cache_page(mapping, nid);
996 	if (!page)
997 		return ERR_PTR(-ENOMEM);
998 
999 	err = read_node_page(page, READ_SYNC);
1000 	if (err < 0)
1001 		return ERR_PTR(err);
1002 	else if (err == LOCKED_PAGE)
1003 		goto page_hit;
1004 
1005 	blk_start_plug(&plug);
1006 
1007 	/* Then, try readahead for siblings of the desired node */
1008 	end = start + MAX_RA_NODE;
1009 	end = min(end, NIDS_PER_BLOCK);
1010 	for (i = start + 1; i < end; i++) {
1011 		nid = get_nid(parent, i, false);
1012 		if (!nid)
1013 			continue;
1014 		ra_node_page(sbi, nid);
1015 	}
1016 
1017 	blk_finish_plug(&plug);
1018 
1019 	lock_page(page);
1020 	if (page->mapping != mapping) {
1021 		f2fs_put_page(page, 1);
1022 		goto repeat;
1023 	}
1024 page_hit:
1025 	if (!PageUptodate(page)) {
1026 		f2fs_put_page(page, 1);
1027 		return ERR_PTR(-EIO);
1028 	}
1029 	mark_page_accessed(page);
1030 	return page;
1031 }
1032 
1033 void sync_inode_page(struct dnode_of_data *dn)
1034 {
1035 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1036 		update_inode(dn->inode, dn->node_page);
1037 	} else if (dn->inode_page) {
1038 		if (!dn->inode_page_locked)
1039 			lock_page(dn->inode_page);
1040 		update_inode(dn->inode, dn->inode_page);
1041 		if (!dn->inode_page_locked)
1042 			unlock_page(dn->inode_page);
1043 	} else {
1044 		update_inode_page(dn->inode);
1045 	}
1046 }
1047 
1048 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1049 					struct writeback_control *wbc)
1050 {
1051 	struct address_space *mapping = sbi->node_inode->i_mapping;
1052 	pgoff_t index, end;
1053 	struct pagevec pvec;
1054 	int step = ino ? 2 : 0;
1055 	int nwritten = 0, wrote = 0;
1056 
1057 	pagevec_init(&pvec, 0);
1058 
1059 next_step:
1060 	index = 0;
1061 	end = LONG_MAX;
1062 
1063 	while (index <= end) {
1064 		int i, nr_pages;
1065 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1066 				PAGECACHE_TAG_DIRTY,
1067 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1068 		if (nr_pages == 0)
1069 			break;
1070 
1071 		for (i = 0; i < nr_pages; i++) {
1072 			struct page *page = pvec.pages[i];
1073 
1074 			/*
1075 			 * flushing sequence with step:
1076 			 * 0. indirect nodes
1077 			 * 1. dentry dnodes
1078 			 * 2. file dnodes
1079 			 */
1080 			if (step == 0 && IS_DNODE(page))
1081 				continue;
1082 			if (step == 1 && (!IS_DNODE(page) ||
1083 						is_cold_node(page)))
1084 				continue;
1085 			if (step == 2 && (!IS_DNODE(page) ||
1086 						!is_cold_node(page)))
1087 				continue;
1088 
1089 			/*
1090 			 * If an fsync mode,
1091 			 * we should not skip writing node pages.
1092 			 */
1093 			if (ino && ino_of_node(page) == ino)
1094 				lock_page(page);
1095 			else if (!trylock_page(page))
1096 				continue;
1097 
1098 			if (unlikely(page->mapping != mapping)) {
1099 continue_unlock:
1100 				unlock_page(page);
1101 				continue;
1102 			}
1103 			if (ino && ino_of_node(page) != ino)
1104 				goto continue_unlock;
1105 
1106 			if (!PageDirty(page)) {
1107 				/* someone wrote it for us */
1108 				goto continue_unlock;
1109 			}
1110 
1111 			if (!clear_page_dirty_for_io(page))
1112 				goto continue_unlock;
1113 
1114 			/* called by fsync() */
1115 			if (ino && IS_DNODE(page)) {
1116 				int mark = !is_checkpointed_node(sbi, ino);
1117 				set_fsync_mark(page, 1);
1118 				if (IS_INODE(page))
1119 					set_dentry_mark(page, mark);
1120 				nwritten++;
1121 			} else {
1122 				set_fsync_mark(page, 0);
1123 				set_dentry_mark(page, 0);
1124 			}
1125 			mapping->a_ops->writepage(page, wbc);
1126 			wrote++;
1127 
1128 			if (--wbc->nr_to_write == 0)
1129 				break;
1130 		}
1131 		pagevec_release(&pvec);
1132 		cond_resched();
1133 
1134 		if (wbc->nr_to_write == 0) {
1135 			step = 2;
1136 			break;
1137 		}
1138 	}
1139 
1140 	if (step < 2) {
1141 		step++;
1142 		goto next_step;
1143 	}
1144 
1145 	if (wrote)
1146 		f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1147 
1148 	return nwritten;
1149 }
1150 
1151 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1152 {
1153 	struct address_space *mapping = sbi->node_inode->i_mapping;
1154 	pgoff_t index = 0, end = LONG_MAX;
1155 	struct pagevec pvec;
1156 	int nr_pages;
1157 	int ret2 = 0, ret = 0;
1158 
1159 	pagevec_init(&pvec, 0);
1160 	while ((index <= end) &&
1161 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1162 			PAGECACHE_TAG_WRITEBACK,
1163 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
1164 		unsigned i;
1165 
1166 		for (i = 0; i < nr_pages; i++) {
1167 			struct page *page = pvec.pages[i];
1168 
1169 			/* until radix tree lookup accepts end_index */
1170 			if (page->index > end)
1171 				continue;
1172 
1173 			if (ino && ino_of_node(page) == ino) {
1174 				wait_on_page_writeback(page);
1175 				if (TestClearPageError(page))
1176 					ret = -EIO;
1177 			}
1178 		}
1179 		pagevec_release(&pvec);
1180 		cond_resched();
1181 	}
1182 
1183 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
1184 		ret2 = -ENOSPC;
1185 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
1186 		ret2 = -EIO;
1187 	if (!ret)
1188 		ret = ret2;
1189 	return ret;
1190 }
1191 
1192 static int f2fs_write_node_page(struct page *page,
1193 				struct writeback_control *wbc)
1194 {
1195 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1196 	nid_t nid;
1197 	block_t new_addr;
1198 	struct node_info ni;
1199 
1200 	if (sbi->por_doing)
1201 		goto redirty_out;
1202 
1203 	wait_on_page_writeback(page);
1204 
1205 	/* get old block addr of this node page */
1206 	nid = nid_of_node(page);
1207 	f2fs_bug_on(page->index != nid);
1208 
1209 	get_node_info(sbi, nid, &ni);
1210 
1211 	/* This page is already truncated */
1212 	if (ni.blk_addr == NULL_ADDR) {
1213 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1214 		unlock_page(page);
1215 		return 0;
1216 	}
1217 
1218 	if (wbc->for_reclaim)
1219 		goto redirty_out;
1220 
1221 	mutex_lock(&sbi->node_write);
1222 	set_page_writeback(page);
1223 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1224 	set_node_addr(sbi, &ni, new_addr);
1225 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1226 	mutex_unlock(&sbi->node_write);
1227 	unlock_page(page);
1228 	return 0;
1229 
1230 redirty_out:
1231 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1232 	wbc->pages_skipped++;
1233 	set_page_dirty(page);
1234 	return AOP_WRITEPAGE_ACTIVATE;
1235 }
1236 
1237 /*
1238  * It is very important to gather dirty pages and write at once, so that we can
1239  * submit a big bio without interfering other data writes.
1240  * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1241  */
1242 #define COLLECT_DIRTY_NODES	1536
1243 static int f2fs_write_node_pages(struct address_space *mapping,
1244 			    struct writeback_control *wbc)
1245 {
1246 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1247 	long nr_to_write = wbc->nr_to_write;
1248 
1249 	/* balancing f2fs's metadata in background */
1250 	f2fs_balance_fs_bg(sbi);
1251 
1252 	/* collect a number of dirty node pages and write together */
1253 	if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1254 		return 0;
1255 
1256 	/* if mounting is failed, skip writing node pages */
1257 	wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1258 	sync_node_pages(sbi, 0, wbc);
1259 	wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1260 						wbc->nr_to_write);
1261 	return 0;
1262 }
1263 
1264 static int f2fs_set_node_page_dirty(struct page *page)
1265 {
1266 	struct address_space *mapping = page->mapping;
1267 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1268 
1269 	trace_f2fs_set_page_dirty(page, NODE);
1270 
1271 	SetPageUptodate(page);
1272 	if (!PageDirty(page)) {
1273 		__set_page_dirty_nobuffers(page);
1274 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1275 		SetPagePrivate(page);
1276 		return 1;
1277 	}
1278 	return 0;
1279 }
1280 
1281 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1282 				      unsigned int length)
1283 {
1284 	struct inode *inode = page->mapping->host;
1285 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1286 	if (PageDirty(page))
1287 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1288 	ClearPagePrivate(page);
1289 }
1290 
1291 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1292 {
1293 	ClearPagePrivate(page);
1294 	return 1;
1295 }
1296 
1297 /*
1298  * Structure of the f2fs node operations
1299  */
1300 const struct address_space_operations f2fs_node_aops = {
1301 	.writepage	= f2fs_write_node_page,
1302 	.writepages	= f2fs_write_node_pages,
1303 	.set_page_dirty	= f2fs_set_node_page_dirty,
1304 	.invalidatepage	= f2fs_invalidate_node_page,
1305 	.releasepage	= f2fs_release_node_page,
1306 };
1307 
1308 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1309 {
1310 	struct list_head *this;
1311 	struct free_nid *i;
1312 	list_for_each(this, head) {
1313 		i = list_entry(this, struct free_nid, list);
1314 		if (i->nid == n)
1315 			return i;
1316 	}
1317 	return NULL;
1318 }
1319 
1320 static void __del_from_free_nid_list(struct free_nid *i)
1321 {
1322 	list_del(&i->list);
1323 	kmem_cache_free(free_nid_slab, i);
1324 }
1325 
1326 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1327 {
1328 	struct free_nid *i;
1329 	struct nat_entry *ne;
1330 	bool allocated = false;
1331 
1332 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1333 		return -1;
1334 
1335 	/* 0 nid should not be used */
1336 	if (nid == 0)
1337 		return 0;
1338 
1339 	if (build) {
1340 		/* do not add allocated nids */
1341 		read_lock(&nm_i->nat_tree_lock);
1342 		ne = __lookup_nat_cache(nm_i, nid);
1343 		if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1344 			allocated = true;
1345 		read_unlock(&nm_i->nat_tree_lock);
1346 		if (allocated)
1347 			return 0;
1348 	}
1349 
1350 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1351 	i->nid = nid;
1352 	i->state = NID_NEW;
1353 
1354 	spin_lock(&nm_i->free_nid_list_lock);
1355 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1356 		spin_unlock(&nm_i->free_nid_list_lock);
1357 		kmem_cache_free(free_nid_slab, i);
1358 		return 0;
1359 	}
1360 	list_add_tail(&i->list, &nm_i->free_nid_list);
1361 	nm_i->fcnt++;
1362 	spin_unlock(&nm_i->free_nid_list_lock);
1363 	return 1;
1364 }
1365 
1366 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1367 {
1368 	struct free_nid *i;
1369 	spin_lock(&nm_i->free_nid_list_lock);
1370 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1371 	if (i && i->state == NID_NEW) {
1372 		__del_from_free_nid_list(i);
1373 		nm_i->fcnt--;
1374 	}
1375 	spin_unlock(&nm_i->free_nid_list_lock);
1376 }
1377 
1378 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1379 			struct page *nat_page, nid_t start_nid)
1380 {
1381 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1382 	block_t blk_addr;
1383 	int i;
1384 
1385 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1386 
1387 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1388 
1389 		if (start_nid >= nm_i->max_nid)
1390 			break;
1391 
1392 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1393 		f2fs_bug_on(blk_addr == NEW_ADDR);
1394 		if (blk_addr == NULL_ADDR) {
1395 			if (add_free_nid(nm_i, start_nid, true) < 0)
1396 				break;
1397 		}
1398 	}
1399 }
1400 
1401 static void build_free_nids(struct f2fs_sb_info *sbi)
1402 {
1403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1404 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1405 	struct f2fs_summary_block *sum = curseg->sum_blk;
1406 	int i = 0;
1407 	nid_t nid = nm_i->next_scan_nid;
1408 
1409 	/* Enough entries */
1410 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1411 		return;
1412 
1413 	/* readahead nat pages to be scanned */
1414 	ra_nat_pages(sbi, nid);
1415 
1416 	while (1) {
1417 		struct page *page = get_current_nat_page(sbi, nid);
1418 
1419 		scan_nat_page(nm_i, page, nid);
1420 		f2fs_put_page(page, 1);
1421 
1422 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1423 		if (nid >= nm_i->max_nid)
1424 			nid = 0;
1425 
1426 		if (i++ == FREE_NID_PAGES)
1427 			break;
1428 	}
1429 
1430 	/* go to the next free nat pages to find free nids abundantly */
1431 	nm_i->next_scan_nid = nid;
1432 
1433 	/* find free nids from current sum_pages */
1434 	mutex_lock(&curseg->curseg_mutex);
1435 	for (i = 0; i < nats_in_cursum(sum); i++) {
1436 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1437 		nid = le32_to_cpu(nid_in_journal(sum, i));
1438 		if (addr == NULL_ADDR)
1439 			add_free_nid(nm_i, nid, true);
1440 		else
1441 			remove_free_nid(nm_i, nid);
1442 	}
1443 	mutex_unlock(&curseg->curseg_mutex);
1444 }
1445 
1446 /*
1447  * If this function returns success, caller can obtain a new nid
1448  * from second parameter of this function.
1449  * The returned nid could be used ino as well as nid when inode is created.
1450  */
1451 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1452 {
1453 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1454 	struct free_nid *i = NULL;
1455 	struct list_head *this;
1456 retry:
1457 	if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1458 		return false;
1459 
1460 	spin_lock(&nm_i->free_nid_list_lock);
1461 
1462 	/* We should not use stale free nids created by build_free_nids */
1463 	if (nm_i->fcnt && !sbi->on_build_free_nids) {
1464 		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1465 		list_for_each(this, &nm_i->free_nid_list) {
1466 			i = list_entry(this, struct free_nid, list);
1467 			if (i->state == NID_NEW)
1468 				break;
1469 		}
1470 
1471 		f2fs_bug_on(i->state != NID_NEW);
1472 		*nid = i->nid;
1473 		i->state = NID_ALLOC;
1474 		nm_i->fcnt--;
1475 		spin_unlock(&nm_i->free_nid_list_lock);
1476 		return true;
1477 	}
1478 	spin_unlock(&nm_i->free_nid_list_lock);
1479 
1480 	/* Let's scan nat pages and its caches to get free nids */
1481 	mutex_lock(&nm_i->build_lock);
1482 	sbi->on_build_free_nids = true;
1483 	build_free_nids(sbi);
1484 	sbi->on_build_free_nids = false;
1485 	mutex_unlock(&nm_i->build_lock);
1486 	goto retry;
1487 }
1488 
1489 /*
1490  * alloc_nid() should be called prior to this function.
1491  */
1492 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1493 {
1494 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1495 	struct free_nid *i;
1496 
1497 	spin_lock(&nm_i->free_nid_list_lock);
1498 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1499 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1500 	__del_from_free_nid_list(i);
1501 	spin_unlock(&nm_i->free_nid_list_lock);
1502 }
1503 
1504 /*
1505  * alloc_nid() should be called prior to this function.
1506  */
1507 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1508 {
1509 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1510 	struct free_nid *i;
1511 
1512 	if (!nid)
1513 		return;
1514 
1515 	spin_lock(&nm_i->free_nid_list_lock);
1516 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1517 	f2fs_bug_on(!i || i->state != NID_ALLOC);
1518 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1519 		__del_from_free_nid_list(i);
1520 	} else {
1521 		i->state = NID_NEW;
1522 		nm_i->fcnt++;
1523 	}
1524 	spin_unlock(&nm_i->free_nid_list_lock);
1525 }
1526 
1527 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1528 		struct f2fs_summary *sum, struct node_info *ni,
1529 		block_t new_blkaddr)
1530 {
1531 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1532 	set_node_addr(sbi, ni, new_blkaddr);
1533 	clear_node_page_dirty(page);
1534 }
1535 
1536 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1537 {
1538 	struct address_space *mapping = sbi->node_inode->i_mapping;
1539 	struct f2fs_node *src, *dst;
1540 	nid_t ino = ino_of_node(page);
1541 	struct node_info old_ni, new_ni;
1542 	struct page *ipage;
1543 
1544 	ipage = grab_cache_page(mapping, ino);
1545 	if (!ipage)
1546 		return -ENOMEM;
1547 
1548 	/* Should not use this inode  from free nid list */
1549 	remove_free_nid(NM_I(sbi), ino);
1550 
1551 	get_node_info(sbi, ino, &old_ni);
1552 	SetPageUptodate(ipage);
1553 	fill_node_footer(ipage, ino, ino, 0, true);
1554 
1555 	src = F2FS_NODE(page);
1556 	dst = F2FS_NODE(ipage);
1557 
1558 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1559 	dst->i.i_size = 0;
1560 	dst->i.i_blocks = cpu_to_le64(1);
1561 	dst->i.i_links = cpu_to_le32(1);
1562 	dst->i.i_xattr_nid = 0;
1563 
1564 	new_ni = old_ni;
1565 	new_ni.ino = ino;
1566 
1567 	if (!inc_valid_node_count(sbi, NULL, 1))
1568 		WARN_ON(1);
1569 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1570 	inc_valid_inode_count(sbi);
1571 	f2fs_put_page(ipage, 1);
1572 	return 0;
1573 }
1574 
1575 int restore_node_summary(struct f2fs_sb_info *sbi,
1576 			unsigned int segno, struct f2fs_summary_block *sum)
1577 {
1578 	struct f2fs_node *rn;
1579 	struct f2fs_summary *sum_entry;
1580 	struct page *page;
1581 	block_t addr;
1582 	int i, last_offset;
1583 
1584 	/* alloc temporal page for read node */
1585 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
1586 	if (!page)
1587 		return -ENOMEM;
1588 	lock_page(page);
1589 
1590 	/* scan the node segment */
1591 	last_offset = sbi->blocks_per_seg;
1592 	addr = START_BLOCK(sbi, segno);
1593 	sum_entry = &sum->entries[0];
1594 
1595 	for (i = 0; i < last_offset; i++, sum_entry++) {
1596 		/*
1597 		 * In order to read next node page,
1598 		 * we must clear PageUptodate flag.
1599 		 */
1600 		ClearPageUptodate(page);
1601 
1602 		if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1603 			goto out;
1604 
1605 		lock_page(page);
1606 		rn = F2FS_NODE(page);
1607 		sum_entry->nid = rn->footer.nid;
1608 		sum_entry->version = 0;
1609 		sum_entry->ofs_in_node = 0;
1610 		addr++;
1611 	}
1612 	unlock_page(page);
1613 out:
1614 	__free_pages(page, 0);
1615 	return 0;
1616 }
1617 
1618 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1619 {
1620 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1621 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1622 	struct f2fs_summary_block *sum = curseg->sum_blk;
1623 	int i;
1624 
1625 	mutex_lock(&curseg->curseg_mutex);
1626 
1627 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1628 		mutex_unlock(&curseg->curseg_mutex);
1629 		return false;
1630 	}
1631 
1632 	for (i = 0; i < nats_in_cursum(sum); i++) {
1633 		struct nat_entry *ne;
1634 		struct f2fs_nat_entry raw_ne;
1635 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1636 
1637 		raw_ne = nat_in_journal(sum, i);
1638 retry:
1639 		write_lock(&nm_i->nat_tree_lock);
1640 		ne = __lookup_nat_cache(nm_i, nid);
1641 		if (ne) {
1642 			__set_nat_cache_dirty(nm_i, ne);
1643 			write_unlock(&nm_i->nat_tree_lock);
1644 			continue;
1645 		}
1646 		ne = grab_nat_entry(nm_i, nid);
1647 		if (!ne) {
1648 			write_unlock(&nm_i->nat_tree_lock);
1649 			goto retry;
1650 		}
1651 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1652 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1653 		nat_set_version(ne, raw_ne.version);
1654 		__set_nat_cache_dirty(nm_i, ne);
1655 		write_unlock(&nm_i->nat_tree_lock);
1656 	}
1657 	update_nats_in_cursum(sum, -i);
1658 	mutex_unlock(&curseg->curseg_mutex);
1659 	return true;
1660 }
1661 
1662 /*
1663  * This function is called during the checkpointing process.
1664  */
1665 void flush_nat_entries(struct f2fs_sb_info *sbi)
1666 {
1667 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1668 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1669 	struct f2fs_summary_block *sum = curseg->sum_blk;
1670 	struct list_head *cur, *n;
1671 	struct page *page = NULL;
1672 	struct f2fs_nat_block *nat_blk = NULL;
1673 	nid_t start_nid = 0, end_nid = 0;
1674 	bool flushed;
1675 
1676 	flushed = flush_nats_in_journal(sbi);
1677 
1678 	if (!flushed)
1679 		mutex_lock(&curseg->curseg_mutex);
1680 
1681 	/* 1) flush dirty nat caches */
1682 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1683 		struct nat_entry *ne;
1684 		nid_t nid;
1685 		struct f2fs_nat_entry raw_ne;
1686 		int offset = -1;
1687 		block_t new_blkaddr;
1688 
1689 		ne = list_entry(cur, struct nat_entry, list);
1690 		nid = nat_get_nid(ne);
1691 
1692 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1693 			continue;
1694 		if (flushed)
1695 			goto to_nat_page;
1696 
1697 		/* if there is room for nat enries in curseg->sumpage */
1698 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1699 		if (offset >= 0) {
1700 			raw_ne = nat_in_journal(sum, offset);
1701 			goto flush_now;
1702 		}
1703 to_nat_page:
1704 		if (!page || (start_nid > nid || nid > end_nid)) {
1705 			if (page) {
1706 				f2fs_put_page(page, 1);
1707 				page = NULL;
1708 			}
1709 			start_nid = START_NID(nid);
1710 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1711 
1712 			/*
1713 			 * get nat block with dirty flag, increased reference
1714 			 * count, mapped and lock
1715 			 */
1716 			page = get_next_nat_page(sbi, start_nid);
1717 			nat_blk = page_address(page);
1718 		}
1719 
1720 		f2fs_bug_on(!nat_blk);
1721 		raw_ne = nat_blk->entries[nid - start_nid];
1722 flush_now:
1723 		new_blkaddr = nat_get_blkaddr(ne);
1724 
1725 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1726 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1727 		raw_ne.version = nat_get_version(ne);
1728 
1729 		if (offset < 0) {
1730 			nat_blk->entries[nid - start_nid] = raw_ne;
1731 		} else {
1732 			nat_in_journal(sum, offset) = raw_ne;
1733 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1734 		}
1735 
1736 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1737 				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1738 			write_lock(&nm_i->nat_tree_lock);
1739 			__del_from_nat_cache(nm_i, ne);
1740 			write_unlock(&nm_i->nat_tree_lock);
1741 		} else {
1742 			write_lock(&nm_i->nat_tree_lock);
1743 			__clear_nat_cache_dirty(nm_i, ne);
1744 			ne->checkpointed = true;
1745 			write_unlock(&nm_i->nat_tree_lock);
1746 		}
1747 	}
1748 	if (!flushed)
1749 		mutex_unlock(&curseg->curseg_mutex);
1750 	f2fs_put_page(page, 1);
1751 
1752 	/* 2) shrink nat caches if necessary */
1753 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1754 }
1755 
1756 static int init_node_manager(struct f2fs_sb_info *sbi)
1757 {
1758 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1759 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1760 	unsigned char *version_bitmap;
1761 	unsigned int nat_segs, nat_blocks;
1762 
1763 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1764 
1765 	/* segment_count_nat includes pair segment so divide to 2. */
1766 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1767 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1768 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1769 	nm_i->fcnt = 0;
1770 	nm_i->nat_cnt = 0;
1771 
1772 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1773 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1774 	INIT_LIST_HEAD(&nm_i->nat_entries);
1775 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1776 
1777 	mutex_init(&nm_i->build_lock);
1778 	spin_lock_init(&nm_i->free_nid_list_lock);
1779 	rwlock_init(&nm_i->nat_tree_lock);
1780 
1781 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1782 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1783 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1784 	if (!version_bitmap)
1785 		return -EFAULT;
1786 
1787 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1788 					GFP_KERNEL);
1789 	if (!nm_i->nat_bitmap)
1790 		return -ENOMEM;
1791 	return 0;
1792 }
1793 
1794 int build_node_manager(struct f2fs_sb_info *sbi)
1795 {
1796 	int err;
1797 
1798 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1799 	if (!sbi->nm_info)
1800 		return -ENOMEM;
1801 
1802 	err = init_node_manager(sbi);
1803 	if (err)
1804 		return err;
1805 
1806 	build_free_nids(sbi);
1807 	return 0;
1808 }
1809 
1810 void destroy_node_manager(struct f2fs_sb_info *sbi)
1811 {
1812 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1813 	struct free_nid *i, *next_i;
1814 	struct nat_entry *natvec[NATVEC_SIZE];
1815 	nid_t nid = 0;
1816 	unsigned int found;
1817 
1818 	if (!nm_i)
1819 		return;
1820 
1821 	/* destroy free nid list */
1822 	spin_lock(&nm_i->free_nid_list_lock);
1823 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1824 		f2fs_bug_on(i->state == NID_ALLOC);
1825 		__del_from_free_nid_list(i);
1826 		nm_i->fcnt--;
1827 	}
1828 	f2fs_bug_on(nm_i->fcnt);
1829 	spin_unlock(&nm_i->free_nid_list_lock);
1830 
1831 	/* destroy nat cache */
1832 	write_lock(&nm_i->nat_tree_lock);
1833 	while ((found = __gang_lookup_nat_cache(nm_i,
1834 					nid, NATVEC_SIZE, natvec))) {
1835 		unsigned idx;
1836 		for (idx = 0; idx < found; idx++) {
1837 			struct nat_entry *e = natvec[idx];
1838 			nid = nat_get_nid(e) + 1;
1839 			__del_from_nat_cache(nm_i, e);
1840 		}
1841 	}
1842 	f2fs_bug_on(nm_i->nat_cnt);
1843 	write_unlock(&nm_i->nat_tree_lock);
1844 
1845 	kfree(nm_i->nat_bitmap);
1846 	sbi->nm_info = NULL;
1847 	kfree(nm_i);
1848 }
1849 
1850 int __init create_node_manager_caches(void)
1851 {
1852 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1853 			sizeof(struct nat_entry), NULL);
1854 	if (!nat_entry_slab)
1855 		return -ENOMEM;
1856 
1857 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1858 			sizeof(struct free_nid), NULL);
1859 	if (!free_nid_slab) {
1860 		kmem_cache_destroy(nat_entry_slab);
1861 		return -ENOMEM;
1862 	}
1863 	return 0;
1864 }
1865 
1866 void destroy_node_manager_caches(void)
1867 {
1868 	kmem_cache_destroy(free_nid_slab);
1869 	kmem_cache_destroy(nat_entry_slab);
1870 }
1871